PROJECT MANUAL

HVAC System Upgrade Transition Center of Kansas City Kansas City, Missouri

> Designed By: Insite Group 3540 NE Ralph Powell Rd, Suite B Lee's Summit, MO 64064

Date Issued: March 21, 2023

Project No.: C1904-01

STATE of MISSOURI

OFFICE of ADMINISTRATION Facilities Management, Design & Construction

DOCUMENT 000107 - SEALS PAGE

1.1 DESIGN PROFESSIONALS OF RECORD

- A. Architect:
 - 1. Daren T. Carney
 - 2. A-2000150402
 - 3. Responsible for Divisions 02-09 Sections except where indicated as prepared by other design professionals of record.
- B. HVAC Engineer:
 - 1. Curtis Brungardt
 - 2. PE-2003016693
 - 3. Responsible for Divisions 23 Sections
- C. Electrical Engineer:
 - 1. Curtis Brungardt
 - 2. PE-2003016693
 - 3. Responsible for Divisions 26 Sections

END OF DOCUMENT 000107

*

DIVISION 00 – PROCUREMENT AND CONTRACTING INFORMATION

000000	INTRODUCTORY INFORMATION	
000101	Project Manual Cover	1
000107	Professional Seals and Certifications	1
000110	Table of Contents	2
000115	List of Drawings	4
001116	INVITATION FOR BID (IFB) plus Missouri Buys instructions and special notice	3
002113	INSTRUCTIONS TO BIDDERS (Includes MBE/WBE/SDVE Information)	8
003144	MBE/WBE/SDVE Directory	1
The f	ollowing documents may be found on MissouriBUYS at https://missouribuys.mo.gov/	
004000	PROCUREMENT FORMS & SUPPLEMENTS	
004113	Bid Form	*
004322	Unit Prices Form	*
004336	Proposed Subcontractors Form	*
004337	MBE/WBE/SDVE Compliance Evaluation Form	*

MBE/WBE/SDVE Eligibility Determination 004338 Form for Joint Ventures 004339 MBE/WBE/SDVE Good Faith Effort (GFE) **Determination Forms** 004340 SDVE Business Form * 004541 Affidavit of Work Authorization * 004545 Anti-Discrimination Against Israel Act Certification form * 005000 CONTRACTING FORMS AND SUPPLEMENTS 005213 Construction Contract 3 005414 Affidavit for Affirmative Action 1 006000 PROJECT FORMS Performance and Payment Bond 2 006113 2 006325 Product Substitution Request 006519.16 Final Receipt of Payment and Release Form 1 MBE/WBE/SDVE Progress Report 006519.18 1 Affidavit of Compliance with Prevailing Wage Law 006519.21 1

007000 CONDITIONS OF THE CONTRACT

007213	General Conditions	20
007300	Supplementary Conditions	1
007346	Wage Rate	4

DIVISION 1 - GENERAL REQUIREMENTS

011000	Summary of Work	3
012100	Allowances	2
012600	Contract Modification Procedures	3
013100	Coordination	6
013200	Schedules	4
013300	Submittals	6
013513.16	Site Security and Health Requirements	7
015000	Construction Facilities and Temporary Controls	11
017400	Cleaning	3
017900	Demonstration and Training	6
019113	General Commissioning Requirements	8
DIVISION 02	2 - EXISTING CONDITIONS	
024100	Demolition	3

DIVISION 04 - MASONRY

042000 Unit Masonry	
---------------------	--

4

DIVISION 0	7 THERMAL AND MOISTURE PROTECTION	
079200	Joint Sealants	4
DIVISION 0	8 - OPENINGS	
081113	Hollow Metal Doors and Frames	5
083100	Access Doors and Panels	3
087100	Door Hardware	13
DIVISION 0	9 - FINISHES	
092116	Gypsum Board Assemblies	6
099000	Painting and Coating	7
DIVISION 2	3 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
230500	Common Work Results for HVAC	16
230513	Common Motor Requirements for HVAC Equipment	3
230517	Sleeves and Sleeve Seals for HVAC Piping	3
230519	Meters and Gages for HVAC Piping	6
230523	General Duty Valves for HVAC Piping	5
230529	Hangers and Supports for HVAC Piping and Equip.	12
230553	Identification for HVAC Piping and Equipment	6
230593	Testing, Adjusting, and Balancing for HVAC	22
230713	Duct Insulation	17
230716	HVAC Equipment Insulation	15
230719	HVAC Piping Insulation	19
230910	Variable Frequency Drives (VFDs)	6
231123	Facility Natural-Gas Piping	18
232113	Hydronic Piping	11
232113.13	Underground Hydronic Piping	7
232116	Hydronic Piping Specialties	6
232513	Water Treatment for Closed-Loop Hydronic Systems	6
233113	Metal Ducts	15
233300	Air Duct Accessories	16
233600	Air Terminal Units	6
235216	Condensing Boilers	7
236426.13	Air-Cooled, Rotary-Screw Water Chillers	8
237313.13	Indoor, Basic Air-Handling Units	9
237313.16	Indoor, Semi-Custom Air-Handling Units	8
237423.13	Packaged, Direct-Fired, Outdoor, Heating-Only Makeup-Air Units	9
238126	Split-System Air-Conditioners	5
238219	Fan Coll Units	5
DIVISION 2	5 - CONTROLS	
250000	Building Automation Systems (BAS)	36
DIVISION 2	6 - ELECTRICAL	
260519	Low-Voltage Electrical Power Conductors and Cables	7
260523	Control-Voltage Electrical Power Cables	9
260526	Grounding and Bonding for Electrical Systems	4
260529	Hangers and Supports for Electrical Systems	6
260533	Raceways and Boxes for Electrical Systems	7
260543	Underground Ducts and Raceways For Electrical Systems	13
260544	Sleeves & Sleeve Seals for Electrical Raceways and Cabling	4
260553	Identification for Electrical Systems	10
262816	Enclosed Switches and Circuit Breakers	11
DIVISION 2	8 – ELECTRONIC SAFETY AND SECURITY	
284621	Addressable Fire-Alarm System	17

END OF TABLE OF CONTENTS

SECTION 000115 – LIST OF DRAWINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions, Bid Form, and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

A. This Section provides a comprehensive list of the drawings that comprise the Bid Documents for this project.

PART 2 - PRODUCTS (NOT APPLICABLE)

PART 3 - EXECUTION

3.1 LIST OF DRAWINGS

A. The following list of drawings is a part of the Bid Documents:

	TITLE	SHEET #	DATE	<u>CAD #</u>
1.	Cover Sheet	Sheet 0000	03/21/23	0000
2.	Architectural General Notes & Project Info	Sheet A001	03/21/23	A001
3.	Architectural Project Area Location Maps	Sheet A002	03/21/23	A002
4.	Architectural Floor Plans – First Floor	Sheet A100	03/21/23	A100
5.	Architectural Ceiling Plans – First Floor	Sheet A101	03/21/23	A101
6.	Architectural Ceiling Plans – First Floor	Sheet A102	03/21/23	A102
7.	Architectural Ceiling Plans – Second Floor	Sheet A103	03/21/23	A103
8.	Architectural Ceiling Plan – Second Floor	Sheet A103A	03/21/23	A103A
9.	Architectural Roof Plan - Partial	Sheet A104	03/21/23	A104
10.	General Notes	Sheet S001	03/21/23	S001
11.	Typical Details	Sheet S002	03/21/23	S002
12.	Typical Details	Sheet S003	03/21/23	S003
13.	Typical Details	Sheet S004	03/21/23	S004
14.	Level 1 Foundation Plan	Sheet S101	03/21/23	S101
15.	Level 2 Framing Plan	Sheet S102	03/21/23	S102
16.	Level 2 Enlarged Framing Plan	Sheet S102A	03/21/23	S102A
17.	Mechanical Symbols	Sheet M001	03/21/23	M001
18.	Level 1 Overall Mech Piping Demo Plan	Sheet MPD101	03/21/23	MPD101

19.	Level 1 Mechanical Piping Demo Plan	Sheet MPD101A	03/21/23	MPD101A
20.	Level 1 Mechanical Piping Demo Plan	Sheet MPD101B	03/21/23	MPD101B
21.	Level 1 Mechanical Piping Demo Plan	Sheet MPD101C	03/21/23	MPD101C
22.	Level 1 Mechanical Piping Demo Plan	Sheet MPD101D	03/21/23	MPD101D
23.	Level 2 Overall Mech Piping Demo Plan	Sheet MPD102	03/21/23	MPD102
24.	Level 2 Mechanical Piping Demo Plan	Sheet MPD102A	03/21/23	MPD102A
25.	Level 2 Mechanical Piping Demo Plan	Sheet MPD102B	03/21/23	MPD102B
26.	Level 1 Overall Mech HVAC Demo Plan	Sheet MHD101	03/21/23	MHD101
27.	Level 1 Mechanical HVAC Demo Plan	Sheet MHD101A	03/21/23	MHD101A
28.	Level 1 Mechanical HVAC Demo Plan	Sheet MHD101B	03/21/23	MHD101B
29.	Level 1 Mechanical HVAC Demo Plan	Sheet MHD101C	03/21/23	MHD101C
30.	Level 1 Mechanical HVAC Demo Plan	Sheet MHD101D	03/21/23	MHD101D
31.	Level 2 Overall Mech HVAC Demo Plan	Sheet MHD102	03/21/23	MHD102
32.	Level 2 Mechanical HVAC Demo Plan	Sheet MHD102A	03/21/23	MHD102A
33.	Level 2 Mechanical HVAC Demo Plan	Sheet MHD102B	03/21/23	MHD102B
34.	Level 1 Overall Mech Piping New Work Plan	Sheet MP101	03/21/23	MP101
35.	Level 1 Mechanical Piping New Work Plan	Sheet MP101A	03/21/23	MP101A
36.	Level 1 Mechanical Piping New Work Plan	Sheet MP101B	03/21/23	MP101B
37.	Level 1 Mechanical Piping New Work Plan	Sheet MP101C	03/21/23	MP101C
38.	Level 1 Mechanical Piping New Work Plan	Sheet MP101D	03/21/23	MP101D
39.	Level 1 Mechanical Piping New Work Plan	Sheet MP101E	03/21/23	MP101E
40.	Level 2 Overall Mech Piping New Work Plan	Sheet MP102	03/21/23	MP102
41.	Level 2 Mechanical Piping New Work Plan	Sheet MP102A	03/21/23	MP102A
42.	Level 2 Mechanical Piping New Work Plan	Sheet MP102B	03/21/23	MP102B
43.	Level 1 Overall Mech HVAC New Work Plan	Sheet MH101	03/21/23	MH101
44.	Level 1 Mechanical HVAC New Work Plan	Sheet MH101A	03/21/23	MH101A
45.	Level 1 Mechanical HVAC New Work Plan	Sheet MH101B	03/21/23	MH101B
46.	Level 1 Mechanical HVAC New Work Plan	Sheet MH101C	03/21/23	MH101C
47.	Level 1 Mechanical HVAC New Work Plan	Sheet MH101D	03/21/23	MH101D
48.	Level 2 Overall Mech HVAC New Work Plan	Sheet MH102	03/21/23	MH102
49.	Level 2 Mechanical HVAC New Work Plan	Sheet MH102A	03/21/23	MH102A
50.	Level 2 Mechanical HVAC New Work Plan	Sheet MH102B	03/21/23	MH102B
51.	Mechanical Sections	Sheet M301	03/21/23	M301
52.	Mechanical Details	Sheet M501	03/21/23	M501

53.	Mechanical Details	Sheet M502	03/21/23	M502
54.	Mechanical AHU Details	Sheet M510	03/21/23	M510
55.	Mechanical AHU Details	Sheet M511	03/21/23	M511
56.	Mechanical AHU Details	Sheet M512	03/21/23	M512
57.	Mechanical AHU Details	Sheet M513	03/21/23	M513
58.	Mechanical AHU Details	Sheet M514	03/21/23	M514
59.	Mechanical Schedules	Sheet M601	03/21/23	M601
60.	Mechanical Schedules	Sheet M602	03/21/23	M602
61.	Mechanical Schedules	Sheet M603	03/21/23	M603
62.	Mechanical Schematics	Sheet M701	03/21/23	M701
63.	Mechanical Schematics	Sheet M702	03/21/23	M702
64.	Mechanical Schematics	Sheet M703	03/21/23	M703
65.	Bldg. Automation Symbols & General Notes	Sheet BA001	03/21/23	BA001
66.	Level 1 Overall BAS New Work	Sheet BA101	03/21/23	BA100
67.	Level 1 BAS New Work Plan	Sheet BA101A	03/21/23	BA101A
68.	Level 1 BAS New Work Plan	Sheet BA101B	03/21/23	BA101B
69.	Level 1 BAS New Work Plan	Sheet BA101C	03/21/23	BA101C
70.	Level 1 BAS New Work Plan	Sheet BA101D	03/21/23	BA101D
71.	Level 2 Overall BAS New Work	Sheet BA102	03/21/23	BA102
72.	Level 2 BAS New Work Plan	Sheet BA102A	03/21/23	BA102A
73.	Level 2 BAS New Work Plan	Sheet BA102B	03/21/23	BA102B
74.	BAS Network Riser Diagram	Sheet BA500	03/21/23	BA500
75.	BAS VAV Schematics	Sheet BA501	03/21/23	BA501
76.	Multi-Zone AHU Schematic & Schedules	Sheet BA502	03/21/23	BA502
77.	Single Zone AHU Schematic & Schedules	Sheet BA503	03/21/23	BA503
78.	BAS Schedules	Sheet BA600	03/21/23	BA600
79.	BAS Schematic	Sheet BA701	03/21/23	BA701
80.	BAS Schematic	Sheet BA702	03/21/23	BA702
81.	BAS Point List	Sheet BA703	03/21/23	BA703
82.	Electrical Symbols And General Notes	Sheet E001	03/21/23	E001
83.	Level 1 Overall Electrical Power Demo Plan	Sheet EPD101	03/21/23	EPD101
84.	Level 1 Electrical Power Demo Plan	Sheet EPD101A	03/21/23	EPD101A
85.	Level 1 Electrical Power Demo Plan	Sheet EPD101B	03/21/23	EPD101B
86.	Level 1 Electrical Power Demo Plan	Sheet EPD101C	03/21/23	EPD101C

87.	Level 1 Electrical Power Demo Plan	Sheet EPD101D	03/21/23	EPD101D
88.	Level 2 Overall Electrical Power Demo Plan	Sheet EPD102	03/21/23	EPD102
89.	Level 2 Electrical Power Demo Plan	Sheet EPD102A	03/21/23	EPD102A
90.	Level 2 Electrical Power Demo Plan	Sheet EPD102B	03/21/23	EPD102B
91.	Electrical Schedules	Sheet ED601	03/21/23	DE601
92.	Electrical Schedules	Sheet ED602	03/21/23	DE602
93.	Level 1 Overall Elec. Power New Work Plan	Sheet EP101	03/21/23	EP101
94.	Level 1 Electrical Power New Work Plan	Sheet EP101A	03/21/23	EP101A
95.	Level 1 Electrical Power New Work Plan	Sheet EP101B	03/21/23	EP101B
96.	Level 1 Electrical Power New Work Plan	Sheet EP101C	03/21/23	EP101C
97.	Level 1 Electrical Power New Work Plan	Sheet EP101D	03/21/23	EP101D
98.	Level 1 Electrical Power New Work Plan	Sheet EP101E	03/21/23	EP101E
99.	Level 2 Overall Elec. Power New Work Plan	Sheet EP102	03/21/23	EP102
100.	Level 2 Electrical Power New Work Plan	Sheet EP102A	03/21/23	EP102A
101.	Level 2 Electrical Power New Work Plan	Sheet EP102B	03/21/23	EP102B
102.	Electrical Details	Sheet E501	03/21/23	E501
103.	Electrical Schedules	Sheet E601	03/21/23	E601
104.	Electrical Schedules	Sheet E602	03/21/23	E602
105.	Electrical Schedules	Sheet E603	03/21/23	E603
106.	Electrical Schedules	Sheet E604	03/21/23	E604
107.	Electrical Schedules	Sheet E605	03/21/23	E605
108.	Electrical Schematics	Sheet E701	03/21/23	E701
109.	Level 1 New Fire Alarm Plan	Sheet FA101D	03/21/23	FA101D
110.	Level 2 New Fire Alarm Plan	Sheet FA102A	03/21/23	FA102A
111.	Level 2 New Fire Alarm Plan	Sheet FA102B	03/21/23	FA102B

END OF SECTION 000115

SECTION 001116 - INVITATION FOR BID

1.0 OWNER:

А.	The State of Missouri
	Office of Administration,
	Division of Facilities Management, Design and Construction
	Jefferson City, Missouri

2.0 **PROJECT TITLE AND NUMBER:**

A. HVAC System Upgrade Transition Center of Kansas City Kansas City, Missouri **Project No.: C1904-01**

3.0 BIDS WILL BE RECEIVED:

- A. Until: 1:30 PM, Thursday, July 27, 2023
- B. Only electronic bids on MissouriBUYS shall be accepted: https://missouribuys.mo.gov. Bidder must be registered to bid.

4.0 **DESCRIPTION:**

- A. Scope: The work consists of replacing existing system with a 4 pipe system with air cooled chiller, boilers, pumps, and new BAS.
- B. MBE/WBE/SDVE Goals: MBE 10%, WBE 10%, and SDVE 3%. NOTE: Only MBE/WBE firms certified by the State of Missouri Office of Equal Opportunity as of the date of bid opening, or SDVE(s) meeting the requirements of Section 34.074, RSMo and 1 CSR 30-5.010, can be used to satisfy the MBE/WBE/SDVE participation goals for this project.
- C. **NOTE: Bidders are provided new Good Faith Effort (GFE) forms on MissouriBUYS.

5.0 **PRE-BID MEETING:**

- A. Place/Time: 11:00 AM, Thursday, July 13, 2023, at Transition Center of Kansas City, 651 Mulberry St, Kansas City, MO.
- B. Access to State of Missouri property requires presentation of a photo ID by all persons

6.0 HOW TO GET PLANS & SPECIFICATIONS:

- A. View Only Electronic bid sets are available at no cost or paper bid sets for a deposit of \$100 from American Document Solutions (ADS). MAKE CHECKS PAYABLE TO: American Document Solutions. Mail to: American Document Solutions, 1400 Forum Blvd., Suite 7A, Columbia, Missouri 65203. Phone 573-446-7768, Fax 573-355-5433, <u>https://www.adsplanroom.net</u>. NOTE: Prime contractors will be allowed a maximum of two bid sets at the deposit rate shown above. Other requesters will be allowed only one bid set at this rate. Additional bid sets or parts thereof may be obtained by any bidder at the cost of printing and shipping by request to American Document Solutions at the address shown above. Bidder must secure at least one bid set to become a planholder.
- B. Refunds: Return plans and specifications in unmarked condition within 15 working days of bid opening to American Document Solutions, 1400 Forum Blvd., Suite 7A, Columbia, Missouri 65203. Phone 573-446-7768, Fax 573-355-5433. Deposits for plans not returned within 15 working days shall be forfeited.
- C. Information for upcoming bids, including downloadable plans, specifications, Invitation for Bid, bid tabulation, award, addenda, and access to the ADS planholders list, is available on the Division of Facilities Management, Design and Construction's web site: https://oa.mo.gov/facilities/bid-opportunities/bid-listing-electronic-plans.

7.0 POINT OF CONTACT:

- A. Designer: Insite Group, Matt Begnoche, (816) 228-3377, email: matt@insitegroup.net
- B. Project Manager: Jared Cook, (573) 690-6733, email: jared.cook2@oa.mo.gov

8.0 GENERAL INFORMATION:

- A. The State reserves the right to reject any and all bids and to waive all informalities in bids. No bid may be withdrawn for a period of 20 working days subsequent to the specified bid opening time. The contractor shall pay not less than the prevailing hourly rate of wages for work of a similar character in the locality in which the work is performed, as determined by the Missouri Department of Labor and Industrial Relations and as set out in the detailed plans and specifications.
- B. Bid results will be available at https://oa.mo.gov/facilities/bid-opportunities/bid-listing-electronic-plans after it is verified that at least one bid is awardable and affordable.

Very Important MissouriBUYS Instructions to Help Submit a Bid Correctly

- A. The bidder shall submit his or her bid and all supporting documentation on MissouriBUYS eProcurement System. No hard copy bids shall be accepted. Go to <u>https://missouribuys.mo.gov</u> and register. The bidder must register and complete a profile fully with all required documents submitted prior to submitting a bid.
- B. Once registered, log in.
 - 1. Under "Solicitation" select "View Current Solicitations."
 - 2. Under "Filter by Agency" select "OA-FMDC-Contracts Chapter 8", then click "Filter Solicitation" button.
 - 3. Select "Active Solicitations" tab.
 - 4. To see the Solicitation Summary, click on the Project Number and the summary will open. Click each heading to open detailed information.

C. Here are simplified instructions for uploading the bid to MissouriBUYS:

- 1. Find the solicitation by completing Steps 1 through 4 above.
- 2. Select the three dots under "Actions." Select "Add New Response."
- 3. When the Quote box opens, give the response a title and select "OK."
- 4. The detailed solicitation will open. Select "Check All" for the Original Solicitation Documents, open each document, and select "Accept." If this step is not completed, a bid cannot be uploaded. Scroll to the bottom of the page and select "Add Attachments." If you do not see this command, not all documents have been opened and accepted.
- 5. The Supplier Attachments box will open. Select "Add Attachment" again.
- 6. The Upload Documents box will open. Read the instructions for uploading. Disregard the "Confidential" check box.
- 7. Browse and attach up to 5 files at a time. Scroll to bottom of box and select "Upload." The Supplier Attachments box will open. Repeat Steps 5 through 7 if more than 5 files are to be uploaded.
- 8. When the Supplier Attachments box opens again and uploading is complete, select "Done." A message should appear that the upload is successful. If it does not, go to the Bidder Response tab and select "Submit."
- 9. The detailed solicitation will open. At the bottom select "Close."
- D. Any time a bidder wants to modify the bid, he or she will have to submit a new one. FMDC will open the last response the bidder submits. The bidder may revise and submit the bid up to the close of the solicitation (bid date and time). Be sure to allow for uploading time so that the bid is successfully uploaded prior to the 1:30 PM deadline; we can only accept the bid if it is uploaded before the deadline.
- E. If you want to verify that you are uploading documents correctly, please contact Paul Girouard: 573-751-4797, paul.girouard@oa.mo.gov; April Howser: 573-751-0053, <u>April.Howser@oa.mo.gov</u>; or Mandy Roberson: 573-522-0074, <u>Mandy.Roberson@oa.mo.gov</u>.
- F. If you are experiencing login issues, please contact Web Procure Support (Proactis) at 866-889-8533 anytime from 7:00 AM to 7:00 PM Central Time, Monday through Friday. If you try using a userid or password several times that is incorrect, the system will lock you out. Web Procure Support is the only option to unlock you! If you forget your userid or password, Web Procure Support will provide a temporary userid or password. Also, if it has been a while since your last successful login and you receive an "inactive" message, contact Web Procure (Proactis). If you are having a registration issue, you may contact Office of Administration Division of Purchasing at 573-751-3491.

IMPORTANT REMINDER REGARDING REQUIREMENT FOR OEO CERTIFICATION

A. SECTION 002113 – INSTRUCTIONS TO BIDDERS: Article 15.0, Section D1:

<u>As of July 1, 2020</u>, all MBE, WBE, and MBE/WBE contractors, subcontractors, and suppliers must be certified by the State of Missouri, Office of Equal Opportunity. No certifications from other Missouri certifying agencies will be accepted.

SECTION 002113 – INSTRUCTIONS TO BIDDERS

1.0 - SPECIAL NOTICE TO BIDDERS

- A. If awarded a contract, the Bidder's employees, and the employees of all subcontractors, who perform the work on the project must adhere to requirements in Section 013513 Site Security and Health Requirements as applicable per Agency.
- B. The Bidder's prices shall include all city, state, and federal sales, excise, and similar taxes that may lawfully be assessed in connection with the performance of work, and the purchased of materials to be incorporated in the work. THIS PROJECT IS NOT TAX EXEMPT.

2.0 - BID DOCUMENTS

- A. The number of sets obtainable by any one (1) party may be limited in accordance with available supply.
- B. For the convenience of contractors, sub-contractors and suppliers, copies of construction documents are on file at the office of the Director, Division of Facilities Management, Design and Construction and on the Division's web site <u>https://oa.mo.gov/facilities/bid-opportunities/bid-listing-electronic-plans</u>.

3.0 - BIDDERS' OBLIGATIONS

- A. Bidders must carefully examine the entire site of the work and shall make all reasonable and necessary investigations to inform themselves thoroughly as to the facilities available as well as to all the difficulties involved in the completion of all work in accordance with the specifications and the plans. Bidders are also required to examine all maps, plans and data mentioned in the specifications. No plea of ignorance concerning observable existing conditions or difficulties that may be encountered in the execution of the work under this contract will be accepted as an excuse for any failure or omission on the part of the contractor to fulfill in every detail all of the requirements of the contract, nor accepted as a basis for any claims for extra compensation.
- B. Under no circumstances will contractors give their plans and specifications to another contractor. Any bid received from a contractor whose name does not appear on the list of plan holders may be subject to rejection.

4.0 - INTERPRETATIONS

- A. No bidder shall be entitled to rely on oral interpretations as to the meaning of the plans and specifications or the acceptability of alternate products, materials, form or type of construction. Every request for interpretation shall be made in writing and submitted with all supporting documents not less than five (5) working days before opening of bids. Every interpretation made to a bidder will be in the form of an addendum and will be sent as promptly as is practicable to all persons to whom plans and specifications have been issued. All such addenda shall become part of the contract documents.
- B. Approval for an "acceptable substitution" issued in the form of an addendum as per Paragraph 4A above, and as per Article 3.1 of the General Conditions; ACCEPTABLE SUBSTITUTIONS shall constitute approval for use in the project of the product.
- C. An "acceptable substitution" requested after the award of bid shall be approved if proven to the satisfaction of the Owner and the Designer as per Article 3.1, that the product is acceptable in design, strength, durability, usefulness, and convenience for the purpose intended. Approval of the substitution after award is at the sole discretion of the Owner.
- D. A request for "Acceptable Substitutions" shall be made on the Section 006325 Substitution Request Form. The request shall be sent directly to the project Designer. A copy of said request should also be mailed to the Owner, Division of Facilities Management, Design and Construction, Post Office Box 809, Jefferson City, Missouri 65102.

5.0 - BIDS AND BIDDING PROCEDURE

A. Bidders shall submit all submission forms and accompanying documents listed in SECTION 004113 – BID FORM, Article 5.0, ATTACHMENTS TO BID by the stated time or their bid will be rejected for being non-responsive.

Depending on the specific project requirements, **the following is a GENERIC list** of all possible bid forms that may be due with bid submittals and times when they may be due. Please check for specific project requirements on the proposal form (Section 004113). *Not all of the following bid forms may be required to be submitted.*

<u>Bid Submittal –</u>	due before stated date and time of bid opening (see IFB):
004113	Bid Form (all pages are always required)
004322	Unit Prices Form
004336	Proposed Subcontractors Form
004337	MBE/WBE/SDVE Compliance Evaluation Form
004338	MBE/WBE/SDVE Eligibility Determination for Joint Ventures
004339	MBE/WBE/SDVE GFE Determination
004340	SDVE Business Form
004541	Affidavit of Work Authorization
004545	Anti-Discrimination Against Israel Act Certification form

- B. All bids shall be submitted without additional terms and conditions, modification or reservation on the bid forms with each space properly filled. Bids not on these forms will be rejected.
- C. All bids shall be accompanied by a bid bond executed by the bidder and a duly authorized surety company, certified check, cashier's check or bank draft made payable to the Division of Facilities Management, Design and Construction, State of Missouri, in the amount indicated on the bid form, Section 004113. Failure of the contractor to submit the full amount required shall be sufficient cause to reject his bid. The bidder agrees that the proceeds of the check, draft or bond shall become the property of the State of Missouri, if for any reason the bidder withdraws his bid after closing, or if on notification of award refuses or is unable to execute tendered contract, provide an acceptable performance and payment bond, provide evidence of required insurance coverage and/or provide required copies of affirmative action plans within ten (10) working days after such tender.
- D. The check or draft submitted by the successful bidder will be returned after the receipt of an acceptable performance and payment bond and execution of the formal contract. Checks or drafts of all other bidders will be returned within a reasonable time after it is determined that the bid represented by same will receive no further consideration by the State of Missouri. Bid bonds will only be returned upon request.

6.0 - SIGNING OF BIDS

- A. A bid from an individual shall be signed as noted on the Bid Form.
- B. A bid from a partnership or joint venture shall require only one signature of a partner, an officer of the joint venture authorized to bind the venture or an attorney-in-fact. If the bid is signed by an officer of a joint venture or an attorney-in-fact, a document evidencing the individual's authority to execute contracts should be included with the bid form.
- C. A bid from a limited liability company (LLC) shall be signed by a manager or a managing member of the LLC.
- D. A bid from a corporation shall have the correct corporate name thereon and the signature of an authorized officer of the corporation manually written. Title of office held by the person signing for the corporation shall appear, along with typed name of said individual. Corporate license number shall be provided and, if a corporation organized in a state other than Missouri, a Certificate of Authority to do business in the State of Missouri shall be attached. In addition, for corporate proposals, the President or Vice-President should sign as the bidder. If the signator is other than the corporate president or vice president, the bidder must provide satisfactory evidence that the signator has the legal authority to bind the corporation.

- E. A bid should contain the full and correct legal name of the Bidder. If the Bidder is an entity registered with the Missouri Secretary of State, the Bidder's name on the bid form should appear as shown in the Secretary of State's records.
- F. The Bidder should include its corporate license number on the Bid Form and, if the corporation is organized in a state other than Missouri, a Certificate of Authority to do business in the State of Missouri shall be attached to the bid form.

7.0 - RECEIVING BID SUBMITTALS

- A. It is the bidder's sole responsibility to assure receipt by Owner of bid submittals by the date and time specified in the Invitation for Bid. Bids received after the date and time specified shall not be considered by the Owner.
- B. Bids must be submitted through the MissouriBUYS statewide eProcurement system (<u>https://www.missouribuys.mo.gov/</u>) in accordance with the instructions for that system. The Owner shall only accept bids submitted through MissouriBUYS. Bids received by the Owner through any other means, including hard copies, shall not be considered and will be discarded by the Owner unopened.
- C. To respond to an Invitation for Bid, the Bidder must first register with MissouriBUYS by going through the MissouriBUYS Home Page (<u>https://www.missouribuys.mo.gov/</u>), clicking the "Register" button at the top of the page, and completing the Vendor Registration. Once registered, the Bidder accesses its account by clicking the "Login" button at the top of the MissouriBUYS Home Page. Enter your USERID and PASSWORD, which the Bidder will select. Under Solicitations, select "View Current Solicitations." A new screen will open. Under "Filter by Agency" select "OA-FMDC-Contracts Chapter 8." Under "Filter by Opp. No." type in the State Project Number. Select "Submit." Above the dark blue bar, select "Other Active Opportunities." To see the Solicitation Summary, single click the Opp. No. (Project Number) and the summary will open. Single quick click each blue bar to open detailed information. The Bidder must read and accept the Original Solicitation Documents and complete all identified requirements. The Bidder should download and save all of the Original Solicitation Documents on its computer so that the Bidder can prepare its response to these documents. The Bidder should upload its completed response to the downloaded documents as an attachment to the electronic solicitation response.
- D. Step-by-step instructions for how a registered vendor responds to a solicitation electronically are provided in Section 001116 Invitation For Bid.
- E. The Bidder shall submit its bid on the forms provided by the Owner on MissouriBUYS with each space fully and properly completed, including all amounts required for alternate bids, unit prices, cost accounting data, etc. The Owner may reject bids that are not on the Owner's forms or that do not contain all requested information.
- F. No Contractor shall stipulate in his bid any conditions not contained in the specifications or standard bid form contained in the contract documents. To do so may subject the Contractor's bid to rejection.
- G. The completed forms shall be without interlineations, alterations or erasures.

8.0 - MODIFICATION AND WITHDRAWAL OF BIDS

- A. Bidder may withdraw his bid at any time prior to scheduled closing time for receipt of bids, but no bidder may withdraw his bid for a period of twenty (20) working days after the scheduled closing time for receipt of bids.
- B. The Bidder shall modify his or her original bid by submitting a revised bid on MissouriBUYS.

9.0 - AWARD OF CONTRACT

- A. The Owner reserves the right to reject any and/or all bids and further to waive all informalities in bidding when deemed in the best interest of the State of Missouri.
- B. The Owner reserves the right to let other contracts in connection with the work, including but not by way of limitation, contracts for the furnishing and installation of furniture, equipment, machines, appliances and other apparatus.

- C. The Owner shall award a contract to the lowest, responsive, responsible Bidder in accordance with Section 8.250, RSMo. No contract will be awarded to any Bidder who has had a contract with the Owner terminated within the preceding twelve months for material breach of contract or who has been suspended or debarred by the Owner.
- D. Award of alternates, if any, will be made in numerical order unless all bids received are such that the order of acceptance of alternates does not affect the determination of the lowest, responsible bidder.
- E. No bid shall be considered binding upon the Owner until the written contract has been properly executed, a satisfactory bond has been furnished, evidence of required insurance coverage, submittal of executed Section 004541, Affidavit of Work Authorization form, documentation evidencing enrollment and participation in a federal work authorization program has been received and an affirmative action plan submitted. Failure to execute and return the contract and associated documents within the prescribed period of time shall be treated, at the option of the Owner, as a breach of bidder's obligation and the Owner shall be under no further obligation to bidder.
- F. If the successful bidder is doing business in the State of Missouri under a fictitious name, he shall furnish to Owner, attached to the Bid Form, a properly certified copy of the certificate of Registration of Fictitious Name from the State of Missouri, and such certificate shall remain on file with the Owner.
- G. Any successful bidder which is a corporation organized in a state other than Missouri shall furnish to the Owner, attached to the Bid Form, a properly certified copy of its current Certificate of Authority to do business in the State of Missouri, such certificate to remain on file with the Owner. No contract will be awarded by the Owner unless such certificate is furnished by the bidder.
- H. Any successful bidder which is a corporation organized in the State of Missouri shall furnish at its own cost to the Owner, if requested, a Certificate of Good Standing issued by the Secretary of State, such certificate to remain on file with the Owner.
- I. Transient employers subject to Sections 285.230 and 285.234, RSMo, (out-of-state employers who temporarily transact any business in the State of Missouri) may be required to file a bond with the Missouri Department of Revenue. No contract will be awarded by the Owner unless the successful bidder certifies that he has complied with all applicable provisions of Section 285.230-234.
- J. Sections 285.525 and 285.530, RSMo, require business entities to enroll and participate in a federal work authorization program in order to be eligible to receive award of any state contract in excess of \$5,000. Bidders should submit with their bid an Affidavit of Work Authorization (Section 004541) along with appropriate documentation evidencing such enrollment and participation. Section-004541, Affidavit of Work Authorization is located on the MissouriBUYS solicitation for this project. Bidders must also submit an E-Verify Memorandum before the Owner may award a contract to the Bidder. Information regarding a E-Verify is located at https://www.uscis.gov/e-verify/. The contractor shall be responsible for ensuring that all subcontractors and suppliers associated with this contract enroll in E-Verify.

10.0 - CONTRACT SECURITY

A. The successful bidder shall furnish a performance/payment bond as set forth in General Conditions Article 6.1 on a condition prior to the State executing the contract and issuing a notice to proceed.

11.0 - LIST OF SUBCONTRACTORS

A. If required by "Section 004113 – Bid Form," each bidder must submit as part of their bid a list of subcontractors to be used in performing the work (Section 004336). The list must specify the name of the single designated subcontractor, for each category of work listed in "Section 004336 - Proposed Subcontractors Form." If work within a category will be performed by more than one subcontractor, the bidder must provide the name of each subcontractor and specify the exact portion of the work to be done by each. Failure to list the Bidder's firm, or a subcontractor for each category without designating the portion of work to be performed by each shall be cause for rejection of the bid. If the bidder intends to perform any of the designated subcontract work with the use of his own employees, the bidder shall make that fact clear, by listing his own firm for the subject category. If any category of work is left vacant, the bid shall be rejected.

12.0 - WORKING DAYS

- A. Contract duration time is stated in working days and will use the following definition in determining the actual calendar date for contract completion:
 - Working days are defined as all calendar days except Saturdays, Sundays and the following State of Missouri observed holidays: New Year's Day, Martin Luther King, Jr. Day, Lincoln Day, Washington's Birthday, Truman Day, Memorial Day, Juneteenth, Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving Day and Christmas Day.

13.0 - AMERICAN AND MISSOURI - MADE PRODUCTS AND FIRMS

- A. By signing the bid form and submitting a bid on this project, the Bidder certifies that it will use American and Missouri products as set forth in Article 1.7 of the General Conditions. Bidders are advised to review those requirements carefully prior to bidding.
- B. A preference shall be given to Missouri firms, corporations or individuals, or firms, corporations or individuals that maintain Missouri offices or places of business, when the quality of performance promised is equal or better and the price quoted is the same or less.
- C. Pursuant to Section 34.076, RSMo, a contractor or Bidder domiciled outside the boundaries of the State of Missouri shall be required, in order to be successful, to submit a bid the same percent less than the lowest bid submitted by a responsible contractor or Bidder domiciled in Missouri as would be required for such a Missouri domiciled contractor or Bidder to succeed over the bidding contractor or Bidder domiciled outside Missouri on a like contract or bid being let in the person's domiciliary state and, further, the contractor or Bidder domiciled outside the boundaries of Missouri shall be required to submit an audited financial statement as would be required of a Missouri domiciled contractor or Bidder on a like contract or bid being let in the domiciled contractor or Bidder.

14.0 – ANTI-DISCRIMINATION AGAINST ISRAEL ACT CERTIFICATION:

A. Pursuant to section 34.600, RSMo, if the Bidder meets the section 34.600, RSMo, definition of a "company" and the Bidder has ten or more employees, the Bidder must certify in writing that the Bidder is not currently engaged in a boycott of goods or services from the State of Israel as defined in section 34.600, RSMo, and shall not engage in a boycott of goods or services from the State of Israel, if awarded a contract, for the duration of the contract. The Bidder is requested to complete and submit the applicable portion of Section 004545 - Anti-Discrimination Against Israel Act Certification with their Bid Form. The applicable portion of the exhibit must be submitted prior to execution of a contract by the Owner and issuance of Notice to Proceed. If the exhibit is not submitted, the Owner shall rescind its Intent to Award and move to the next lowest, responsive, responsible bidder.

15.0 - MBE/WBE/SDVE INSTRUCTIONS

- A. Definitions:
 - 1. "MBE" means a Minority Business Enterprise.
 - 2. "MINORITY" has the same meaning as set forth in 1 C.S.R. 10-17.010.
 - 3. "MINORITY BUSINESS ENTERPRISE" has the same meaning as set forth in section 37.020, RSMo.
 - 4. "WBE" means a Women's Business Enterprise.
 - 5. **"WOMEN'S BUSINESS ENTERPRISE"** has the same meaning as set forth in section 37.020, RSMo.
 - 6. "SDVE" means a Service-Disabled Veterans Enterprise.
 - 7. "SERVICE-DISABLED VETERAN" has the same meaning as set forth in section 34.074, RSMo.
 - 8. **"SERVICE-DISABLED VETERAN ENTERPRISE"** has the same meaning as "Service-Disabled Veteran Business" set forth in section 34.074, RSMo.

- B. MBE/WBE/SDVE General Requirements:
 - 1. For all bids greater than \$100,000, the Bidder shall obtain MBE, WBE and SDVE participation in an amount equal to or greater than the percentage goals set forth in the Invitation for Bid and the Bid Form, unless the Bidder is granted a Good Faith Effort waiver by the Director of the Division, as set forth below. If the Bidder does not meet the MBE, WBE and SDVE goals, or make a good faith effort to do so, the Bidder shall be non-responsive, and its bid shall be rejected.
 - 2. The Bidder should submit with its bid all of the information requested in the MBE/WBE/SDVE Compliance Evaluation Form for every MBE, WBE, or SDVE subcontractor or material supplier the Bidder intends to use for the contract work. The Bidder is required to submit all appropriate MBE/WBE/SDVE documentation before the stated time and date set forth in the Invitation for Bid. If the Bidder fails to provide such information by the specified date and time, the Owner shall reject the bid.
 - 3. The Director reserves the right to request additional information from a Bidder to clarify the Bidder's proposed MBE, WBE, and/or SDVE participation. The Bidder shall submit the clarifying information requested by the Owner within two (2) Working Days of receiving the request for clarification.
 - 4. Pursuant to section 34.074, RSMo, a Bidder that is a SDVE doing business as Missouri firm, corporation, or individual, or that maintains a Missouri office or place of business, shall receive a three-point bonus preference in the contract award evaluation process. The bonus preference will be calculated and applied by reducing the bid amount of the eligible SDVE by three percent of the apparent low responsive bidder's bid. Based on this calculation, if the eligible SDVE's evaluation is less than the apparent low responsive bidder's bid, the eligible SDVE's bid becomes the apparent low responsive bidder's bid, the eligible SDVE's bid becomes the apparent low responsive bid. This reduction is for evaluation purposes only, and will have no impact on the actual amount(s) of the bid or the amount(s) of any contract awarded. In order to be eligible for the SDVE preference, the Bidder must complete and submit with its bid the Missouri Service Disabled Veteran Business Form, and any information required by the form. The form is available on the MissouriBUYS solicitation for this project.
- C. Computation of MBE/WBE/SDVE Goal Participation:
 - 1. A Bidder who is a MBE, WBE, or SDVE may count 100% of the contract towards the MBE, WBE or SDVE goal, less any amounts awarded to another MBE, WBE or SDVE. (NOTE: A MBE firm that bids as general contractor must obtain WBE and SDVE participation; a WBE firm that bids as a general contractor must obtain MBE and SDVE participation; and a SDVE firm that bids as general contractor must obtain MBE and SDVE participation; and a SDVE firm that bids as general contractor must obtain MBE and SDVE participation.) In order for the remaining contract amount to be counted towards the MBE, WBE or SDVE goal, the Bidder must complete the MBE/WBE/SDVE Compliance Evaluation Form (Section 004337) identifying itself as an MBE, WBE or SDVE.
 - 2. The total dollar value of the work granted to a certified MBE, WBE or SDVE by the Bidder shall be counted towards the applicable goal.
 - 3. Expenditures for materials and supplies obtained from a certified MBE, WBE, or SDVE supplier or manufacturer may be counted towards the MBE, WBE and SDVE goals, if the MBE, WBE, or SDVE assumes the actual and contractual responsibility for the provision of the materials and supplies.
 - 4. The total dollar value of the work granted to a second or subsequent tier subcontractor or a supplier may be counted towards a Bidder's MBE, WBE and SDVE goals, if the MBE, WBE, or SDVE properly assumes the actual and contractual responsibility for the work.
 - 5. The total dollar value of work granted to a certified joint venture equal to the percentage of the ownership and control of the MBE, WBE, or SDVE partner in the joint venture may be counted towards the MBE/WBE/SDVE goals.
 - 6. Only expenditures to a MBE, WBE, or SDVE that performs a commercially useful function in the work may be counted towards the MBE, WBE and SDVE goals. A MBE, WBE, or SDVE performs a commercially useful function when it is responsible for executing a distinct element of the work and carrying out its responsibilities by actually performing, managing and supervising the work or providing supplies or manufactured materials.

- D. Certification of MBE/WBE/SDVE Subcontractors:
 - 1. In order to be counted towards the goals, an MBE or WBE must be certified by the State of Missouri Office of Equal Opportunity and an SDVE must be certified by the State of Missouri, Office of Administration, Division of Purchasing and Material Management or by the Department of Veterans Affairs.
 - 2. The Bidder may determine the certification status of a proposed MBE or WBE subcontractor or supplier by referring to the Office of Equal Opportunity (OEO)'s online MBE/WBE directory (<u>https://apps1.mo.gov/MWBCertifiedFirms/</u>). The Bidder may determine the eligibility of a SDVE subcontractor or supplier by referring to the Division of Purchasing and Materials Management's online SDVE directory (<u>https://oa.mo.gov/sites/default/files/sdvelisting.pdf</u>) or the Department of Veterans Affairs' directory (<u>https://vetbiz.va.gov/basic-search/</u>).
 - 3. Additional information, clarifications, etc., regarding the listings in the directories may be obtained by calling the Division at (573)751-3339 and asking to speak to the Contract Specialist of record as shown in the Supplementary Conditions (Section 007300).
- E. Waiver of MBE/WBE/SDVE Participation:
 - 1. If a Bidder has made a good faith effort to secure the required MBE, WBE and/or SDVE participation and has failed, the Bidder shall submit with its bid the information requested in MBE/WBE/SDVE Good Faith Effort (GFE) Determination form. The GFE forms are located on the MissouriBUYS solicitation for this project. The Director will determine if the Bidder made a good faith effort to meet the applicable goals. If the Director determines that the Bidder did not make a good faith effort, the bid shall be rejected as being nonresponsive to the bid requirements. Bidders who demonstrate that they have made a good faith effort to include MBE, WBE, and/or SDVE participation will be determined to be responsive to the applicable participation goals, regardless of the percent of actual participation obtained, if the bid is otherwise acceptable.
 - 2. In determining whether a Bidder has made a good faith effort to obtain MBE, WBE and/or SDVE participation, the Director may evaluate the factors set forth in 1 CSR 30-5.010(6)(C) and the following:
 - a. The amount of actual participation obtained;
 - b. How and when the Bidder contacted potential MBE, WBE, and SDVE subcontractors and suppliers;
 - c. The documentation provided by the Bidder to support its contacts, including whether the Bidder provided the names, addresses, phone numbers, and dates of contact for

MBE/WBE/SDVE firms contacted for specific categories of work;

- d. If project information, including plans and specifications, were provided to MBE/WBE/SDVE subcontractors:
- e. Whether the Bidder made any attempts to follow-up with MBE, WBE or SDVE firms prior to bid;
- f. Amount of bids received from any of the subcontractors and/or suppliers that the Bidder contacted;
- g. The Bidder's stated reasons for rejecting any bids;
- 3. If no bidder has obtained any participation in a particular category (MBE/WBE/SDVE) or made a good faith effort to do so, the Director may waive that goal rather than rebid.

- 1. If awarded a contract, the Bidder will be contractually required to subcontract with or obtain materials from the MBE, WBE, and SDVE firms listed in its bid, in amounts equal to or greater than the dollar amount bid, unless the amount is modified in writing by the Owner.
- 2. If the Contractor fails to meet or maintain the participation requirements contained in the Contractor's bid, the Contractor must satisfactorily explain to the Director why it cannot comply with the requirement and why failing meeting the requirement was beyond the Contractor's control. If the Director finds the Contractor's explanation unsatisfactory, the Director may take any appropriate action including, but not limited to:
 - a. Declaring the Contractor ineligible to participate in any contracts with the Division for up to twelve (12) months (suspension); and/or
 - b. Declaring the Contractor be non-responsive to the Invitation for Bid, or in breach of contract and rejecting the bid or terminating the contract.
- 3. If the Contractor replaces an MBE, WBE, or SDVE during the course of this contract, the Contractor shall replace it with another MBE, WBE, or SDVE or make a good faith effort to do so. All MBE, WBE and SDVE substitutions must be approved by the Director.
- 4. The Contractor shall provide the Owner with regular reports on its progress in meeting its MBE/WBE/SDVE obligations. At a minimum, the Contractor shall report the dollar-value of work completed by each MBE, WBE, or SDVE during the preceding month and the cumulative total of work completed by each MBE, WBE or SDVE to date with each monthly application for payment. The Contractor shall also make a final report, which shall include the total dollar-value of work completed by each MBE, WBE, and SDVE during the entire contract.

STATE OF MISSOURI DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION MBE/WBE/SDVE DIRECTORIES

The MBE/WBE Directory for goods and services is maintained by the Office of Equal Opportunity (OEO) and is located at the following web address:

https://apps1.mo.gov/MWBCertifiedFirms/

The SERVICE DISABLED VETERAN ENTERPRISE (SDVE) Directories may be accessed at the following web addresses:

https://purch.oa.mo.gov/media/pdf/listing-certified-missouri-servicedisabled-veteran-business-enterprises-sdves

https://veterans.certify.sba.gov/#search

State of Missouri Construction Contract

THIS AGREEMENT is made (DATE) by and between:

Contractor Name and Address

hereinafter called the "Contractor,"

and the **State of Missouri**, hereinafter called the **''Owner**'', represented by the Office of Administration, Division of Facilities Management, Design and Construction, on behalf of the Department of Corrections.

WITNESSETH, that the Contractor and the Owner, for the consideration stated herein agree as follows:

ARTICLE 1. STATEMENT OF WORK

The Contractor shall furnish all labor and materials and perform all work required for furnishing and installing all labor, materials, equipment and transportation and everything necessarily inferred from the general nature and tendency of the plans and specifications for the proper execution of the work for:

Project Name:	HVAC System Upgrade
	Transition Center of Kansas City
	Kansas City, Missouri

Project Number: C1904-01

in strict accordance with the Contract Documents as enumerated in Article 7, all of which are made a part hereof.

ARTICLE 2. TIME OF COMPLETION

The contract performance time is **200 working days** from the transmittal date of this agreement. The contract completion date is **MONTH, DAY, YEAR**. This time includes ten (10) working days for the Contractor to receive, sign and return the contract form along with required bonding and insurance certificates. Failure of the Contractor to provide correct bonding and insurance within the ten (10) working days shall not be grounds for a time extension. Receipt of proper bonding and insurance is a condition precedent to the formation of the contract and if not timely received, may result in forfeiture of the Contractor's bid security. Work may not commence until the Owner issues a written Notice to Proceed and must commence within seven (7) working days thereafter.

ARTICLE 3. LIQUIDATED DAMAGES

Whenever time is mentioned in this contract, time shall be and is of the essence of this contract. The Owner would suffer a loss should the Contractor fail to have the work embraced in this contract fully completed on or before the time above specified. THEREFORE, the parties hereto realize in order to adjust satisfactorily the damages on account of such failure that it might be impossible to compute accurately or estimate the amount of such loss or damages which the Owner would sustain by reason of failure to complete fully said work within the time required by this contract. The Contractor hereby covenants and agrees to pay the Owner, as and for **liquidated damages, the sum of \$1,000** per day for each and every day, Sunday and legal holidays excepted, during which the work remains incomplete and unfinished. Any sum which may be due the Contractor when said work shall have been finished and accepted. But such provisions shall not release the Bond of the Contractor from liability according to its terms. In case of failure to complete, the Owner will be under no obligation to show or prove any actual or specific loss or damage.

ARTICLE 4. CONTRACT SUM

The Owner shall pay the Contractor for the prompt, faithful and efficient performance of the conditions and undertakings of this contract, subject to additions, and deductions as provided herein, in current funds the sum of:

Base Bid:

TOTAL CONTRACT AMOUNT: (\$CONTRACT AMOUNT)

\$

ARTICLE 5. PREVAILING WAGE RATE

MISSOURI PREVAILING WAGE LAW (Sections 290.210 to 290.340, RSMo): The Contractor shall pay not less than the specified hourly rate of wages, as set out in the wage order attached to and made part of the specifications for work under this contract, to all workers performing work under the contract, in accordance with sections 290.210 to 290.340, RSMo. The Contractor shall forfeit a penalty to the Owner of one hundred dollars per day (or portion of a day) for each worker that is paid less than the specified rates for any work done under the contract by the Contractor or by any subcontractor, in accordance with section 290.250, RSMo.

DAVIS-BACON ACT: If this Project is financed in whole or in part from Federal funds (as indicated in the Instructions to Bidders or other bid or contract documents for this Project), then this contract shall be subject to all applicable federal labor statutes, rules and regulations, including provisions of the Davis-Bacon Act, 40 U.S.C. §3141 et seq., and the "Federal Labor Standards Provisions," as further set forth in Section 007333 – Supplementary General Conditions for Federally Funded/Assisted Construction Projects, which is incorporated into the contract by reference. Where the Missouri Prevailing Wage Law and the Davis-Bacon Act require payment of different wages for work performed under this contract, the Contractor and all Subcontractors shall pay the greater of the wages required under either law, on a classification by classification basis.

ARTICLE 6. MINORITY/WOMEN/SERVICE DISABLED VETERAN BUSINESS ENTERPRISE PARTICIPATION

The Contractor has been granted a waiver of the 10% MBE and 10% WBE and 3% SDVE participation goals. The Contractor agrees to secure the MBE/WBE/SDVE participation amounts for this project as follows: (OR)

The Contractor has met the MBE/WBE/SDVE participation goals and agrees to secure the MBE/WBE/SDVE participation amounts for this project as follows:

MBE/WBE/SDVE Firm:	Subcontract Amt:\$
MBE/WBE/SDVE Firm:	Subcontract Amt:\$
MBE/WBE/SDVE Firm:	Subcontract Amt:\$

Total \$

MBE/WBE/SDVE assignments identified above shall not be changed without a contract change signed by the Owner.

The Director of the Division of Facilities Management, Design and Construction or his Designee shall be the final authority to resolve disputes and disagreements between the Contractor and the MBE/WBE/SDVE firms listed above when such disputes impact the subcontract amounts shown above.

ARTICLE 7. CONTRACT DOCUMENTS

The following documents are hereby incorporated into this contract by reference (all division/section numbers and titles are as utilized in the Project Manual published by the Owner for this Project):

- 1. Division 0 Procurement and Contracting Information, including, but not limited to:
 - a. Invitation for Bid (Section 001116)
 - b. Instructions to Bidders (Section 002113)
 - c. Supplementary Instructions to Bidders (if applicable) (Section 002213)
 - d. The following documents as completed and executed by the Contractor and accepted by the Owner, if applicable:

- i. Bid Form (Section 004113)
- ii. Unit Prices (Section 004322)
- iii. Proposed Contractors Form (Section 004336)
- iv. MBE, WBE, SDVE Compliance Evaluation Form(s) (Section 004337)
- v. MBE, WBE, SDVE Eligibility Determination Form for Joint Ventures (Section 004338)
- vi. MBE, WBE, SDVE Good Faith Effort (GFE) Determination Form (Section 004339)
- vii. Missouri Service Disabled Veteran Business Form (Section 004340)
- viii. Affidavit of Work Authorization (Section 004541)
- ix. Affidavit for Affirmative Action (Section 005414)
- e. Performance and Payment Bond, completed and executed by the Contractor and surety (Section 006113)
- f. General Conditions (Section 007213)
- g. Supplementary Conditions (Section 007300)
- h. Supplementary General Conditions for Federally Funded/Assisted Construction Projects (Section 007333)
- i. Wage Rate(s) (Section 007346)
- 2. Division 1 General Requirements
- 3. All Drawings identified in the Project Manual
- 4. All Technical Specifications included in the Project Manual
- 5. Addenda, if applicable

ARTICLE 8 – CERTIFICATION

By signing this contract, the Contractor hereby re-certifies compliance with all legal requirements set forth in Section 6.0, Bidder's Certifications of the Bid Form.

Further, if the Contractor provides any "personal information" as defined in §105.1500, RSMo concerning an entity exempt from federal income tax under Section 501(c) of the Internal Revenue Code of 1986, as amended, the Contractor understands and agrees that it is voluntarily choosing to enter into a state contract and providing such information for that purpose. The state will treat such personal information in accord with §105.1500, RSMo.

By signature below, the parties hereby execute this contract document.

APPROVED:

Brian Yansen, Director Division of Facilities Management, Design and Construction Contractor's Authorized Signature

I, Corporate Secretary, certify that I am Secretary of the corporation named above and that (CONTRACTOR NAME), who signed said contract on behalf of the corporation, was then (TITLE) of said corporation and that said contract was duly signed for and in behalf of the corporation by authority of its governing body, and is within the scope of its corporate powers.

Corporate Secretary

STATE OF MISS OFFICE OF ADI DIVISION OF FA	SOURI MINISTRATION ACILITIES MANAGEMENT, DESIGN DR AFFIRMATIVE ACTION	AND CONSTRUCTION	PROJECT NUMBER
		First being duly	v sworn on oath states: that
he/she is the □ sole prop	rietor \Box partner \Box officer or	□ manager or manag	ging member of
NAME		a 🛛 sole prop	prietorship 🛛 partnership
		\Box limited lia	ability company (LLC)
or \Box corporation, and as	such, said proprietor, partner, or o	officer is duly authorized	to make this
affidavit on behalf of said so	le proprietorship, partnership, or o	corporation; that under t	the contract known as
PROJECT TITLE			
Less than 50 persor	ns in the aggregate will be employ	ved and therefore, the ap	pplicable Affirmative Action
requirements as set	forth in Article 1.4 of the General	Conditions of the State	of Missouri have been met.
PRINT NAME & SIGNATURE			DATE
NOTARY INFORMATION			
NOTARY PUBLIC EMBOSSER SEAL	STATE OF C	OUNTY (OR CITY OF ST. OUIS)	USE RUBBER STAMP IN CLEAR AREA BELOW
	SUBSCRIBED AND SWORN BEFORE ME, T		
	NOTARY PUBLIC SIGNATURE	MY COMMISSION EXPIRES	
	NOTARY PUBLIC NAME (TYPED OR PRINTED)		

Bond No._

SECTION 006113 - PERFORMANCE AND PAYMENT BOND FORM

KNOW ALL MEN BY THESE PRESENTS,	THAT we		
as principal, and			
		as Surety, are held and firmly l	oound unto the
STATE OF MISSOURI. in the sum of		Dollars (\$)
for payment whereof the Principal and Surety	bind themselves,	their heirs, executors, administrators and su	ccessors, jointly
and severally, firmly by these presents.			
WHEREAS, the Principal has, by means of a	written agreement	dated the	
day of	, 20	, enter into a contract with the State of	of Missouri for

(Insert Project Title and Number)

NOW, THEREFORE, if the Principal shall faithfully perform and fulfill all the undertakings, covenants, terms, conditions and agreements of said contract during the original term of said contract and any extensions thereof that may be granted by the State of Missouri, with or without notice to the Surety and during the life of any guaranty required under the contract; and shall also faithfully perform and fulfill all undertakings, covenants, terms, conditions and agreements of any and all duly authorized modifications of said contract that may hereafter be made with or without notice to the Surety; and shall also promptly make payment for materials incorporated, consumed or used in connection with the work set forth in the contract referred to above, and all insurance premiums, both compensation and all other kinds of insurance, on said work, and for all labor performed on such work, whether by subcontractor or otherwise, at not less than the prevailing hourly rate of wages for work of a similar character (exclusive of maintenance work) in the locality in which the work is performed and not less than the prevailing hourly rate of wages for legal holiday and overtime work (exclusive of maintenance work) in the locality in which the work is performed both as determined by the Department of Labor and Industrial Relations or determined by the Court of Appeal, as provided for in said contract and in any and all duly authorized modifications of said contract that may be hereafter made, with or without notice to the Surety, then, this obligation shall be void and of no effect, but it is expressly understood that if the Principal should make default in or should fail to strictly, faithfully and efficiently do, perform and comply with any or more of the covenants, agreements, stipulations, conditions, requirements or undertakings, as specified in or by the terms of said contract, and with the time therein named, then this obligation shall be valid and binding upon each of the parties hereto and this bond shall remain in full force and effect; and the same may be sued on at the instance of any material man, laborer, mechanic, subcontractor, individual, or otherwise to whom such payment is due, in the name of the State of Missouri, to the use of any such person.

AND, IT IS FURTHER specifically provided that any modifications which may hereinafter be made in the terms of the contract or in the work to be done under it or the giving by the Owner of any extension of the time for the performance of the contract or any other forbearance on the part of either the Owner or the Principal to the other, shall not in any way release the Principal and the Surety, or either or any of them, their heirs, executors, administrators and successors, from their liability hereunder, notice to the Surety of any such extension, modifications or forbearance being hereby waived.

IN WITNESS WHER	EOF, the above bounden p, 20	parties have executed the within instrument	this day of
AS APPLICABLE:			
AN INDIVIDUAL			
	Name:		_
	Signature:		_
A PARTNERSHIP			
	Name of Partner:		
	Signature of Partner:		_
	Name of Partner:		_
	Signature of Partner:		_
CORPORATION			
	Firm Name:		_
	Signature of President:		
SURETY			
Su	rety Name:		
At	torney-in-Fact:		
Ad	ldress of Attorney-in-Fact:		
Telephone Nur	nber of Attorney-in-Fact:		
\$	Signature Attorney-in-Fact:		
NOTE: Surety shall at	ttach Power of Attorney		

STATE OF MISSOURI OFFICE OF ADMINISTRATION DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION PRODUCT SUBSTITUTION REQUEST PROJECT TITLE AND LOCATION					
CHECK APPROPRIATE BOX SUBSTITUTION PRIOR TO BID OPENING (Minimum of (5) working days prior to receipt of Bids as per Article 4 – Instructions to Bidders) SUBSTITUTION FOLLOWING AWARD					
Bidder/Contractor hereby reque provisions of Division One of the specified product or system	sts acceptance of the following product or systems as Bidding Documents:	s a substitution in accordance with			
SPECIFICATION SECTION NO.					
Product data for proposed set Sample	ubstitution is attached (include description of product, standa] Sample will be sent, if requested	ards, performance, and test data)			
	SPECIFIED PRODUCT	SUBSTITUTION REQUEST			
NAME, BRAND					
CATALOG NO.					
MANUFACTURER					
VENDOR					
PREVIOUS INSTALLATIONS					
PROJECT	ARCHITECT/ENGINEER				
LOCATION		DATE INSTALLED			
SIGNIFICANT VARIATIONS FROM SP	ECIFIED PRODUCT				

REASON FOR SUBSTITUTION				
DOES PROPOSED SUBSTITUTION AFFECT OTHER PARTS OF WORK?				
YES NO				
IF YES, EXPLAIN				
SUBSTITUTION REQUIRES DIMENSIONAL REVISION OR REDESIGN OF STRUCTURE OR A/E WO	RK			
YES NO				
BIDDER'S/CONTRACTOR'S STATEMENT OF CONFORMANCE OF PROPOSEI REQUIREMENT:	D SUBSTITUTION TO CONTRACT			
We have investigated the proposed substitution. We believe that it is equal or superior in all respects to specified product, except as stated above; that it will provide the same Warranty as specified product; that we have included complete implications of the substitution; that we will pay redesign and other costs caused by the substitution which subsequently become apparent; and that we will pay costs to modify other parts of the Work as may be needed, to make all parts of the Work complete and functioning as a result of the substitution.				
BIDDER/CONTRACTOR	DATE			
REVIEW AND ACTION				
Resubmit Substitution Request with the following additional information	:			
Substitution is accepted.				
Substitution is accepted with the following comments:				
Substitution is not accepted.				
ARCHITECT/ENGINEER	DATE			

KNOW ALL MEN BY THESE PRESENT THAT: hereinafter called "Subcontractor" who heretofore entered into an agreement with hereinafter called "Contractor", for the performance of work and/or furnishing of material for the construction of the project entitled

(PROJECT TITLE, PROJECT LOCATION, AND PROJECT NUMBER)

at

(ADDRESS OF PROJECT)

for the State of Missouri (Owner) which said subcontract is by this reference incorporated herein, in consideration of such final payment by Contractor.

DOES HEREBY:

- ACKNOWLEDGE that they have been PAID IN FULL all sums due for work and materials contracted or done by their Subcontractors, Material Vendors, Equipment and Fixture Suppliers, Agents and Employees, or otherwise in the performance of the Work called for by the aforesaid Contract and all modifications or extras or additions thereto, for the construction of said project or otherwise.
- 2. RELEASE and fully, finally, and forever discharge the Owner from any and all suits, actions, claims, and demands for payment for work performed or materials supplied by Subcontractor in accordance with the requirements of the above referenced Contract.
- REPRESENT that all of their Employees, Subcontractors, Material Vendors, Equipment and Fixture Suppliers, and everyone else has been **paid in full** all sums due them, or any of them, in connection with performance of said Work, or anything done or omitted by them, or any of them in connection with the construction of said improvements, or otherwise.

DATED this day of , 20 .

NAME OF SUBCONTRACTOR

BY (TYPED OR PRINTED NAME)

SIGNATURE

TITLE

ORIGINAL: FILE/Closeout Documents

STATE OFFIC DIVISI DESIG	STATE OF MISSOURI OFFICE OF ADMINISTRATION DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION			PAY APP NO.	PROJECT NUMBER
MBE/N Remit with (Please cl	WBE/SDVE PROG A <u>ALL</u> Progress and Final Pa neck appropriate box)	RUCTION	CHECK IF FINAL	DATE	
PROJECT TITLE				1	
PROJECT LOCATION					
FIRM					
ORIGINAL CONTRACT SU Payment) \$	IM (Same as Line Item 1. on	Form A of Application for	TOTAL CONTRACT SU Application for Payment \$	JM TO DATE (Same a t)	is Line Item 3. on Form A of
THE TOTAL MBEA ORIGINAL CONTR	WBE/SDVE PARTIC ACT: \$	CIPATION DOLLAR AMO	DUNT OF THIS PP	ROJECT AS IN	DICATED IN THE
SELECT MBE, WBE, SDVEORIGINAL CONTRACT PARTICIPATION PARTICIPATION PARTICIPATION AMOUNTPARTICIPATION CONTRACT PARID-TO-DATE (includes approved contract changes)C C CONT CONTRACT CONTRACT CONTRACT CONTRACT PARDUNT		CONSULT CONTRACTOF	CONSULTANT/SUBCONSULTANT OR CONTRACTOR/SUBCONTRACTOR/SUPPLIER COMPANY NAME		
		contract changee/			
□ MBE □ WBE □ SDVE	\$	\$			
MBE WBE SDVE MBE WBE SDVE SDVE	\$ \$	\$			
 MBE WBE SDVE MBE WBE SDVE MBE WBE SDVE 	\$ \$ \$	\$ \$ \$			
 MBE WBE SDVE MBE WBE SDVE MBE WBE SDVE MBE WBE SDVE 	\$ \$ \$	\$ \$ \$			
 MBE WBE SDVE MBE WBE SDVE MBE WBE SDVE MBE SDVE MBE SDVE MBE SDVE 	\$ \$ \$ \$	\$ \$ \$ \$ \$			

Revised 06/2023

STATE OF MISSOURI OFFICE OF ADMINISTRATION DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION AFFIDAVIT – COMPLIANCE WITH PREVAILING WAGE LAW

PROJECT NUMBER

Defere me the undersigned	d Notony Dublic, in and for	the County of			
Belore me, the undersigne	a notary Public, in and for	ine County of			
State of	personally came a	nd appeared			
			(NAME)		
	of the				
(POSITION)		(NAME OF T	HE COMPANY)		
(a corporation) (a partners	nip) (a proprietorship) and a	after being duly s	sworn did dep	ose and say that	all provisions
and requirements set out in	n Chapter 290, Sections 29	0.210 through a	nd including 2	290.340, Missour	i Revised
Statutes, pertaining to the	payment of wages to workn	nen employed o	n public work	s project have be	en fully satisfied
and there has been no exc	eption to the full and compl	leted compliance	e with said pro	ovisions and requ	uirements
and with Wage Determinat	ion No:			issued by t	the
Department of Labor and I	ndustrial Relations, State o	f Missouri on the	e	day of	20
in carrying out the contract	and working in connection	with			
	-	(NAME OF PRO	DJECT)		
Located at		in	,		County
					,
Missouri and completed o	n the	day of	2	20	
misseuri, and completed o		uuy 01			
SIGNATURE					
NOTARY INFORMATION					
NOTARY PUBLIC EMBOSSER OR BLACK INK RUBBER STAMP SEAL	STATE		CC	OUNTY (OR CITY OF ST	Γ. LOUIS)
	SUBSCRIBED AND SWORN BEFOR	RE ME, THIS			
			/EAR	SE RUBBER STAMF	
	NUTARY PUBLIC SIGNATURE	EXPIRES	SUN		
	<u> </u>				

GENERAL CONDITIONS

INDEX

ARTICLE:

- 1. General Provisions
 - 1.1. Definitions
 - 1.2. Drawings and Specifications
 - 1.3. Compliance with Laws, Permits, Regulations and Inspections
 - 1.4. Nondiscrimination in Employment
 - 1.5. Anti-Kickback
 - 1.6. Patents and Royalties
 - 1.7. Preference for American and Missouri Products and Services
 - 1.8. Communications
 - 1.9. Separate Contracts and Cooperation
 - 1.10. Assignment of Contract
 - 1.11. Indemnification
 - 1.12. Disputes and Disagreements
- 2. Owner/Designer Responsibilities
- **3.** Contractor Responsibilities
 - 3.1. Acceptable Substitutions
 - 3.2. Submittals
 - 3.3. As-Built Drawings
 - 3.4. Guaranty and Warranties
 - 3.5. Operation and Maintenance Manuals
 - 3.6. Other Contractor Responsibilities
 - 3.7. Subcontracts
- 4. Changes in the Work
 - 4.1. Changes in the Work
 - 4.2. Changes in Completion Time
- 5. Construction and Completion
 - 5.1. Construction Commencement
 - 5.2. Project Construction
 - 5.3. Project Completion
 - 5.4. Payments
 - 6. Bond and Insurance

- 6.1. Bond
- 6.2. Insurance
- 7. Termination or Suspension of Contract
 - 7.1. For Site Conditions
 - 7.2. For Cause
 - 7.3. For Convenience

SECTION 007213 - GENERAL CONDITIONS

- A. These General Conditions apply to each section of these specifications. The Contractor is subject to the provisions contained herein.
- B. The General Conditions are intended to define the relationship of the Owner, the Designer and the Contractor thereby establishing certain rules and provisions governing the operation and performance of the work so that the work may be performed in a safe, orderly, expeditious and workmanlike manner.

ARTICLE 1 – GENERAL PROVISIONS

ARTICLE 1.1 - DEFINITIONS

As used in these contract documents, the following terms shall have the meanings and refer to the parties designated in these definitions.

- 1. "**COMMISSIONER**": The Commissioner of the Office of Administration.
- 2. **"CONSTRUCTION DOCUMENTS":** The "Construction Documents" shall consist of the Project Manual, Drawings and Addenda.
- 3. "CONSTRUCTION REPRESENTATIVE:" Whenever the term "Construction Representative" is used, it shall mean the Owner's Representative at the work site.
- 4. "CONTRACTOR": Party or parties who have entered into a contract with the Owner to furnish work under these specifications and drawings.
- 5. "DESIGNER": When the term "Designer" is used herein, it shall refer to the Architect, Engineer, or Consultant of Record specified and defined in Paragraph 2.0 of the Supplemental Conditions, or his duly authorized representative. The Designer may be either a consultant or state employee.
- 6. **"DIRECTOR":** Whenever the term "Director" is used, it shall mean the Director of the Division of Facilities Management, Design and Construction or his Designee, representing the Office of Administration, State of Missouri. The Director is the agent of the Owner.
- 7. **"DIVISION":** Shall mean the Division of Facilities Management, Design and Construction, State of Missouri.

- 8. "INCIDENTAL JOB BURDENS": Shall mean those expenses relating to the cost of work, incurred either in the home office or on the job-site, which are necessary in the course of doing business but are incidental to the job. Such costs include office supplies and equipment, postage, courier services, telephone expenses including long distance, water and ice and other similar expenses.
- 9. "JOINT VENTURE": An association of two (2) or more businesses to carry out a single business enterprise for profit for which purpose they combine their property, capital, efforts, skills and knowledge.
- 10. "**OWNER**": Whenever the term "Owner" is used, it shall mean the State of Missouri.
- 11. **"PROJECT"**: Wherever the term "Project" is used, it shall mean the work required to be completed by the construction contract.
- 12. "PROJECT MANUAL": The "Project Manual" shall consist of Introductory Information, Invitation for Bid, Instructions to Bidders, Documents, Bid Additional Standard Information, Forms, General Conditions, Supplemental General Conditions, General Requirements and Technical Specifications.
- 13. "SUBCONTRACTOR": Party or parties who contract under, or for the performance of part or this entire Contract between the Owner and Contractor. The subcontract may or may not be direct with the Contractor.
- 14. "WORK": Labor, material, supplies, plant and equipment required to perform and complete the service agreed to by the Contractor in a safe, expeditious, orderly and workmanlike manner so that the project shall be complete and finished in the best manner known to each respective trade.
- 15. "WORKING DAYS": are all calendar days except Saturdays, Sundays and the following holidays: New Year's Day, Martin Luther King, Jr. Day, Lincoln Day, Washington's Birthday (observed), Truman Day, Memorial Day, Juneteenth, Independence Day, Labor Day, Columbus Day, Veterans Day (observed), Thanksgiving Day, Christmas Day.

ARTICLE 1.2 DRAWINGS AND SPECIFICATIONS

A. In case of discrepancy between drawings and specifications, specifications shall govern. Should discrepancies in architectural drawings, structural drawings and mechanical drawings occur, architectural drawings shall govern and, in case of conflict between structural and mechanical drawings, structural drawings shall govern.

- B. Specifications are separated into titled divisions for convenience of reference only and to facilitate letting of contracts and subcontracts. The Contractor is responsible for establishing the scope of work for subcontractors, which may cross titled divisions. Neither the Owner nor Designer will establish limits and jurisdiction of subcontracts.
- C. Figured dimensions take precedence over scaled measurements and details over smaller scale general drawings. In the event of conflict between any of the documents contained within the contract, the documents shall take precedence and be controlling in the following sequence: addenda, supplementary general conditions, general conditions, division 1 specifications, technical division specifications, drawings, bid form and instructions to bidders.
- D. Anything shown on drawings and not mentioned in these specifications or vice versa, as well as any incidental work which is obviously necessary to complete the project within the limits established by the drawings and specifications, although not shown on or described therein, shall be performed by the Contractor at no additional cost as a part of his contract.
- E. Upon encountering conditions differing materially from those indicated in the contract documents, the Contractor shall promptly notify the Designer and Construction Representative in writing before such conditions are disturbed. The Designer shall promptly investigate said conditions and report to the Owner, with a recommended course of action. If conditions do materially differ and cause an increase or decrease in contract cost or time required for completion of any portion of the work, a contract change will be initiated as outlined in Article 4 of these General Conditions.
- E. Only work included in the contract documents is authorized, and the Contractor shall do no work other than that described therein or in accordance with appropriately authorized and approved contract changes.

ARTICLE 1.3 - COMPLIANCE WITH LAWS, PERMITS, REGULATIONS AND INSPECTIONS

A. Since the Owner is the State of Missouri, municipal or political subdivisions, zoning ordinances, construction codes (other than licensing of trades), and other like ordinances are not applicable to construction on Owner's property, and Contractor will not be required to submit drawings and specifications to any municipal or political subdivision, authority, obtain construction permits or any other licenses (other than licensing of trades) or permits from or submit to inspections by any municipality or political subdivision relating to the construction for this project. All permits or licenses required by municipality or political subdivision for operation on <u>property not belonging</u> to Owner shall be obtained by and paid for by Contractor. Each Contractor shall comply with all <u>applicable</u> laws, ordinances, rules and regulations that pertain to the work of this contract.

- B. Contractors, subcontractors and their employees engaged in the businesses of electrical, mechanical, plumbing, carpentry, sprinkler system work, and other construction related trades shall be licensed to perform such work by the municipal or political subdivision where the project is located, if such licensure is required by local code. Local codes shall dictate the level (master, journeyman, and apprentice) and the number, type and ratio of licensed tradesmen required for this project within the jurisdiction of such municipal or political subdivision.
- C. Equipment and controls manufacturers and their authorized service and installation technicians that do not maintain an office within the jurisdiction of the municipal or political subdivision but are a listed or specified contractor or subcontractor on this project are exempt from Paragraph 1.3 B above.
- D. The Contractor shall post a copy of the wage determination issued for the project and included as a part of the contract documents, in a prominent and easily accessible location at the site of construction for the duration of the project.
- E. Any contractor or subcontractor to such contractor at any tier signing a contract to work on this project shall provide a ten-hour Occupational Safety and Health Administration (OSHA) construction safety program for their on-site employees which includes a course in construction safety and health approved by OSHA or a similar program approved by the Department of Labor and Industrial Relations which is at least as stringent as an approved OSHA program. The contractor shall forfeit as a penalty to the public body on whose behalf the contract is made or awarded, two thousand five hundred dollars plus one hundred dollars for each employee employed by the contractor or subcontractor, for each calendar day, or portion thereof, such employee is employed without the required training.

ARTICLE 1.4 - NONDISCRIMINATION IN EMPLOYMENT

A. The Contractor and his subcontractors will not discriminate against individuals based on race,

color, religion, national origin, sex, disability, or age, but may use restrictions which relate to bona fide occupational qualifications. Specifically, the Contractor and his subcontractors shall not discriminate:

- 1. Against recipients of service on the basis of race, color, religion, national origin, sex, disability or age.
- 2. Against any employee or applicant, for employment on the basis of race, color, religion, national origin, sex or otherwise qualified disability status.
- 3. Against any applicant for employment or employee on the basis of age, where such applicant or employee is between ages 40 and 70 and where such Contractor employs at least 20 persons.
- 4. Against any applicant for employment or employee on the basis of that person's status as a disabled or Vietnam-era veteran.

The Contractor and his Subcontractors will take affirmative action to insure applicants for employment and employees are treated equally without regard to race, color, religion, national origin, sex, disability, or age. Such action shall include, but not be limited to, the following: employment, upgrading, demotion and transfer; recruitment or recruitment advertising; and selection for training, including apprenticeship. The Contractor and his Subcontractors will give written notice of their commitments under this clause to any labor union with which they have bargaining or other agreements.

- B. The Contractor and his subcontractors shall develop, implement, maintain and submit in writing to the Owner an affirmative action program if at least fifty (50) persons in the aggregate are employed under this contract. If less than fifty (50) persons in the aggregate are to be employed under this contract, the Contractor shall submit, in lieu of the written affirmative action program, a properly executed Affidavit for Affirmative Action in the form included in the contract specifications. For the purpose of this section, an "affirmative action program" means positive action to influence all employment practices (including, but not limited to, recruiting, hiring, promoting and training) in providing equal employment opportunity regardless of race, color, sex, national origin, religion, age (where the person affected is between age 40 and 70), disabled and Vietnam-era veteran status, and disability. Such "affirmative action program" shall include:
 - 1. A written policy statement committing the total organization to affirmative action and

assigning management responsibilities and procedures for evaluation and dissemination;

- 2. The identification of a person designated to handle affirmative action;
- 3. The establishment of non-discriminatory selection standards, objective measures to analyze recruitment, an upward mobility system, a wage and salary structure, and standards applicable to lay-off, recall, discharge, demotion and discipline;
- 4. The exclusion of discrimination from all collective bargaining agreements; and
- 5. Performance of an internal audit of the reporting system to monitor execution and to provide for future planning.

In the enforcement of this non-discrimination clause, the Owner may use any reasonable procedures available, including, but not limited to: requests, reports, site visits and inspection of relevant documents of contractors and subcontractors.

C. In the event of the Contractor's or his subcontractor's noncompliance with any provisions of this Article of the Contract, the Owner may cancel this contract in whole or in part or require the Contractor to terminate his contract with the subcontractor.

ARTICLE 1.5 - ANTI-KICKBACK

No employee of the division, shall have or acquire any pecuniary interest, whether direct or indirect, in this contract or in any part hereof. No officer, employee, designer, attorney, or administrator of or for the Owner who is authorized in such capacity and on behalf of the Owner to exercise any legislative, executive, supervisory or other similar functions in connection with the construction of the project, shall have or acquire any pecuniary interest, whether direct or indirect, in this contract, any material supply contract, subcontract, insurance contract, or any other contract pertaining to the project.

ARTICLE 1.6 - PATENTS AND ROYALTIES

- A. The Contractor shall hold and save the Owner and its officers, agents, servants and employees harmless from liabilities of any nature or kind, including cost and expenses, for, or on account of, any patented or unpatented invention, process, article or appliance manufactured or used in the performance of this contract, including its use by the Owner, unless otherwise specifically stipulated in the contract documents.
- B. If the Contractor uses any design, device or materials covered by letters, patent or copyright,

the Contractor shall provide for such use by suitable agreement with the Owner of such patented or copyrighted design, device or material. It is mutually agreed and understood, without exception, that the contract prices shall include all royalties or costs arising from the use of such design, device or materials, in any way involved in the work. The Contractor and/or his sureties shall indemnify and save harmless the Owner of the project from any and all claims for infringement by reason of the use of such patented or copyrighted design, device or materials or any trademark or copyright in connection with work agreed to be performed under this contract and shall indemnify the Owner for any cost, expense or damage it may be obliged to pay by reason of such infringement at any time during the prosecution of the work or after completion of the work.

ARTICLE 1.7 - PREFERENCE FOR AMERICAN AND MISSOURI PRODUCTS AND SERVICES

- A. By virtue of statutory authority a preference will be given to Missouri labor and to products of mines, forests and quarries of the state of Missouri when they are found in marketable quantities in the state, and all such materials shall be of the best quality and suitable character that can be obtained at reasonable market prices, all as provided for in Section 8.280, Missouri Revised Statutes and Cumulative Supplements.
- B. Furthermore, pursuant to Section 34.076 Missouri Revised Statutes and Cumulative Supplements, a preference shall be given to those persons doing business as Missouri firms, corporations, or individuals, or which maintain Missouri offices or places of business, when the quality of performance promised is equal or better and the price quoted is the same or less. In addition, in order for a non-domiciliary bidder to be successful, his bid must be that same percentage lower than a domiciliary Missouri bidder's bid, as would be required for a Missouri bidder to successfully bid in the non-domiciliary state.
- In accordance with the Missouri Domestic С Products Procurement Act Section 34.350 RSMo and Cumulative Supplements any manufactured goods or commodities used or supplied in the performance of this contract or any subcontract thereto shall be manufactured, assembled or produced in the United States, unless the specified products are not manufactured, assembled or produced in the United States in sufficient quantities to meet the agency's requirements or cannot be manufactured, assembled or produced in the United States within the necessary time in sufficient quantities to meet the contract requirements, or if obtaining the specified products manufactured, assembled or produced in the

United States would increase the cost of this contract for purchase of the product by more than ten percent.

ARTICLE 1.8 - COMMUNICATIONS

- A. All notices, requests, instructions, approvals and claims must be in writing and shall be delivered to the Designer and copied to the Construction Representative for the project except as required by Article 1.12 Disputes and Disagreements, or as otherwise specified by the Owner in writing as stated in Section 012600. Any such notice shall be deemed to have been given as of the time of actual receipt.
- B. The Contractor shall attend on-site progress and coordination meetings, as scheduled by the Construction Representative, no less than once a month.
- C. The Contractor shall ensure that major subcontractors and suppliers shall attend monthly progress meetings as necessary to coordinate the work, and as specifically requested by the Construction Representative.

ARTICLE 1.9 - SEPARATE CONTRACTS AND COOPERATION

- A. The Owner reserves the right to let other contracts in connection with this work. The Contractor shall afford other contractors reasonable opportunity for the introduction and storage of their materials and the execution of their work and shall properly connect and coordinate his work with theirs.
- B. The Contractor shall consult the drawings for all other contractors in connection with this work. Any work conflicting with the above shall be brought to the attention of the Owner's Representative before the work is performed. If the Contractor fails to do this, and constructs any work which interferes with the work of another contractor, the Contractor shall remove any part so conflicting and rebuild same, as directed by the Owner's Representative at no additional cost to the Owner.
- C. Each contractor shall be required to coordinate his work with other contractors so as to afford others reasonable opportunity for execution of their work. No contractor shall delay any other contractor by neglecting to perform contract work at the proper time. If any contractor causes delay to another, they shall be liable directly to that contractor for such delay in addition to any liquidated damages which might be due the Owner.
- D. Should the Contractor or project associated subcontractors refuse to cooperate with the instructions and reasonable requests of other Contractors or other subcontractors in the overall
coordinating of the work, the Owner may take such appropriate action and issue directions, as required, to avoid unnecessary and unwarranted delays.

- E. Each Contractor shall be responsible for damage done to Owner's or other Contractor's property by him/her or workers in his employ through their fault or negligence.
- F. Should a Contractor sustain any damage through any act or omission of any other Contractor having a contract with the Owner, the Contractor so damaged shall have no claim or cause of action against the Owner for such damage, but shall have a claim or cause of action against the other Contractor to recover any and all damages sustained by reason of the acts or omissions of such Contractor. The phrase "acts or omissions" as used in this section shall be defined to include, but not be limited to, any unreasonable delay on the part of any such contractors.

ARTICLE 1.10 - ASSIGNMENT OF CONTRACT

A. No assignment by Contractor of any amount or any part of this contract or of the funds to be received there under will be recognized unless such assignment has had the written approval of the Director and the surety has been given due notice of such assignment and has furnished written consent thereto. In addition to the usual recitals in assignment contracts, the following language must be set forth: "It is agreed that the funds to be paid to the assignee under this assignment are subject to performance by the Contractor of this contract and to claims or liens for services rendered or materials supplied for the performance of the work called for in said contract in favor of all persons, firms or corporations rendering such services or supplying such materials."

ARTICLE 1.11 - INDEMNIFICATION

- A. Contractor agrees to indemnify and save harmless Owner and its respective commissioners, officers, officials, agents, consultants and employees and Designer, their agents, servants and employees, from and against any and all liability for damage arising from injuries to persons or damage to property occasioned by any acts or omissions of Contractor, any subcontractors, agents, servants or employees, including any and all expense, legal or otherwise, which may be incurred by Owner or Designer, its agents, servants or employees, in defense of any claim, action or suit.
- B. The obligations of the Contractor under this paragraph shall not extend to the liability of the Designer, his agents or employees, arising out of (1) the preparation or approval of maps, drawings, opinions, reports, surveys, contract changes, design or specifications, or (2) giving of or the failure to

give directions or instructions by the Designer, his agents or employees as required by this contract documents provided such giving or failure to give is the primary cause of the injury or damage.

ARTICLE 1.12 - DISPUTES AND DISAGREEMENTS

It is hereby expressly agreed and understood that in case any controversy or difference of opinion arises during construction, best efforts will be given to resolution at the field level. Should those efforts be unsuccessful, the Contractor has the right to appeal in writing, the decision of the Director's Designee to the Director at Room 730 Truman Building, P.O. Box 809, Jefferson City, Missouri 65102. The decision of the Director shall be final and binding on all parties.

ARTICLE 2 -- OWNER/DESIGNER RESPONSIBILITIES

- A. The Owner shall give all orders and directions contemplated under this contract relative to the execution of the work. During progress of work the Owner will be represented at the project site by the Construction Representative and/or Designer, whose responsibilities are to see that this contract is properly fulfilled.
- B. The Owner shall at all times have access to the work whenever it is in preparation or progress. The Contractors shall provide proper facilities for such access and for inspection and supervision.
- C. All materials and workmanship used in the work shall be subject to the inspection of the Designer and Construction Representative, and any work which is deemed defective shall be removed, rebuilt or made good immediately upon notice. The cost of such correction shall be borne by the Contractor. Contractor shall not be entitled to an extension of the contract completion date in order to remedy defective work. All rejected materials shall be immediately removed from the site of the work.
- D. If the Contractor fails to proceed at once with the correction of rejected defective materials or workmanship, the Owner may, by separate contract or otherwise, have the defects remedied or rejected. Materials removed from the site and charge the cost of the same against any monies which may be due the Contractor, without prejudice to any other rights or remedies of the Owner.
- E. Failure or neglect on the part of Owner to observe faulty work, or work done which is not in accordance with the drawings and specifications shall not relieve the Contractor from responsibility

for correcting such work without additional compensation.

- F. The Owner shall have the right to direct the Contractor to uncover any completed work.
 - 1. If the Contractor fails to adequately notify the Construction Representative and/or Designer of an inspection as required by the Contract Documents, the Contractor shall, upon written request, uncover the work. The Contractor shall bear all costs associated with uncovering and again covering the work exposed.
 - 2. If the Contractor is directed to uncover work, which was not otherwise required by the Contract_Documents to be inspected, and the work is found to be defective in any respect, no compensation shall be allowed for this work. If, however, such work is found to meet the requirements of this contract, the actual cost of labor and material necessarily involved in the examination and replacement plus 10% shall be allowed the Contractor.
- G. The Designer shall give all orders and directions contemplated under this contract relative to the scope of the work and shall give the initial interpretation of the contract documents.
- H. The Owner may file a written notice to the Contractor to dismiss immediately any subcontractors, project managers, superintendents, foremen, workers, watchmen or other employees whom the Owner may deem incompetent, careless or a hindrance to proper or timely execution of the work. The Contractor shall comply with such notice as promptly as practicable without detriment to the work or its progress.
- I. If in the Owner's judgment it becomes necessary at any time to accelerate work, when ordered by the Owner in writing, the Contractor shall redirect resources to such work items and execute such portions of the work as may be required to complete the work within the current approved contract schedule.

ARTICLE 3 -- CONTRACTOR RESPONSIBILITIES

The Contractor shall register and utilize the Owner's eBuilder digital project management system for submission of documents described in the following sections. This includes but is not limited to submittals as required by designer, payment applications, Request for Information (RFI), construction change orders, Request for Proposals (RFP), Designer Supplemental Instructions (DSI), etc.

ARTICLE 3.1 -- ACCEPTABLE SUBSTITUTIONS

- A. The Contractor may request use of any article, device, product, material, fixture, form or type of construction which in the judgment of the Owner and Designer is equal in all respects to that named. Standard products of manufacturers other than those specified will be accepted when, prior to the ordering or use thereof, it is proven to the satisfaction of the Owner and Designer that they are equal in design, strength, durability, usefulness and convenience for the purpose intended.
- B. Any changes required in the details and dimensions indicated on the drawings for the substitution of products other than those specified shall be properly made at the expense of the Contractor requesting the substitution or change.
- C. The Contractor shall submit a request for such substitutions in writing to the Owner and Designer within twenty (20) working days after the date of the "Notice to Proceed." Thereafter no consideration will be given to alternate forms of accomplishing the work. This Article does not preclude the Owner from exercising the provisions of Article 4 hereof.
- D. Any request for substitution by the Contractor shall be submitted in accordance with SECTION 002113 - INSTRUCTIONS TO BIDDERS.
- E. When a material has been approved, no change in brand or make will be permitted unless:
 - 1. Written verification is received from the manufacturer stating they cannot make delivery on the date previously agreed, or
 - 2. Material delivered fails to comply with contract requirements.

ARTICLE 3.2 -- SUBMITTALS

A. The Contractor's submittals must be submitted with such promptness as to allow for review and approval so as not to cause delay in the work. The Contractor shall coordinate preparation and processing of submittals with performance of construction activities.

Coordinate each submittal with fabrication, = purchasing, testing, delivery, other submittals, and related activities that require sequential activity.

Submit four (4) copies to the Designer and additional copies as required for the subcontractors and material suppliers. Also provide copies to meet the requirements for maintenance manuals.

B. All subcontractors' shop drawings and schedules shall be submitted by the Contractor and shall bear evidence that Contractor has received, reviewed, and approved them. Any shop drawings and schedules submitted without this evidence will be returned to the Contractor for resubmission.

- C. The Contractor shall include with the shop drawing, a letter indicating any and all deviations from the drawings and/or specifications. Failure to notify the Designer of such deviations will be grounds for subsequent rejection of the related work or materials. If, in the opinion of the Designer, the deviations are not acceptable, the Contractor will be required to furnish the item as specified and indicated on the drawings.
- D. The Designer shall check shop drawings and schedules with reasonable promptness and approve them only if they conform to the design concept of the project and comply with the information given in the contract documents. The approval shall not relieve the Contractor from the responsibility to comply with the drawings and specifications, unless the Contractor has called the Designer's attention to the deviation, in writing, at the time of submission and the Designer has knowingly approved thereof. An approval of any such modification will be given only under the following conditions:
 - 1. It is in the best interest of the Owner
 - 2. It does not increase the contract sum and/or completion time
 - 3. It does not deviate from the design intent
 - 4. It is without prejudice to any and all rights under the surety bond.
- E. No extension of time will be granted because of the Contractor's failure to submit shop drawings and schedules in ample time to allow for review, possible resubmission, and approval. Fabrication of work shall not commence until the Contractor has received approval. The Contractor shall furnish prints of approved shop drawings and schedules to all subcontractors whose work is in any way related to the work under this contract. Only prints bearing this approval will be allowed on the site of construction
- F. The Contractor shall maintain a complete file onsite of approved shop drawings available for use by the Construction Representative.

ARTICLE 3.3 – AS-BUILT DRAWINGS

A. The Contractor shall update a complete set of the construction drawings, shop drawings and schedules of all work monthly by marking changes, and at the completion of their work (prior to submission of request for final payment) note all changes and turn the set over to the Construction Representative. The updates shall show all addenda, all field changes that were made to adapt to field conditions, changes resulting from contract

changes or supplemental instructions, and all locations of structures, buried installations of piping, conduit, and utility services. All buried and concealed items both inside and outside shall be accurately located as to depth and referenced to permanent features such as interior or exterior wall faces and dimensions shall be given in a neat and legible manner in a contrasting colored pencil or ink. If approved by the Designer, an electronic file format may be provided.

ARTICLE 3.4 – GUARANTY AND WARRANTIES

A. General Guaranty

- 1. Neither the final certificate of payment nor any provision in the contract documents nor partial use or occupancy of the premises by the Owner shall constitute an acceptance of work not done in accordance with contract requirements.
- 2. The Contractor or surety shall remedy any defects in the work and pay for any damage to property resulting there from which shall appear within a period of one (1) year from the date of substantial completion unless a longer period is otherwise specified or a differing guaranty period has been established in the substantial completion certificate. The Owner will give notice of observed defects with reasonable promptness.
- 3. In case of default on the part of the Contractor in fulfilling this part of this contract, the Owner may correct the work or repair the damage and the cost and expense incurred in such event shall be paid by or recoverable from the Contractor or surety.
- The work will be free from defects not 4. inherent in the quality required or permitted, and that the Work will conform to the requirements of the Contract Documents. Work not conforming to these requirements, including substitutions not properly approved and authorized, may be considered defective. The Contractor's guaranty excludes remedy for damage or defect caused by abuse, modifications not executed by the Contractor, improper or insufficient maintenance, improper operation, or normal wear and tear under normal usage. If required by the Owner, the Contractor shall furnish satisfactory evidence as to the kind and quality of materials and equipment
- B. Extended Warranty

Manufacturer's certificates of warranty shall be obtained for all major equipment. Warranty shall be obtained for at least one year. Where a longer period is offered at no additional cost or called for in the specific equipment specifications, the longer period shall govern.

ARTICLE 3.5 -- OPERATION AND MAINTENANCE MANUALS

- A. Immediately after equipment submittals are approved and no later than ten (10) working days prior to the substantial completion inspection, the Contractor shall provide to the Designer three (3) copies of operating instructions and service manuals, containing the following:
 - Start-up and Shut-down Procedures: Provide a step-by-step write up of all major equipment. When manufacturer's printed start-up, trouble shooting and shut-down procedures are available; they may be incorporated into the operating manual for reference.
 - 2. Operating Instructions: Written operating instructions shall be included for the efficient and safe operation of all equipment.
 - 3. Equipment List: List of all major equipment as installed shall be prepared to include model number, capacities, flow rate, name place data, shop drawings and air and water balance reports.
 - 4. Service Instructions: Provide the following information for all pieces of equipment.
 - a. Recommended spare parts including catalog number and name of local supplier or factory representative.
 - b. Belt sizes, types, and lengths.
 - c. Wiring diagrams.
 - 5. Manufacturer's Certificate of Warranty as described in Article 3.4.
 - 6. Prior to the final payment, furnish to the Designer three (4) copies of parts catalogs for each piece of equipment furnished by him/her on the project with the components identified by number for replacement ordering.
- B. Submission of operating instructions shall be done in the following manner.
 - 1. Manuals shall be in quadruplicate, and all materials shall be bound into volumes of standard $8\frac{1}{2}$ " x 11" hard binders. Large drawings too bulky to be folded into $8\frac{1}{2}$ " x 11" shall be separately bound or folded and in envelopes, cross referenced and indexed with the manuals.
 - 2. The manuals shall identify project name, project number, and include the name and

address of the Contractor, subcontractors and manufacturers who were involved with the activity described in that particular manual.

- 3. Internally subdivide the binder contents with permanent page dividers, logically organized with tab titles clearly printed under reinforced laminated plastic tabs.
- 4. Contents: Prepare a Table of Contents for each volume, with each product or system description identified.

ARTICLE 3.6 – OTHER CONTRACTOR RESPONSIBILITIES

- A. The Contractor shall keep on site, during progress of the work, a competent superintendent satisfactory to the Construction Representative. The superintendent shall represent the Contractor and all agreements made by the superintendent shall be binding. The superintendent shall carefully study and compare all drawings, specifications and other instructions and shall promptly notify the Construction Representative and Designer, in writing, any error, inconsistency or omission which may be discovered. The superintendent shall coordinate all work on the project. Any change of the superintendent shall be approved by the Construction Representative.
- B. Contractor shall, at all times, enforce strict discipline and good order among his employees, and shall not employ on the work any unfit person or anyone not skilled in the work assigned to him/her.
- C. The Contractor shall supply sufficient labor, material, plant and equipment and pay when due any laborer, subcontractor or supplier for supplies furnished and otherwise prosecute the work with diligence to prevent work stoppage and insure completion thereof within the time specified.
- D. The Contractor and each of his subcontractors shall submit to the Construction Representative, through the Designer such schedules of quantities and costs, progress schedules, payrolls, reports, estimates, records and other data as the Owner may request concerning work performed or to be performed under this contract.
- E. The Contractor, subcontractors, and material suppliers shall upon written request, give the Owner access to all time cards, material invoices, payrolls, estimates, profit and loss statements, and all other direct or indirect costs related to this work.
- F. The Contractor shall be responsible for laying out all contract work such as layout of architectural, structural, mechanical and electrical work, which shall be coordinated with layouts of subcontractors

for general construction work. The Contractor is also responsible for unloading, uncrating and handling of all materials and equipment to be erected or placed by him/her, whether furnished by Contractor or others. No extra charges or compensation will be allowed as a result of failure to verify dimensions before ordering materials or fabricating items.

- G. The Contractor must notify the Construction Representative at least one working day before placing concrete or burying underground utilities, pipelines, etc.
- H. Contractors shall prearrange time with the Construction Representative for the interruption of any facility operation. Unless otherwise specified in these documents, all connections, alterations or relocations as well as all other portions of the work will be performed during normal working hours.
- The Contractor shall coordinate all work so there I. will not be prolonged interruptions of existing equipment operation. Any existing plumbing, heating, ventilating, air conditioning or electrical disconnections necessary for the project, which affect portions of this construction or building or any other building must be scheduled with the Construction Representative to minimize or avoid any disruption of facility operations. In no case, unless previously approved in writing by the Construction Representative, shall utilities be left disconnected at the end of a work day or over a weekend. Any interruption of utilities either intentionally or accidentally shall not relieve the Contractor responsible for the interruption from the responsibility to repair and restore the utility to normal service. Repairs and restoration shall be made before the workers responsible for the repair and restoration leave the job.
- J. Contractors shall limit operations and storage of materials to the area within the project, except as necessary to connect to existing utilities, and shall not encroach on neighboring property. The Contractor shall be responsible for repair of their damage to property on or off the project site occurring during construction of project. All such repairs shall be made to the satisfaction of the property owner.
- K. Unless otherwise permitted, all materials shall be new and both workmanship and materials shall be of the best quality.
- L. Unless otherwise provided and stipulated within these specifications, the Contractor shall furnish, construct, and/or install and pay for materials, devices, mechanisms, equipment, all necessary personnel, utilities including, but not limited to water, heat, light and electric power, transportation

services, applicable taxes of every nature, and all other facilities necessary for the proper execution and completion of the work.

- M. Contractor shall carefully examine the plans and drawings and shall be responsible for the proper fitting of his material, equipment and apparatus into the building.
- N. The Contractor or subcontractors shall not overload, or permit others to overload, any part of any structure during the performance of this contract.
- O. All temporary shoring, bracing, etc., required for the removal of existing work and/or for the installation of new work shall be included in this contract. The Contractor shall make good, at no cost to the Owner, any damage caused by improper support or failure of shoring in any respect. Each Contractor shall be responsible for shoring required to protect his work or adjacent property and improvements of Owner and shall be responsible for shoring or for giving written notice to adjacent property owners. Shoring shall be removed only after completion of permanent supports.
- P. The Contractor shall provide at the proper time such material as is required for support of the work. If openings are required, whether shown on drawings or not, the Contractor shall see that they are properly constructed.
- Q. During the performance of work the Contractor shall be responsible for providing and maintaining warning signs, lights, signal devices, barricades, guard rails, fences and other devices appropriately located on site which will give proper and understandable warning to all persons of danger of entry onto land, structure or equipment.
- R. The Contractor shall be responsible for protection, including weather protection, and proper maintenance of all equipment and materials.
- The Contractor shall be responsible for care of the S. finished work and shall protect same from damage or defacement until substantial completion by the Owner. If the work is damaged by any cause, the Contractor shall immediately begin to make repairs with in accordance the drawings and specifications. Contractor shall be liable for all damage or loss unless attributable to the acts or omissions of the Owner or Designer. Any claim for reimbursement shall be submitted in accordance with Article 4. After substantial completion the Contractor will only be responsible for damage resulting from acts or omissions of the Contractor or subcontractors through final warranty.
- T. In the event the Contractor encounters an unforeseen hazardous material, the Contractor

shall immediately stop work in the area affected and report the condition to the Owner and Designer in writing. The Contractor shall not be required, pursuant to Article 4, to perform, any work relating to hazardous materials.

- U. In an emergency affecting safety of persons or property, the Contractor shall act, at the Contractor's discretion, to prevent threatened damage, injury or loss. Additional compensation or extension of time claimed by the Contractor on account of an emergency shall be determined as provided in Article 4.
- V. Before commencing work, Contractors shall confer with the Construction Representative and facility representative and review any facility rules and regulations which may affect the conduct of the work.
- W. Project signs will only be erected on major projects and only as described in the specifications. If no sign is specified, none shall be erected.

ARTICLE 3.7 -- SUBCONTRACTS

- A. Subcontractor assignments as identified in the bid form shall not be changed without written approval of the Owner. The Owner will not approve changes of a listed subcontractor unless the Contractor documents, to the satisfaction of the Owner that the subcontractor cannot or will not perform the work as specified.
- B. The Contractor is fully responsible to the Owner for the acts and omissions of all subcontractors and of persons either directly or indirectly employed by them.
- C. Every subcontractor shall be bound by the applicable terms and provisions of these contract documents, but no contractual relationship shall exist between any subcontractor and the Owner unless the right of the Contractor to proceed with the work is suspended or this contract is terminated as herein provided, and the Owner in writing elects to assume the subcontract.
- D. The Contractor shall upon receipt of "Notice to Proceed" and prior to submission of the first payment request, notify the Designer and Construction Representative in writing of the names of any subcontractors to be used in addition to those identified in the bid form and all major material suppliers proposed for all parts of the work.

ARTICLE 4 -- CHANGES IN THE WORK

4.1 CHANGES IN THE WORK

A. The Construction Representative, without giving notice to the surety and without invalidating this contract, may order extra work or make changes by altering, adding to or deducting from the work, this contract sum being adjusted accordingly. All such work shall be executed under the conditions of the original contract. A claim for extension of time caused by any change must be adjusted at the time of ordering such change. No future request for time will be considered.

- B. Each Contract Change shall include all costs required to perform the work including all labor, material, equipment, overheads and profit, delay, disruptions, or other miscellaneous expenses. No subsequent requests for additional compensation including claims for delay, disruption, or reduced efficiency as a result of each change will be considered. Values from the Schedule of Values will not be binding as a basis for additions to or deductions from the contract price.
- C. The amount of any adjustment in this contract price for authorized changes shall be agreed upon before such changes become effective and shall be determined, through submission of a request for proposal, as follows:
 - 1. By an acceptable fixed price proposal from the Contractor. Breakdowns shall include all takeoff sheets of each Contractor and subcontractor. Breakdown shall include a listing of each item of material with unit prices and number of hours of labor for each task. Labor costs per hour shall be included with labor burden identified, which shall be not less than the prevailing wage rate, etc. Overhead and profit shall be shown separately for each subcontractor and the Contractor.
 - 2. By a cost-plus-fixed-fee (time and material) basis with maximum price, total cost not to exceed said maximum. Breakdown shall include a listing of each item of material with unit prices and number of hours of labor for each task. Labor costs per hour shall be included with labor burden identified, which shall be not less than the prevailing wage rate, etc. Overhead and profit shall be shown separately for each subcontractor and the Contractor.
 - 3. By unit prices contained in Contractor's original bid form and incorporated in the construction contract.
- D. Overhead and Profit on Contract Changes shall be applied as follows:
 - 1. The overhead and profit charge by the Contractor and all subcontractors shall be considered to include, but is not limited to: incidental job burdens, small truck (under 1 ton) expense, mileage, small hand tools,

warranty costs, company benefits and general office overhead. Project supervision including field supervision and job site office expense shall be considered a part of overhead and profit unless a compensable time extension is granted.

- The percentages for overhead and profit 2. charged on Contract Changes shall be negotiated, and may vary according to the nature, extent, and complexity of the work involved. However, the overhead and profit for the Contractor or subcontractor actually performing the work shall not exceed 14%. When one or more tiers of subcontractors are used, in no event shall any Contractor or subcontractor receive as overhead and profit more than 3% of the cost of the work performed by any of his subcontractors. In no case shall the total overhead and profit paid by the Owner on any Contract Changes exceed twenty percent (20%) of the cost of materials, labor and equipment (exclusive of Contractor or any Subcontractor overhead and profit) necessary to put the contract change work in place.
- 3. The Contractor will be allowed to add the cost of bonding and insurance to their cost of work. This bonding and insurance cost shall not exceed 2% and shall be allowed on the total cost of the added work, including overhead and profit.
- 4. On proposals covering both increases and decreases in the amount of this contract, the application of overhead and profit shall be on the net change in the cost of the work.
- 5. The percentage for overhead and profit to be credited to the Owner on Contract Changes that are solely decreases in the quantity of work or materials shall be negotiated, and may vary according to the nature, extent and complexity of the work involved, but in no case shall be less than ten percent (10%). If the percentage for overhead and profit charged for work added by Contract Changes for this contract has been negotiated to less than 10%, the negotiated rate shall then apply to credits as well.
- E. No claim for an addition to this contract sum shall be valid unless authorized as aforesaid in writing by the Owner. In the event that none of the foregoing methods are agreed upon, the Owner may order the Contractor to perform work on a time and material basis. The cost of such work shall be determined by the Contractor's actual labor and material cost to perform the work plus overhead and profit as outlined herein. The

Designer and Construction Representative shall approve the Contractor's daily time and material invoices for the work involved.

- F. If the Contractor claims that any instructions involve extra cost under this contract, the Contractor shall give the Owner's Representative written notice thereof within a reasonable time after the receipt of such instructions, and in any event before proceeding to execute the work. No such claim shall be valid unless so made and authorized by the Owner, in writing.
- G. In an emergency affecting the safety of life or of the structure or of adjoining property, the Contractor, without special instruction or authorization from the Construction Representative, is hereby permitted to act at their discretion to prevent such threatened loss or injury. The Contractor shall submit a claim for compensation for such emergency work in writing to the Owner's Representative.

ARTICLE 4.2 – CHANGES IN COMPLETION TIME

- A. Extension of the number of work days stipulated in the Contract for completion of the work with compensation may be made when:
 - 1. The contractor documents that proposed Changes in the work, as provided in Article 4.1, extends construction activities critical to contract completion date, OR
 - 2. The Owner suspends all work for convenience of the Owner as provided in Article 7.3, OR
 - 3. An Owner caused delay extends construction activities critical to contract completion (except as provided elsewhere in these General Conditions). The Contractor is to review the work activities yet to begin and evaluate the possibility of rescheduling the work to minimize the overall project delay.
- B. Extension of the number of work days stipulated in the Contract for completion of the work <u>without</u> compensation may be made when:
 - 1. Weather-related delays occur, subject to provisions for the inclusion of a specified number of "bad weather" days when provided for in Section 012100-Allowances, OR
 - 2. Labor strikes or acts of God occur, OR
 - 3. The work of the Contractor is delayed on account of conditions which were beyond the control of the Contractor, subcontractors or suppliers, and were not the result of their fault or negligence.
- C. No time extension or compensation will be provided for delays caused by or within the control

of the Contractor, subcontractors or suppliers and for concurrent delays caused by the Owner.

D. The Contractor shall notify the Owner promptly of any occurrence or conditions which in the Contractor's opinion results in a need for an extension of time. The notice shall be in writing and shall include all necessary supporting materials with details of any resultant costs and be submitted in time to permit full investigation and evaluation of the Contractor's claim. The Owner shall promptly acknowledge the Contractor's notice and, after recommendation from the Owner's Representative and/or Designer, shall provide a decision to the Contractor. Failure on the part of the Contractor to provide such notice and to detail the costs shall constitute a waiver by the Contractor of any claim. Requests for extensions of time shall be for working days only.

ARTICLE 5 - CONSTRUCTION AND COMPLETION

ARTICLE 5.1 – CONSTRUCTION COMMENCEMENT

- A. Upon receipt of the "Intent to Award" letter, the Contractor must submit the following properly executed instruments to the Owner:
 - 1. Contract;
 - 2. Performance/payment bond as described in Article 6.1;
 - 3. Certificates of Insurance, or the actual policies themselves, showing that the Contractor has obtained the insurance coverage required by Article 6.2.
 - 4. Written Affirmative Action Plans as required in Article 1.4.

Above referenced items must be received by the Owner within ten (10) working days after the effective date of the contract. If not received, the Owner may treat the failure to timely submit them as a refusal by the Contractor to accept a contract for this work and may retain as liquidated damages the Contractor's bid bond, cashier's check or certified check as provided in the Instructions to Bidders. Upon receipt the Owner will issue a "Notice to Proceed" with the work to the Contractor.

B. Within the time frame noted in Section 013200 -Schedules, following receipt of the "Notice to Proceed", the Contractor shall submit to the Owner a progress schedule and schedule of values, showing activities through the end of the contract period. Should the Contractor not receive written notification from the Owner of the disapproval of the schedule of values within fifteen (15) working days, the Contractor may consider it approved for purpose of determining when the first monthly Application and Certification for Payment may be submitted.

C. The Contractor may commence work upon receipt of the Division of Facilities Management, Design and Construction's "Notice to Proceed" letter. Contractor shall prosecute the work with faithfulness and energy, and shall complete the entire work on or before the completion time stated in the contract documents or pay to the Owner the damages resulting from the failure to timely complete the work as set out within Article 5.4.

ARTICLE 5.2 -- PROJECT CONSTRUCTION

- A. Each Contractor shall submit for the Owner's approval, in reproducible form, a progress schedule showing the rate of progress and the order of the work proposed to carry on various phases of the project. The schedule shall be in conformance with the requirements outlined in Section 013200 Schedules.
- B. Contractor shall employ and supply a sufficient force of workers, material, and equipment and shall pay when due, any worker, subcontractor or supplier and otherwise prosecute the work with such diligence so as to maintain the rate of progress indicated on the progress schedule, prevent work stoppage, and insure completion of the project within the time specified.

ARTICLE 5.3 -- PROJECT COMPLETION

- A. Substantial Completion. A Project is substantially complete when construction is essentially complete and work items remaining to be completed can be done without interfering with the Owner's ability to use the Project for its intended purpose.
 - 1. Once the Contractor has reached what they believe is Substantial Completion, the Contractor shall notify the Designer and the Construction Representative of the following:
 - a. That work is essentially complete with the exception of certain listed work items. The list shall be referred to as the "Contractor's Punch."
 - b. That all Operation and Maintenance Manuals have been assembled and submitted in accordance with Article 3.5A.
 - c. That the Work is ready for inspection by the Designer and Construction Representative. The Owner shall be entitled to a minimum of ten working

days notice before the inspection shall be performed.

- 2. If the work is acceptable, the Owner shall issue a Certificate of Substantial Completion, which shall set forth the responsibilities of the Owner and the Contractor for utilities, security, maintenance, damage to the work and risk of loss. The Certificate shall also identify those remaining items of work to be performed by the Contractor. All such work items shall be complete within 30 working days of the date of the Certificate, unless the Certificate specifies a different time. If the Contractor shall be required to perform tests that must be delayed due to climatic conditions, it is understood that such tests and affected equipment will be identified on the Certificate and shall be accomplished by the Contractor at the earliest possible date. Performance of the tests may not be required before Substantial Completion can be issued. The date of the issuance of the Certificate of Substantial Completion shall determine whether or not the work was completed within the contract time and whether or not Liquidated Damages are due.
- 3. If the work is not acceptable, and the Owner does not issue a Certificate of Substantial Completion, the Owner shall be entitled to charge the Contractor with the Designer's and Owner's costs of re-inspection, including time and travel.
- B. Partial Occupancy. Contractor agrees that the Owner shall be permitted to occupy and use any completed or partially completed portions of the Project, when such occupancy and use is in the Owner's best interest. Owner shall notify Contractor of its desire and intention to take Partial Occupancy as soon as possible but at least ten (10) working days before the Owner intends to occupy. If the Contractor believes that the portion of the work the Owner intends to occupy is not ready for occupancy, the Contractor shall notify the Owner immediately. The Designer shall inspect the work in accordance with the procedures above. If the Contractor claims increased cost of the project or delay in completion as a result of the occupancy, he shall notify the Owner immediately but in all cases before occupancy occurs.
- C. Final Completion. The Project is finally complete when the Certificate of Substantial Completion has been issued and all work items identified therein as incomplete have been completed, and when all administrative items required by the contract have been completed. Final Completion entitles the Contractor to payment of the outstanding balance of the contract amount including all change orders

and retainage. Within five (5) working days of the date of the Certificate of Substantial Completion, the Contractor shall identify the cost to complete any outstanding items of work. The Designer shall review the Contractor's estimate and either approve it or provide an independent estimate for all such items. If the Contractor fails to complete the remaining items within the time specified in the Certificate, the Owner may terminate the contract and go to the surety for project completion in accordance with Article 7.2 or release the contract balance to the Contractor less 150% of the approved estimate to complete the outstanding items. Upon completion of the outstanding items. when a final cost has been established, any monies remaining shall be paid to the Contractor. Failure to complete items of work does not relieve the Contractor from the obligation to complete the administrative requirements of the contract, such as the provisions of Article 5.3 FAILURE TO COMPLETE ALL ITEMS OF WORK UNDER THE CONTRACT SHALL BE CONSIDERED A DEFAULT AND BE GROUNDS FOR CONTRACT TERMINATION AND DEBARMENT.

- D. Liquidated Damages. Contractor agrees that the Owner may deduct from the contract price and retain as liquidated damages, and not as penalty or forfeiture, the sum stipulated in this contract for each work day after the Contract Completion Day on which work is not Substantially Complete. Assessment of Liquidated Damages shall not relieve the Contractor or the surety of any responsibility or obligation under the Contract. In addition, the Owner may, without prejudice to any other rights, claims, or remedies the Owner may have including the right to Liquidated Damages, charge the Contractor for all additional expenses incurred by the Owner and/or Designer as the result of the extended contract period through Final Completion. Additional Expenses shall include but not be limited to the costs of additional inspections.
- E. Early Completion. The Contractor has the right to finish the work before the contract completion date; however, the Owner assumes no liability for any hindrances to the Contractor unless Owner caused delays result in a time extension to the contract completion date. The Contractor shall not be entitled to any claims for lost efficiencies or for delay if a Certificate of Substantial Completion is given on or before the Contract Completion Date.

ARTICLE 5.4 -- PAYMENT TO CONTRACTOR

A. Payments on account of this contract will be made monthly in proportion to the work which has been completed. Request for payment must be submitted on the Owner's forms. No other pay request will be processed. Supporting breakdowns must be in the same format as Owner's forms and must provide the same level of detail. The Designer will, within 5 working days from receipt of the contractor's request for payment either issue a Certificate for Payment to the Owner, for such amount as the Designer determines is properly due, or notify the Contractor in writing of reasons for withholding a Certificate. The Owner shall make payment within 30 calendar days after the "Application and Certification for Payment" has been received and certified by the Designer. The following items are to be attached to the contractor's pay request:

- 1. Updated construction schedule
- 2. Certified payrolls consisting of name, occupation and craft, number of hours worked and actual wages paid for each individual employee, of the Contractor and all subcontractors working on the project
- B. The Owner shall retain 5 percent of the amount of each such payment application, except as allowed by Article 5.4, until final completion and acceptance of all work covered by this contract.
- C. Each payment made to Contractor shall be on account of the total amount payable to Contractor and all material and work covered by paid partial payment shall thereupon become the sole property of Owner. This provision shall not be construed as relieving Contractor from sole responsibility for care and protection of materials and work upon which payments have been made or restoration of any damaged work or as a waiver of the right of Owner to require fulfillment of all terms of this contract.
- D. Materials delivered to the work site and not incorporated in the work will be allowed in the Application and Certification for Payment on the basis of one hundred (100%) percent of value, subject to the 5% retainage providing that they are suitably stored on the site or in an approved warehouse in accordance with the following requirements:
 - 1. Material has previously been approved through submittal and acceptance of shop drawings conforming to requirements of Article 3.2 of General Conditions.
 - 2. Delivery is made in accordance with the time frame on the approved schedule.
 - 3. Materials, equipment, etc., are properly stored and protected from damage and deterioration and remain so - if not, previously approved amounts will be deleted from subsequent pay applications.

- 4. The payment request is accompanied by a breakdown identifying the material equipment, etc. in sufficient detail to establish quantity and value.
- E. The Contractor shall be allowed to include in the Application and Certification for Payment, one hundred (100%) of the value, subject to retainage, of major equipment and material stored off the site if all of the following conditions are met:
 - 1. The request for consideration of payment for materials stored off site is made at least 15 working days prior to submittal of the Application for Payment including such material. Only materials inspected will be considered for inclusion on Application for Payment requests.
 - 2. Materials stored in one location off site are valued in excess of \$25,000.
 - 3. That a Certificate of Insurance is provided indicating adequate protection from loss, theft conversion or damage for materials stored off site. This Certificate shall show the State of Missouri as an additional insured for this loss.
 - 4. The materials are stored in a facility approved and inspected, by the Construction Representative.
 - 5. Contractor shall be responsible for, Owner costs to inspect out of state facilities, and any delays in the completion of the work caused by damage to the material or for any other failure of the Contractor to have access to this material for the execution of the work.
- F. The Owner shall determine the amount, quality and acceptability of the work and materials which are to be paid for under this contract. In the event any questions shall arise between the parties, relative to this contract or specifications, determination or decision of the Owner or the Construction Representative and the Designer shall be a condition precedent to the right of the Contractor to receive any money or payment for work under this contract affected in any manner or to any extent by such question.
- G. Payments Withheld: The Owner may withhold or nullify in whole or part any certificate to such extent as may be necessary to protect the Owner from loss on account of:
 - 1. Defective work not remedied. When a notice of noncompliance is issued on an item or items, corrective action shall be undertaken immediately. Until corrective action is completed, no monies will be paid and no additional time will be allowed for the item or

items. The cost of corrective action(s) shall be borne by the Contractor.

- 2. A reasonable doubt that this contract can be completed for the unpaid balance.
- 3. Failure of the Contractor to update as-built drawings monthly for review by the Construction Representative.
- 4. Failure of the Contractor to update the construction schedule.

When the Construction Representative is satisfied the Contractor has remedied above deficiencies, payment shall be released.

- H. Final Payment: Upon receipt of written notice from the Contractor to the Designer and Project Representative that the work is ready for final inspection and acceptance, the Designer and Project Representative, with the Contractor, shall promptly make such inspection. If the work is acceptable and the contract fully performed, the Construction Representative shall complete a final acceptance report and the Contractor will be directed to submit a final Application and Certification for Payment. If the Owner approves the same, the entire balance shall be due and payable, with the exception of deductions as provided for under Article 5.4.
 - 1. Where the specifications provide for the performance by the Contractor of (certain tests for the purpose of balancing and checking the air conditioning and heating equipment and the Contractor shall have furnished and installed all such equipment in accordance with the specifications, but said test cannot then be made because of climatic conditions, such test shall may be considered as required under the provisions of the specifications, Section 013300 and this contract may be substantial Full payment will not be made until the tests have been made and the equipment and system is finally accepted. If the tests are not completed when scheduled, the Owner may deduct 150% of the value of the tests from the final payment.
 - 2. The final payment shall not become due until the Contractor delivers to the Construction Representative:
 - a) A complete file of releases, on the standard form included in the contract documents as "Final Receipt of Payment and Release Form", from subcontractors and material suppliers evidencing payment in full for services, equipment and materials, as the case may require, if the Owner approves, or a consent from

- b) An Affidavit of Compliance with Prevailing Wage Law, in the form as included in this contract specifications, properly executed by each subcontractor, and the Contractor
- c) Certified copies of all payrolls
- d) As-built drawings
- 3. If any claim remains unsatisfied after all payments are made, the Contractor shall refund to the Owner all monies that the latter may be compelled to pay in discharging such a claim including all costs and a reasonable attorney's fee.
- 4. Missouri statute requires prompt payment from the Owner to the Contractor within thirty calendar days and from the Contractor to his subcontractors within fifteen calendar days. Failure to make payments within the required time frame entitles the receiving party to charge interest at the rate of one and one half percent per month calculated from the expiration of the statutory time period until paid.
- 5. The value of all unused unit price allowances and/or 150% of the value of the outstanding work items, and/or liquidated damages may be deducted from the final pay request without executing a Contract Change. Any unit price items which exceed the number of units in the contract may be added by Contract Change.

ARTICLE 6 -- INSURANCE AND BONDS

ARTICLE 6.1 -- BOND

- A. Contractor shall furnish a performance/payment bond in an amount equal to 100% of the contract price to guarantee faithful performance of the contract and 100% of the contract price to guarantee the payment of all persons performing labor on the project and furnishing materials in connection therewith under this contract as set forth in the standard form of performance and payment bond included in the contract documents. The surety on such bond shall be issued by a surety company authorized by the Missouri Department of Insurance to do business in the state of Missouri.
- B. All Performance/Payment Bonds furnished in response to this provision shall be provided by a bonding company with a rating of B+ or higher as established by A.M. Best Company, Inc. in their most recent publication.

ARTICLE 6.2 – INSURANCE

- A. The successful Contractor shall procure and maintain for the duration of the contract issued a policy or policies of insurance for the protection of both the Contractor and the Owner and their respective officers, officials, agents, consultants and employees. The Owner requires certification of insurance coverage from the Contractor prior to commencing work.
- B. Minimum Scope and Extent of Coverage
 - 1. General Liability

Commercial General Liability, ISO coverage form number or equivalent CG 00 01 ("occurrence" basis), or I-SO coverage form number CG 00 02, or ISO equivalent.

If ISO equivalent or manuscript general liability coverage forms are used, minimum coverage will be follows: as Premises/Operations; Independent Contractors; Products/Completed Operations; personal Injury; Broad Form Property Damage including Completed Operations: Broad Form Contractual Liability Coverage to include Contractor's obligations under Article 1.11 Indemnification and any other Special Hazards required by the work of the contract.

2. Automobile Liability

Business Automobile Liability Insurance, ISO Coverage form number or equivalent CA 00 01 covering automobile liability, code 1 "ANY AUTO".

3. Workers' Compensation and Employer's Liability

Statutory Workers' Compensation Insurance for Missouri and standard Employer's Liability Insurance, or the authorization to self-insure for such liability from the Missouri Division of Workers' Compensation.

4. Builder's Risk or Installation Floater Insurance

Insurance upon the work and all materials, equipment, supplies, temporary structures and similar items which may be incident to the performance of the work and located at or adjacent to the site, against loss or damage from fire and such other casualties as are included in extended coverage in broad "All Risk" form, including coverage for Flood and Earthquake, in an amount not less than the replacement cost of the work or this contact price, whichever is greater, with loss payable to Contractor and Owner as their respective interests may appear.

Contractor shall maintain sufficient insurance to cover the full value of the work and materials as the work progresses, and shall furnish Owner copies of all endorsements. If Reporting-Builder's Risk Form of Endorsement is used. Contractor shall make all reports as required therein so as to keep in force an amount of insurance which will equal the replacement cost of the work, materials, equipment, supplies, temporary structures, and other property covered thereby; and if, as a result of Contractor's failure to make any such report, the amount of insurance so recoverable shall be less than such replacement cost. Contractor's interest in the proceeds of such insurance, if any, shall be subordinated to Owner's interest to the end that Owner may receive full reimbursement for its loss.

- C. Minimum Limits of Insurance
 - 1. General Liability

Contractor

\$2,000,000	combined single limit per occurrence for bodily injury, personal injury, and property damage
\$2,000,000	annual aggregate

- 2. Automobile Liability
 - \$2,000,000 combined single limit per occurrence for bodily injury and property damage
- 3. Workers' Compensation and Employers Liability

Workers' Compensation limits as required by applicable State Statutes (generally unlimited) and minimum of \$1,000,000 limit per accident for Employer's Liability.

General Liability and Automobile Liability insurance may be arranged under individual policies for the full limits required or by a combination of underlying policies with the balance provided by a form-following Excess or Umbrella Liability policy.

D. Deductibles and Self-Insured Retentions

All deductibles, co-payment clauses, and selfinsured retentions must be declared to and approved by the Owner. The Owner reserves the right to request the reduction or elimination of unacceptable deductibles or self-insured retentions, as they would apply to the Owner, and their respective officers, officials, agents, consultants and employees. Alternatively, the Owner may request Contractor to procure a bond guaranteeing payment of losses and related investigations, claims administration, and defense expenses.

E. Other Insurance Provisions and Requirements

The respective insurance policies and coverage, as specified below, must contain, or be endorsed to contain the following conditions or provisions:

1. General Liability

The Owner, and its respective commissioners, officers, officials, agents, consultants and employees shall be endorsed as additional insured's by ISO form CG 20 26 Additional Insured - Designated Person or Organization. As additional insured's, they shall be covered as to work performed by or on behalf of the Contractor or as to liability which arises out of Contractor's activities or resulting from the performance of services or the delivery of goods called for by the Contract.

Contractor's insurance coverage shall be primary with respect to all additional insured's. Insurance of self-insurance programs maintained by the designated additional -insured's shall be excess of the Contractor's insurance and shall not contribute with it.

Additionally, the Contractor and Contractor's general liability insurer shall agree to waive all rights of subrogation against the Owner and any of their respective officers, officials, agents, consultants or employees for claims, losses, or expenses which arise out of Contractor's activities or result from the performance of services or the delivery of goods called for by the Contract.

Contractor's failure to comply with the terms and conditions of these insurance policies shall not affect or abridge coverage for the Owner, or for any of their officers, officials, agents, consultants or employees.

2. Automobile Insurance

The Owner, and their respective officers, officials, agents, consultants and employees shall be endorsed as additional insured's by ISO form CG 20 26 - Additional Insured Designated Person or Organization. As additional insured's, they shall be covered as to work performed by or on behalf of the Contractor or as to liability which arises out of Contractor's activities or resulting from the performance of services or the delivery of goods called for by the Contract.

Contractor's insurance coverage shall be primary with respect to all additional insured's. Insurance or self-insurance programs maintained by the designated additional insured's shall be in excess of the Contractor's insurance and shall not contribute with it.

Additionally, the Contractor and Contractor's automobile insurer shall agree to waive all rights of subrogation against the Owner and any of their respective officers, officials, agents, consultants or employees for claims, losses, or expenses which arise out of Contractor's activities or result from the performance of services or the delivery of goods called for by the Contract.

Contractor's failure to comply with the terms and conditions of these insurance policies shall not affect or abridge coverage for the Owner or for any of its officers, officials, agents, consultants or employees.

3. Workers' Compensation/Employer's Liability

Contractor's workers' compensation insurance shall be endorsed with NCCI form WC 00 03 01 A - Alternative Employer Endorsement. The Alternative Employer Endorsement shall designate the Owner as "alternate employers."

4. All Coverages

Each insurance policy required by this section of the Contract shall contain a stipulation, endorsed if necessary, that the Owner will receive a minimum of a thirty (30) calendar day advance notice of any policy cancellation. Ten (10) calendar days advance notice is required for policy cancellation due to nonpayment of premium.

F. Insurer Qualifications and Acceptability

Insurance required hereunder shall be issued by an A.M. Best, "B+" rated, Class IX insurance company approved to conduct insurance business in the state of Missouri.

G. Verification of Insurance Coverage

Prior to Owner issuing a Notice to Proceed, the Contractor-shall furnish the Owner with Certificate(s) of Insurance and with any applicable original endorsements evidencing the required insurance coverage. The insurance certificates and endorsements are to be signed by a person authorized by that insurer to bind coverage on its behalf. All certificates and endorsements received by the Owner are subject to review and approval by the Owner. The Owner reserves the right to require certified copies of all required policies at any time. If the scope of this contract will exceed one (1) year - or, if any of Contractor's applicable insurance coverage expires prior to completion of the work or services required under this contract - the Contractor will provide a renewal or replacement certificate before continuing work or services hereunder. If the Contractor fails to provide documentation of required insurance coverage, the Owner may issue a stop work order and no additional contract completion time and/or compensation shall be granted as a result thereof.

ARTICLE 7 – SUSPENSION OR TERMINATION OF CONTRACT

ARTICLE 7.1 - FOR SITE CONDITIONS

When conditions at the site of the proposed work are considered by the Owner to be unsatisfactory for prosecution of the work, the Contractor may be ordered in writing to suspend the work or any part thereof until reasonable conditions exist. When such suspension is not due to fault or negligence of the Contractor, time allowed for completion of such suspended work will be extended by a period of time equal to that lost due to delay occasioned by ordered suspension. This will be a no cost time extension.

ARTICLE 7.2 - FOR CAUSE

- A. Termination or Suspension for Cause:
 - If the Contractor shall file for bankruptcy, or 1. should make a general assignment for the benefit of the creditors, or if a receiver should be appointed on account of insolvency, or if the contractor should persistently or repeatedly refuse or fail to supply enough properly skilled workers or proper materials, or if the contractor should fail to make prompt payment to subcontractors or for material or or persistently disregard laws, labor, ordinances or the instructions of the Owner, or otherwise be guilty of a substantial violation of any provision of this contract, then the Owner may serve notice on the Contractor and the surety setting forth the violations and demanding compliance with this contract. Unless within ten (10) consecutive calendar days after serving such notice, such violations shall cease and satisfactory arrangements for correction be made, the Owner may suspend the Contractor's right to proceed with the work or terminate this contract.
 - 2. In the event the Owner suspends Contractor's right to proceed with the work or terminates the contract, the Owner may demand that the Contractor's surety take over and complete the work on this contract, after the surety submits a written proposal to the Owner and receives written approval and upon the surety's failure or refusal to do so within ten (10) consecutive

calendar days after demand therefore, the Owner may take over the work and prosecute the same to completion by bid or negotiated contract, or the Owner may elect to take possession of and utilize in completing the work such materials, supplies, appliances and plant as may be on the site of the work, and all subcontractors, if the Owner elects, shall be bound to perform their contracts.

- B. The Contractor and its surety shall be and remain liable to the Owner for any excess cost or damages occasioned to the Owner as a result of the actions above set forth.
- C. The Contractor in the event of such suspension or termination shall not be entitled to receive any further payments under this contract until the work is wholly finished. Then if the unpaid balance under this contract shall exceed all expenses of the Owner as certified by the Director, such excess shall be paid to the Contractor; but, if such expenses shall exceed the unpaid balance as certified by the Director, the Contractor and their surety shall be liable for and shall pay the difference and any damages to the Owner.
- D. In exercising Owner's right to secure completion of the work under any of the provisions hereof, the Director shall have the right to exercise Owner's sole discretion as to the manner, methods and reasonableness of costs of completing the work.
- E. The rights of the Owner to suspend or terminate as herein provided shall be cumulative and not exclusive and shall be in addition to any other remedy provided by law.
- F. The Contractor in the event of such suspension or termination may be declared ineligible for Owner contracts for a minimal period of twelve (12) months. Further, no contract will be awarded to any Contractor who lists in their bid form any subcontractor whose prior performance has contributed, as determined by the Owner, to a breach of a contract. In order to be considered for state-awarded contracts after this period, the Contractor/subcontractor will be required to forward acceptance reports to the Owner regarding successful completion of non-state projects during the intervening twelve (12) months from the date of default. No contracts will be awarded to a subcontractor/Contractor until the ability to perform responsibly in the private sector has been proven to the Owner.

ARTICLE 7.3 -- FOR CONVENIENCE

A. The Owner may terminate or suspend the Contract or any portion of the Work without cause at any time, and at the Owner's convenience. Notification of a termination or suspension shall be in writing and shall be given to the Contractor and their surety. If the Contract is suspended, the notice will contain the anticipated duration of the suspension or the conditions under which work will be permitted to resume. If appropriate, the Contractor will be requested to demobilize and re-mobilize and will be reimbursed time and costs associated with the suspension.

- B. Upon receipt of notification, the Contractor shall:
 - 1. Cease operations when directed.
 - 2. Take actions to protect the work and any stored materials.
 - 3. Place no further subcontracts or orders for material, supplies, services or facilities except as may be necessary to complete the portion of the Contract that has not been terminated. No claim for payment of materials or supplies ordered after the termination date shall be considered.
 - 4. Terminate all existing subcontracts, rentals, material, and equipment orders.

- 5. Settle all outstanding liabilities arising from termination with subcontractors and suppliers.
- 6. Transfer title and deliver to the Owner, work in progress, completed work, supplies and other material produced or acquire for the work terminated, and completed or partially completed plans, drawings information and other property that, if the Contract had been completed, would be required to be furnished to the Owner.
- C. For termination without cause and at the Owner's convenience, in addition to payment for work completed prior to date of termination, the Contractor may be entitled to payment of other documented costs directly associated with the early termination of the contract. Payment for anticipated profit and unapplied overhead will not be allowed.

SECTION 007300 - SUPPLEMENTARY CONDITIONS

1.0 GENERAL:

A. These Supplementary General Conditions clarify, add, delete, or otherwise modify standard terms and conditions of DIVISION 0, BIDDING AND CONTRACTING REQUIREMENTS.

2.0 CONTACTS:

Designer:	Matt Begnoche Insite Group 3540 NE Ralph Powell Rd, Ste B Lee's Summit, MO 6064 Telephone: (816) 228-3377 Email: <u>matt@insitegroup.net</u>
Construction Representative:	Ricky Howard Division of Facilities Management, Design and Construction 836 N Scott Belton, MO 64012 Telephone: 816-728-0385 Email: <u>ricky.howard@oa.mo.gov</u>
Project Manager:	Jared Cook Division of Facilities Management, Design and Construction 301 West High Street, Room 730 Jefferson City, Missouri 65101 Telephone: (573) 690-6733 Email: jared.cook2@oa.mo.gov
Contract Specialist:	Paul Girouard Division of Facilities Management, Design and Construction 301 West High Street, Room 730 Jefferson City, Missouri 65101 Telephone: 573-751-4797 Email: <u>Paul.Girouard@oa.mo.gov</u>

3.0 NOTICE: ALL BID MATERIALS ARE DUE AT THE TIME OF BID SUBMITTAL. THERE IS NO SECOND SUBMITTAL FOR THIS PROJECT.

4.0 FURNISHING CONSTRUCTION DOCUMENTS:

- A. The Owner will furnish the Contractor with approximately 5 complete sets of drawings and specifications at no charge.
- B. The Owner will furnish the Contractor with approximately 5 sets of explanatory or change drawings at no charge.
- C. The Contractor may make copies of the documents as needed with no additional cost to the Owner.

5.0 SAFETY REQUIREMENTS

Contractor and subcontractors at any tier shall comply with RSMo 292.675 and Article 1.3, E, of Section 007213, General Conditions.

Missouri Division of Labor Standards

WAGE AND HOUR SECTION

MICHAEL L. PARSON, Governor

Annual Wage Order No. 29

Section 048 JACKSON COUNTY

In accordance with Section 290.262 RSMo 2000, within thirty (30) days after a certified copy of this Annual Wage Order has been filed with the Secretary of State as indicated below, any person who may be affected by this Annual Wage Order may object by filing an objection in triplicate with the Labor and Industrial Relations Commission, P.O. Box 599, Jefferson City, MO 65102-0599. Such objections must set forth in writing the specific grounds of objection. Each objection shall certify that a copy has been furnished to the Division of Labor Standards, P.O. Box 449, Jefferson City, MO 65102-0449 pursuant to 8 CSR 20-5.010(1). A certified copy of the Annual Wage Order has been filed with the Secretary of State of Missouri.

Original Signed by Todd Smith, Director Division of Labor Standards

Filed With Secretary of State:

March 10, 2022

Last Date Objections May Be Filed: April 11, 2022

Prepared by Missouri Department of Labor and Industrial Relations

Building Construction Rates for JACKSON County

	**Prevailing
OCCUPATIONAL TITLE	Hourly
	Rate
Asbestos Worker	\$67.05
Boilermaker	\$37.33*
Bricklayer	\$59.20
Carpenter	\$60.21
Lather	
Linoleum Laver	
Millwright	
Pile Driver	
Cement Mason	\$54.35
Plasterer	\$61100
Communications Technician	\$58.66
Electrician (Inside Wireman)	\$66.21
Electrician (Inside Wireman)	\$64.01
	\$04.01
Groundman - Tree Trimmer	
Elevator Constructor	\$37.33*
Glazier	\$56.84
Ironworker	\$66.35
Laborer	\$49.04
General Laborer	
First Semi-Skilled	
Second Semi-Skilled	
Mason	\$54.39
Marble Mason	
Marble Finisher	
Terrazzo Worker	
Terrazzo Finisher	
Tile Setter	
Tile Finisher	
Operating Engineer	\$60.71
Group I	
Group II	
Group III	
Group III-A	
Group IV	
Group V	
Painter	\$50.15
Plumber	\$74.12
Pipe Fitter	
Roofer	\$57.93
Sheet Metal Worker	\$71.70
Sprinkler Fitter	\$61.32
Truck Driver	\$47.50
Truck Control Service Driver	
Group I	
Group II	
Group III	
Group IV	

*The Division of Labor Standards received fewer than 1,000 reportable hours for this occupational title. The public works contracting minimum wage is established for this occupational title using data provided by Missouri Economic Research and Information Center. **The Prevailing Hourly Rate includes any applicable fringe benefit amounts for each occupational title as defined in Section 290.210 RSMo.

Heavy Construction Rates for JACKSON County

	**Prevailing
OCCUPATIONAL TITLE	Hourly
	Rate
Carpenter	\$60.95
Millwright	
Pile Driver	
Electrician (Outside Lineman)	\$84.43
Lineman Operator	
Lineman - Tree Trimmer	
Groundman	
Groundman - Tree Trimmer	
Laborer	\$49.28
General Laborer	
Skilled Laborer	
Operating Engineer	\$58.78
Group I	
Group II	
Group III	
Group IV	
Truck Driver	\$50.64
Truck Control Service Driver	
Group I	
Group II	
Group III	
Group IV	

Use Heavy Construction Rates on Highway and Heavy construction in accordance with the classifications of construction work established in 8 CSR 30-3.040(3).

Use Building Construction Rates on Building construction in accordance with the classifications of construction work established in 8 CSR 30-3.040(2).

If a worker is performing work on a heavy construction project within an occupational title that is not listed on the Heavy Construction Rate Sheet, use the rate for that occupational title as shown on the Building Construction Rate Sheet.

*The Division of Labor Standards received fewer than 1,000 reportable hours for this occupational title. The public works contracting minimum wage is established for this occupational title using data provided by Missouri Economic Research and Information Center.

**The Prevailing Hourly Rate includes any applicable fringe benefit amounts for each occupational title as defined in Section 290.210 RSMo.

OVERTIME and HOLIDAYS

OVERTIME

For all work performed on a Sunday or a holiday, not less than twice (2x) the prevailing hourly rate of wages for work of a similar character in the locality in which the work is performed or the public works contracting minimum wage, whichever is applicable, shall be paid to all workers employed by or on behalf of any public body engaged in the construction of public works, exclusive of maintenance work.

For all overtime work performed, not less than one and one-half (1½) the prevailing hourly rate of wages for work of a similar character in the locality in which the work is performed or the public works contracting minimum wage, whichever is applicable, shall be paid to all workers employed by or on behalf of any public body engaged in the construction of public works, exclusive of maintenance work or contractual obligation. For purposes of this subdivision, **"overtime work"** shall include work that exceeds ten hours in one day and work in excess of forty hours in one calendar week; and

A thirty-minute lunch period on each calendar day shall be allowed for each worker on a public works project, provided that such time shall not be considered as time worked.

HOLIDAYS

January first; The last Monday in May; July fourth; The first Monday in September; November eleventh; The fourth Thursday in November; and December twenty-fifth;

If any holiday falls on a Sunday, the following Monday shall be considered a holiday.

SECTION 011000 – SUMMARY OF WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions and Division 1 Specification Sections apply to this Section.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

- A. The Project consists of HVAC System Upgrades
 - 1. Project Location: 651 Mulberry Street, Kansas City, Missouri.
 - 2. Owner: State of Missouri.
- B. Contract Documents, dated MARCH 21, 2023 were prepared for the Project by Insite Group, Inc.
- C. The Work consists of:
 - 1. Demolition of (29) existing air handling units and (26) condensing units.
 - 2. Replacement of (2) kitchen make-up air units.
 - 3. Providing (1) chiller and associated pump, hydronic piping, and specialties.
 - 4. Providing (14) new air handling units, (1) Blower Coil, (14) VAV boxes with hot water reheat, and (8) duct heating coils.
 - 5. Providing (2) new DX mini-splits.
 - 6. Providing (2) boilers and associated pumps, hydronic piping, natural gas piping, propane tank and piping, and specialties.
 - 7. Providing new Building Automation System to support new mechanical equipment.
- D. The Work will be constructed under a single prime contract.

1.3 WORK SEQUENCE

A. The Work will be conducted in phases. Refer to sheet M001 for general phasing sequence.

1.4 CONTRACTOR USE OF PREMISES

- A. General: During the construction period the Contractor shall have full use of the premises for construction operations, including use of the site. The Contractor's use of the premises limited only by the Owner's right to perform work or to retain other contractors on portions of the Project.
- B. Use of the Site: Limit use of the premises to work in areas indicated. Confine operations to areas within contract limits indicated. Do not disturb portions of the site beyond the areas in which the Work is indicated.

- 1. Owner Occupancy: Allow for Owner occupancy and use by the public.
- 2. Driveways and Entrances: Keep driveways and entrances serving the premises clear and available to the Owner, the Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
- C. Use of the Existing Building: Maintain the existing building in a weathertight condition throughout the construction period. Repair damage cause by construction operations. Take all precautions necessary to protect the building and its occupants during the construction period..

1.5 OCCUPANCY REQUIREMENTS

A. Full Owner Occupancy: The Owner will occupy the site and existing building during the entire construction period. Cooperate with the Owner during construction operations to minimize conflicts and facilitate owner usage. Perform the Work so as not to interfere with the Owner's operations.

1.6 OWNER-FURNISHED PRODUCTS

- A. The Owner will furnish equipment noted in the construction documents as "OWNER PROVIDED". The Work includes providing support systems to receive Owner's equipment, and mechanical and electrical connections.
 - 1. The Owner will arrange for and deliver necessary shop drawings, product data, and samples to the Contractor.
 - 2. The Owner will arrange and pay for delivery of Owner-furnished items according to the contractor's Construction Schedule.
 - 3. The Contractor is responsible for receiving, unloading and handling Owner furnished items at the site.
 - 4. Following delivery, the Contractor will inspect items delivered for damage. The Contractor shall not accept damaged items and shall notify the Owner of rejection of damaged items.
 - 5. If Owner-furnished items are damaged, defective, or missing, the Owner will arrange for replacement.
 - 6. The Owner will arrange for manufacturer's field services and for the delivery of manufacturer's warranties to the appropriate Contractor.
 - 7. The Contractor shall designate delivery dates of Owner-furnished items in the Contractor's Construction Schedule.
 - 8. The Contractor shall review shop drawings, product data and samples and return them to the Designer noting discrepancies or problems anticipated in use of the project.
 - 9. The Contractor is responsible for protecting Owner-furnished items from damage, including damage from exposure to the elements. The Contractor shall repair or replace items damaged as a result of his operations.

1.7 MISCELLANEOUS PROVISIONS

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 SCHEDULE OF PRODUCTS ORDERED IN ADVANCE

END OF SECTION 011000

SECTION 012100 – ALLOWANCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative and procedural requirements governing allowances.
 - 1. Certain items are specified in the Contract Documents by allowances. Allowances have been established in lieu of additional requirements and to defer selection of actual materials and equipment to a later date when additional information is available for evaluation. If necessary, additional requirements will be issued by Contract Change.
- B. Types of allowances include the following:
 - 1. Weather allowances.
- C. Related Sections include the following:
 - 1. Division 1 Section "Contract Modification Procedures" for procedures for submitting and handling Contract Changes for allowances.

1.3 WEATHER ALLOWANCE

- A. Included within the completion period for this project are a specified number of "bad weather" days (see Schedule of Allowances).
- B. The Contractor's progress schedule shall clearly indicate the bad weather day allowance as an "activity" or "activities". In the event weather conditions preclude performance of critical work activities for 50% or more of the Contractor's scheduled workday, that day shall be declared unavailable for work due to weather (a "bad weather" day) and charged against the above allowance. Critical work activities will be determined by review of the Contractor's current progress schedule.
- C. The Contractor's Representative and the Construction Representative shall agree monthly on the number of "bad weather" days to be charged against the allowance. This determination will be documented in writing and be signed by the Contractor and the Construction Representatives. If there is a failure to agree on all or part of the "bad weather" days for a particular month, that disagreement shall be noted on this written document and signed by each party's representative. Failure of the Contractor's representative to sign the "bad weather" day documentation after it is presented, with or without the notes of disagreement, shall constitute agreement with the "bad weather" day determination contained in that document.
- D. There will be no modification to the time of contract performance due solely to the failure to deplete the "bad weather" day allowance.

E. Once this allowance is depleted, a no cost Contract Change time extension will be executed for "bad weather" days, as defined above, encountered during the remainder of the Project.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF ALLOWANCES

A. Weather Allowance: Included within the completion period for this project 10 "bad weather" days.

END OF SECTION 012100

SECTION 012600 – CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. This Section specifies administrative and procedural requirements for handling and processing Contract Modifications.
- B. Related Sections include the following:
 - 1. Division 1, Section 012100 "Allowances" for procedural requirements for handling and processing Allowances.
 - 2. Division 1, Section 012200 "Unit Prices" for administrative requirements for using Unit Prices.
 - 3. Division 0, Section 007213, Article 3.1 "Acceptable Substitutions" for administrative procedures for handling Requests for Substitutions made after Contract award.
 - 4. Division 0, Section 007213, Article 4.0 "Changes in the Work" for Contract Change requirements.

1.3 REQUESTS FOR INFORMATION

- A. In the event that the Contractor or Subcontractor, at any tier, determines that some portion of the Drawings, Specifications, or other Contract Documents requires clarification or interpretation, the Contractor shall submit a "Request for Information" (RFI) in writing to the Designer. A RFI may only be submitted by the Contractor and shall only be submitted on the RFI forms provided by the Owner. The Contractor shall clearly and concisely set forth the issue for which clarification or interpretation is sought and why a response is needed. In the RFI, the Contractor shall set forth an interpretation or understanding of the requirement along with reasons why such an understanding was reached.
- B. Responses to RFI shall be issued within ten (10) working days of receipt of the Request from the Contractor unless the Designer determines that a longer time is necessary to provide an adequate response. If a longer time is determined necessary by the Designer, the Designer will, within five (5) working days of receipt of the request, notify the Contractor of the anticipated response time. If the Contactor submits a RFI on a time sensitive activity on the current project schedule, the Contractor shall not be entitled to any time extension due to the time it takes the Designer to respond to the request provided that the Designer responds within the ten (10) working days set forth above.
- C. Responses from the Designer will not change any requirement of the Contract Documents. In the event the Contractor believes that a response to a RFI will cause a change to the requirements of the Contract Document, the Contractor shall give written

notice to the Designer requesting a Contract Change for the work. Failure to give such written notice within ten (10) working days, shall waive the Contractor's right to seek additional time or cost under Article 4, "Changes in the Work" of the General Conditions.

1.4 MINOR CHANGES IN THE WORK

A. Designer will issue supplemental instructions authorizing Minor Changes in the Work, not involving adjustment to the Contract Amount or the Contract Time, on "Designer's Supplemental Instructions" (DSI).

1.5 PROPOSAL REQUESTS

- A. The Designer or Owner Representative will issue a detailed description of proposed Changes in the Work that may require adjustment to the Contract Amount or the Contract Time. The proposed Change Description will be issued using the "Request for Proposal" (RFP) form. If necessary, the description will include supplemental or revised Drawings and Specifications.
 - 1. Proposal Requests issued by the Designer or Owner Representative are for information only. Do not consider them instructions either to stop work in progress or to execute the proposed change.
 - 2. Within ten (10) working days after receipt of Proposal Request, submit a proposal for the cost adjustments to the Contract Amount and the Contract Time necessary to execute the Change. The Contractor shall submit his proposal on the appropriate Contract Change Detailed Breakdown form. Subcontractors may use the appropriate Contract Change Detailed Breakdown form or submit their proposal on their letterhead provided the same level of detail is included. All proposals shall include:
 - a. A detailed breakdown of costs per Article 4.1 of the General Conditions.
 - b. If requesting additional time per Article 4.2 of the General Conditions, include an updated Contractor's Construction Schedule that indicates the effect of the Change including, but not limited to, changes in activity duration, start and finish times, and activity relationship.

1.6 CONTRACT CHANGE PROCEDURES

A. On Owner's approval of a Proposal Request, the Designer or Owner Representative will issue a Contract Change for signatures of Owner and Contractor on the "Contract Change" form.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 REFERENCED FORMS

- A. The following forms can be found on our website at <u>https://oa.mo.gov/facilities/vendor-links/architectengineering-forms</u> or <u>https://oa.mo.gov/facilities/vendor-links/contractor-forms</u>:
 - 1. Request for Information
 - 2. Designer's Supplemental Instructions
 - 3. Request for Proposal
 - 4. Contract Change
 - 5. Contract Change Detailed Breakdown SAMPLES
 - 6. Contract Change Detailed Breakdown General Contractor (GC)
 - 7. Contract Change Detailed Breakdown Subcontractor (SUB)

END OF SECTION 012600

SECTION 013100 – COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative provisions for coordinating construction operations on Projects including, but not limited to, the following:
 - 1. Coordination Drawings.
 - 2. Administrative and supervisory personnel.
 - 3. Project meetings.
- B. Each Contractor shall participate in coordination requirements. Certain areas of responsibility will be assigned to a specific Contractor.
- C. Related Sections include the following:
 - 1. Division 1, Section 013200 "Schedules" for preparing and submitting Contractor's Construction Schedule.
 - 2. Articles 1.8.B and 1.8.C of Section 007213 "General Conditions" for coordinating meetings onsite.
 - 3. Article 5.4.H of Section 007213 "General Conditions" for coordinating Closeout of the Contract.

1.3 COORDINATION

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations included in different Sections, which depend on each other for proper installation, connection, and operation.
- B. Coordination: Each Contractor shall coordinate its construction operations with those of other contractors and entities to ensure efficient and orderly installation of each part of the Work. Each Contractor shall coordinate its operations with operations included in different Sections that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components with other Contractors to ensure maximum accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.

- 4. Where availability of space is limited, coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair of all components including mechanical and electrical.
- C. Prepare memoranda for distribution to each party involved outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 - 1. Prepare similar memoranda for Owner and separate Contractors if coordination of their Work is required.
- D. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities and activities of other Contractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of Contractor's Construction Schedule.
 - 2. Preparation of the Schedule of Values.
 - 3. Installation and removal of temporary facilities and controls.
 - 4. Delivery and processing of submittals.
 - 5. Progress meetings.
 - 6. Preinstallation conferences.
 - 7. Startup and adjustment of systems.
 - 8. Project Closeout activities.
- E. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials.
 - 1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. Refer to other Sections for disposition of salvaged materials that are designated as Owner's property.

1.4 SUBMITTALS

- A. Coordination Drawings: Prepare Coordination Drawings if limited space availability necessitates maximum utilization of space for efficient installation of different components or if coordination is required for installation of products and materials fabricated by separate entities.
- B. Key Personnel Names: Within fifteen (15) work days of starting construction operations, submit a list of key personnel assignments including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers including home and office telephone numbers. Provide names, addresses, and telephone numbers of individuals assigned as standbys in the absence of individuals assigned to Project.
 - 1. Post copies of list in Project meeting room, in temporary field office, and by each temporary telephone. Keep list current at all times.

1.5 PROJECT MEETINGS

- A. Preconstruction Conference: The Owner's Construction Representative will schedule a Pre-Construction Meeting prior to beginning of construction. Contractor shall conduct a preconstruction conference.
 - 1. Attendees: Authorized representatives of Owner, Owner's Commissioning Authority, , Construction Manager, Engineer, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 2. Agenda: Discuss items of significance that could affect progress, including the following:
 - a. Responsibilities and personnel assignments.
 - b. Tentative construction schedule.
 - c. Phasing.
 - d. Critical work sequencing and long lead items.
 - e. Designation of key personnel and their duties.
 - f. Lines of communications.
 - g. Use of web-based Project software.
 - h. Procedures for processing field decisions and Change Orders.
 - i. Procedures for RFIs.
 - j. Procedures for testing and inspecting.
 - k. Procedures for processing Applications for Payment.
 - 1. Distribution of the Contract Documents.
 - m. Submittal procedures.
 - n. Preparation of Record Documents.
 - o. Use of the premises and existing building.
 - p. Work restrictions.
 - q. Working hours.
 - r. Owner's occupancy requirements.
 - s. Responsibility for temporary facilities and controls.
 - t. Procedures for moisture and mold control.
 - u. Procedures for disruptions and shutdowns.
 - v. Construction waste management and recycling.
 - w. Parking availability.
 - x. Office, work, and storage areas.
 - y. Equipment deliveries and priorities.
 - z. First aid.
 - aa. Security.
 - bb. Progress cleaning.
 - 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.
 - 4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
 - 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

- B. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity when required by other sections and when required for coordination with other construction.
 - 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Engineer, Construction Manager, and Owner's Commissioning Authority of scheduled meeting dates.
 - 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 - a. Contract Documents.
 - b. Options.
 - c. Related RFIs.
 - d. Related Change Orders.
 - e. Purchases.
 - f. Deliveries.
 - g. Submittals.
 - h. Possible conflicts.
 - i. Compatibility requirements.
 - j. Time schedules.
 - k. Weather limitations.
 - 1. Manufacturer's written instructions.
 - m. Warranty requirements.
 - n. Compatibility of materials.
 - o. Temporary facilities and controls.
 - p. Space and access limitations.
 - q. Regulations of authorities having jurisdiction.
 - r. Testing and inspecting requirements.
 - s. Installation procedures.
 - t. Coordination with other work.
 - u. Required performance results.
 - v. Protection of adjacent work.
 - w. Protection of construction and personnel.
 - 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.
 - 4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
 - 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
- C. Progress Meetings: Conduct progress meetings at biweekly or monthly intervals (as deemed appropriate by owner depending on the level of work occurring during that phase).
 - 1. Coordinate dates of meetings with preparation of payment requests.
 - 2. Attendees: In addition to representatives of Owner, Owner's Commissioning Authority, Construction Manager, and Engineer, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or

performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

- 3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 1) Review schedule for next period.
 - b. Review present and future needs of each entity present, including the following:
 - 1) Interface requirements.
 - 2) Sequence of operations.
 - 3) Status of submittals.
 - 4) Status of sustainable design documentation.
 - 5) Deliveries.
 - 6) Off-site fabrication.
 - 7) Access.
 - 8) Site use.
 - 9) Temporary facilities and controls.
 - 10) Progress cleaning.
 - 11) Quality and work standards.
 - 12) Status of correction of deficient items.
 - 13) Field observations.
 - 14) Status of RFIs.
 - 15) Status of Proposal Requests.
 - 16) Pending changes.
 - 17) Status of Change Orders.
 - 18) Pending claims and disputes.
 - 19) Documentation of information for payment requests.
- 4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 - a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100

SECTION 013200 – SCHEDULE – BAR CHART

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions, Bid Form, and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. This Section includes requirements for a Bar Chart Schedule for the project construction activities, schedule of submittals, and schedule for testing.
- PART 2 PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 SUBMITTAL PROCEDURES

- A. The Contractor shall submit to the Designer, within ten (10) working days following the Notice to Proceed, a Progress Schedule including Schedule of Values showing the rate of progress the Contractor agrees to maintain and the order in which he proposed to carry out the various phases of Work. No payments shall be made to the Contractor until the Progress Schedule has been approved by the Owner.
 - 1. The Schedule of Values must have the following line items included with the value of the item as indicated below:
 - a. O&M's (Owner's Manual)
 - 1) \$1,000,000.00 (One million) and under -2% of the total contract amount
 - 2) Over 1,000,000.00 (One million) 1% of the total contract amount
 - b. Close Out Documents
 - 1) \$1,000,000.00 (One million) and under -2% of the total contract amount
 - 2) Over 1,000,000.00 (One million) 1% of the total contract amount
 - c. General Conditions
 - 1) No more than 10%
- B. The Contractor shall submit an updated Schedule for presentation at each Monthly Progress Meeting. The Schedule shall be updated by the Contractor as necessary to reflect the current Schedule and its relationship to the original Schedule. The updated Schedule shall reflect any changes in the logic, sequence, durations, or completion date. Payments to the Contractor shall be suspended if the Progress Schedule is not adequately updated to reflect actual conditions.
- C. The Contractor shall submit Progress Schedules to Subcontractors to permit coordinating their Progress Schedules to the general construction Work. The Contractor shall coordinate preparation and processing of Schedules and reports with performance of other construction activities.

3.2 CONSTRUCTION PROGRESS SCHEDULE – BAR CHART SCHEDULE

- A. Bar-Chart Schedule: The Contractor shall prepare a comprehensive, fully developed, horizontal bar chart-type Contractor's Construction Schedule. The Contractor for general construction shall prepare the Construction Schedule for the entire Project. The Schedule shall show the percentage of work to be completed at any time, anticipated monthly payments by Owner, as well as significant dates (such as completion of excavation, concrete foundation work, underground lines, superstructure, rough-ins, enclosure, hanging of fixtures, etc.) which shall serve as check points to determine compliance with the approved Schedule. The Schedule shall also include an activity for the number of "bad" weather days specified in Section 012100 Allowances.
 - 1. The Contractor shall provide a separate time bar for each significant construction activity. Provide a continuous vertical line to identify the first working day of each week.
 - a. If practical, use the same Schedule of Values breakdown for schedule time bars.
 - 2. The Contractor shall provide a base activity time bar showing duration for each construction activity. Each bar is to indicate start and completion dates for the activity. The Contractor is to place a contrasting bar below each original schedule activity time for indicating actual progress and planned remaining duration for the activity.
 - 3. The Contractor shall prepare the Schedule on a minimal number of separate sheets to readily show the data for the entire construction period.
 - 4. Secure time commitments for performing critical elements of the Work from parties involved. Coordinate each element on schedule with other construction activities. Include minor elements involved in the overall sequence of the Work. Show each activity in proper sequence. Indicate graphically the sequences necessary for completion of related portions of the Work.
 - 5. Coordinate the Contractor's Construction Schedule with the Schedule of Values, list of subcontracts, Submittal Schedule, progress reports, payment requests, and other required schedules and reports.
 - 6. Indicate the Intent to Award and the Contract Substantial Completion dates on the schedule.
- B. Phasing: Provide notations on the schedule to show how the sequence of the Work is affected by the following:
 - 1. Requirement for Phased completion
 - 2. Work by separate Contractors
 - 3. Work by the Owner
 - 4. Pre-purchased materials
 - 5. Coordination with existing construction
 - 6. Limitations of continued occupancies
 - 7. Un-interruptible services
 - 8. Partial Occupancy prior to Substantial Completion
- 9. Site restrictions
- 10. Provisions for future construction
- 11. Seasonal variations
- 12. Environmental control
- C. Work Stages: Use crosshatched bars to indicate important stages of construction for each major portion of the Work. Such stages include, but are not necessarily limited to, the following:
 - 1. Subcontract awards
 - 2. Submittals
 - 3. Purchases
 - 4. Mockups
 - 5. Fabrication
 - 6. Sample testing
 - 7. Deliveries
 - 8. Installation
 - 9. Testing
 - 10. Adjusting
 - 11. Curing
 - 12. Startup and placement into final use and operation
- D. Area Separations: Provide a separate time bar to identify each major area of construction for each major portion of the Work. For the purposes of this Article, a "major area" is a story of construction, a separate building, or a similar significant construction element.
 - 1. Indicate where each construction activity within a major area must be sequenced or integrated with other construction activities to provide for the following:
 - a. Structural completion.
 - b. Permanent space enclosure
 - c. Completion of mechanical installation
 - d. Completion of the electrical portion of the Work
 - e. Substantial Completion

3.3 SCHEDULE OF SUBMITTALS

- A. Upon acceptance of the Construction Progress Schedule, prepare and submit a complete schedule of submittals. Coordinate the submittal schedule with Section 013300 SUBMITTALS, the approved Construction Progress Schedule, list of subcontracts, Schedule of Values and the list of products.
- B. Prepare the schedule in chronological order. Provide the following information
 - 1. Scheduled date for the first submittal

- 2. Related Section number
- 3. Submittal category
- 4. Name of the Subcontractor
- 5. Description of the part of the Work covered
- 6. Scheduled date for resubmittal
- 7. Scheduled date for the Designer's final release or approval
- C. Distribution: Following the Designer's response to the initial submittal schedule, print and distribute copies to the Designer, Owner, subcontractors, and other parties required to comply with submittal dates indicated.
 - 1. Post copies in the Project meeting room and temporary field office.
 - 2. When revisions are made, distribute to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned part of the Work and are no longer involved in construction activities.
- D. Schedule Updating: Revise the schedule after each meeting or other activity where revisions have been recognized or made. Issue the updated schedule concurrently with the report of each meeting.

3.4 SCHEDULE OF INSPECTIONS AND TESTS

- A. Prepare a schedule of inspections, tests, and similar services required by the Contract Documents. Submit the schedule with (15) days of the date established for commencement of the Contract Work. The Contractor is to notify the testing agency at least (5) working days in advance of the required tests unless otherwise specified.
- B. Form: This schedule shall be in tabular form and shall include, but not be limited to, the following:
 - 1. Specification Section number
 - 2. Description of the test
 - 3. Identification of applicable standards
 - 4. Identification of test methods
 - 5. Number of tests required
 - 6. Time schedule or time span for tests
 - 7. Entity responsible for performing tests
 - 8. Requirements for taking samples
 - 9. Unique characteristics of each service
- C. Distribution: Distribute the schedule to the Owner, Architect, and each party involved in performance of portions of the Work where inspections and tests are required.

END OF SECTION 013200

SECTION 013300 – SUBMITTALS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions, Bid Form, and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative and procedural requirements for submittals required for performance of the Work including the following:
 - 1. Shop Drawings
 - 2. Product Data
 - 3. Samples
 - 4. Quality Assurance Submittals
 - 5. Construction Photographs
 - 6. Operating and Maintenance Manuals
 - 7. Warranties
- B. Administrative Submittals: Refer to General and Supplementary Conditions other applicable Division 1 Sections and other Contract Documents for requirements for administrative submittals. Such submittals include, but are not limited to, the following:
 - 1. Construction Progress Schedule including Schedule of Values
 - 2. Performance and Payment Bonds
 - 3. Insurance Certificates
 - 4. Applications for Payment
 - 5. Certified Payroll Reports
 - 6. Partial and Final Receipt of Payment and Release Forms
 - 7. Affidavit Compliance with Prevailing Wage Law
 - 8. Record Drawings
 - 9. Notifications, Permits, etc.
- C. The Contractor is obliged and responsible to check all shop drawings and schedules to assure compliance with contract plans and specifications. The Contractor is responsible for the content of the shop drawings and coordination with other contract work. Shop drawings and schedules shall indicate, in detail, all parts of an Item or Work including erection and setting instructions and integration with the Work of other trades.
- D. The Contractor shall at all times make a copy, of all approved submittals, available on site to the Construction Representative.

1.3 SUBMITTAL PROCEDURES

- A. The Contractor shall comply with the General and Supplementary Conditions and other applicable sections of the Contract Documents. The Contractor shall submit, with such promptness as to cause no delay in his work or in that of any other contractors, all required submittals indicated in Part 3.1 of this section and elsewhere in the Contract Documents. Coordinate preparation and processing of submittals with performance of construction activities. Transmit each submittal sufficiently in advance of performance of related construction activities to avoid delay.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Coordinate transmittal of different types of submittals for related elements of the Work so processing will not be delayed by the need to review submittals concurrently for coordination.
 - a. The Designer reserves the right to withhold action on a submittal requiring coordination with other submittals until all related submittals are received.
- B. Each drawing and/or series of drawings submitted must be accompanied by a letter of transmittal giving a list of the titles and numbers of the drawings. Each series shall be numbered consecutively for ready reference and each drawing shall be marked with the following information:
 - 1. Date of Submission
 - 2. Name of Project
 - 3. Location
 - 4. Section Number of Specification
 - 5. State Project Number
 - 6. Name of Submitting Contractor
 - 7. Name of Subcontractor
 - 8. Indicate if Item is submitted as specified or as a substitution

1.4 SHOP DRAWINGS

- A. Comply with the General Conditions, Article 3.2.
- B. The Contractor shall submit newly prepared information drawn accurately to scale. Highlight, encircle, or otherwise indicate deviations from the Contract Documents. Do not reproduce Contract Documents or copy standard information as the basis of Shop Drawings. Standard information prepared without specific reference to the Project is not a Shop Drawing.
- C. Shop Drawings include fabrication and installation drawings, setting diagrams, schedules, patterns, templates, and similar drawings including the following information:
 - 1. Dimensions
 - 2. Identification of products and materials included by sheet and detail number

- 3. Compliance with specified standards
- 4. Notation of coordination requirements
- 5. Notation of dimensions established by field measurement
- 6. Sheet Size: Except for templates, patterns and similar full-size Drawings, submit Shop Drawings on sheets at least 8¹/₂"x11" but no larger than 36"x48".

1.5 PRODUCT DATA

- A. The Contractor shall comply with the General Conditions, Article 3.2.
- B. The Contractor shall collect Product Data into a single submittal for each element of construction or system. Product Data includes printed information, such as manufacturer's installation instructions, catalog cuts, standard color charts, roughing-in diagrams and templates, standard wiring diagrams, and performance curves.
 - 1. Mark each copy to show applicable choices and options. Where printed Product Data includes information on several products that are not required, mark copies to indicate the applicable information including the following information:
 - a. Manufacturer's printed recommendations
 - b. Compliance with Trade Association standards
 - c. Compliance with recognized Testing Agency standards
 - d. Application of Testing Agency labels and seals
 - e. Notation of dimensions verified by field measurement
 - f. Notation of coordination requirements
 - 2. Do not submit Product Data until compliance with requirements of the Contract Documents has been confirmed.

1.6 SAMPLES

- A. The Contractor shall comply with the General Conditions, Article 3.2.
- B. The Contractor shall submit full-size, fully fabricated samples, cured and finished as specified, and physically identical with the material or product proposed. Samples include partial sections of manufactured or fabricated components, cuts or containers of materials, color range sets, and swatches showing color, texture, and pattern.
 - 1. The Contractor shall mount or display samples in the manner to facilitate review of qualities indicated. Prepare samples to match the Designer's sample including the following:
 - a. Specification Section number and reference
 - b. Generic description of the Sample
 - c. Sample source
 - d. Product name or name of the Manufacturer
 - e. Compliance with recognized standards

- f. Availability and delivery time
- 2. The Contractor shall submit samples for review of size, kind, color, pattern, and texture. Submit samples for a final check of these characteristics with other elements and a comparison of these characteristics between the final submittal and the actual component as delivered and installed.
 - a. Where variation in color, pattern, texture, or other characteristic is inherent in the material or product represented, submit at least three (3) multiple units that show approximate limits of the variations.
 - b. Refer to other Specification Sections for requirements for samples that illustrate workmanship, fabrication techniques, details of assembly, connections, operation, and similar construction characteristics.
 - c. Refer to other Sections for samples to be returned to the Contractor for incorporation in the Work. Such samples must be undamaged at time of use. On the transmittal, indicate special requests regarding disposition of sample submittals.
 - d. Samples not incorporated into the Work, or otherwise designated as the Owner's property, are the property of the Contractor and shall be removed from the site prior to Substantial Completion.
- 3. Field samples are full-size examples erected onsite to illustrate finishes, coatings, or finish materials and to establish the Project standard.
 - a. The Contractor shall comply with submittal requirements to the fullest extent possible. The Contractor shall process transmittal forms to provide a record of activity.

1.7 QUALITY ASSURANCE DOCUMENTS

- A. The Contractor shall comply with the General Conditions, Article 3.2
- B. The Contractor shall submit quality control submittals including design data, certifications, manufacturer's instructions, manufacturer's field reports, and other quality-control submittals as required under other Sections of the Specifications.
- C. Certifications: Where other Sections of the Specifications require certification that a product, material, or installation complies with specified requirements, submit a notarized certification from the Manufacturer certifying compliance with specified requirements.
 - 1. Signature: Certification shall be signed by an officer of the Manufacturer or other individual authorized to contractually bind the Company.
- D. Inspection and Test Reports: The Contractor shall submit the required inspection and test reports from independent testing agencies as specified in this Section and in other Sections of the Contract Documents.
- E. Construction Photographs: The Contractor shall submit record construction photographs as specified in this Section and in other Sections of the Contract Documents.
 - 1. The Contractor shall submit two (2) sets of prints, black and white, glossy; 8"x10" size; mounted on 8½"x11" soft card stock with left edge binding margin for 3-hole punch.

- 2. The Contractor shall identify each photograph with project name, location, number, date, time, and orientation.
- 3. The Contractor shall submit progress photographs monthly unless specified otherwise. Photographs shall be taken one (1) week prior to submitting.
- 4. The Contractor shall take four (4) site photographs from differing directions and a minimum of five (5) interior photographs indicating the relative progress of the Work.

1.8 OPERATING AND MAINTENANCE MANUALS AND WARRANTIES

A. The Contractor shall submit all required manufacturer's operating instructions, maintenance/service manuals, and warranties in accordance with the General Conditions, Article 3.5, and Supplementary Conditions along with this and other Sections of the Contract Documents.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 REQUIRED SUBMITTALS

A. Contractor shall submit the following information for materials and equipment to be provided under this contract.

SECTION	TITLE	CATEGORY
013200	Schedules	Construction Schedule
013200	Schedules	Schedule of Values
013200	Schedules	List of Subcontractors
013200	Schedules	Major Material Suppliers
230523	General Duty Valves	Product Data
230553	Identification for HVAC Piping and Equipment	Product Data
230713	Duct Insulation	Product Data
230719	HVAC Equipment Insulation	Product Data
230910	Variable Frequency Drives	Product Data
231123	Facility Natural Gas Piping	Product Data
232113	Hydronic Piping	Product Data
232113.13	Underground Hydronic Piping	Product Data
232116	Hydronic Piping Specialties	Product Data

232513	Water Treatment	Product Data
233113	Metal Ducts	Product Data
233113	Metal Ducts	Shop Drawings
233300	Air Duct Acessories	Product Data
233600	Air Terminal Units	Product Data
235216	Condensing Boilers	Product Data
235216	Condensing Boilers	Shop Drawings
235216	Condensing Boilers	Operation / Maintenance Manual
235216	Condensing Boilers	Warranty
236426.13	Air Cooled Chiller	Product Data
237313.13	Indoor Air Handling Unit	Product Data
237313.13	Indoor Air Handling Unit	Operation / Maintenance Manual
237313.13	Indoor Air Handling Unit	Warranty
237313.16	Indoor Semi-Custom Air Handling Units	Product Data
237313.16	Indoor Semi-Custom Air Handling Units	Operation / Maintenance Manual
237313.16	Indoor Semi-Custom Air Handling Units	Warranty
237423.13	Heating-Only Make Up Air Unit	Product Data
237423.13	Heating-Only Make Up Air Unit	Operation / Maintenance Manual
237423.13	Heating-Only Make Up Air Unit	Warranty
238123	Split-System Air Conditioners	Product Data
238123	Split-System Air Conditioners	Operation / Maintenance Manual
238123	Split-System Air Conditioners	Warranty
238219	Fan Coil Units	Product Data
250000	Building Automaiton System	Product Data
250000	Building Automaiton System	Shop Drawings
260519	Low Voltage Electrical Conductors and Cables	Product Data
260523	Contorl Voltage Electrical Power Cables	Product Data
260526	Grounding and Bonding for Electrical Systems	Product Data
260533	Raceways and Boxes for Electrical Systems	Product Data
260543	Underground Ducts and Raceways	Product Data
260544	Sleeves and Sleeve Seals	Product Data
260553	Identification for Electrical Systems	Product Data

END OF SECTION 013300

SECTION 013513.16 - SITE SECURITY AND HEALTH REQUIREMENTS (DOC)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions, Bid Form, and other Division 1 Specification Sections apply to this Section.

1.2 SUBMITTALS

- A. List of required submittals:
 - 1. Materials Safety Data Sheets for all hazardous materials to be brought onsite.
 - 2. Schedule of proposed shutdowns, if applicable.
 - 3. Revise list to include all required submittals.
 - 4. A list of the names of all employees who will submit fingerprints for a background check, and the signed privacy documents identified below for each employee.
 - 5. Tuberculin skin test results for all employees required to be tested as set forth below.

PART 2 - PRODUCTS (Not Applicable) PART 3 - EXECUTION

3.1 ACCESS TO THE SITE

- A. The Contractor shall arrange with Facility Representatives to establish procedures for the controlled entry of workers and materials into the work areas at the Facility.
- B. The Contractor shall establish regular working hours with Facility Representatives. The Contractor must report changes in working hours or overtime to Facility Representatives and obtain approval twenty-four (24) hours ahead of time. The Contractor shall report emergency overtime to Facility Representatives as soon as it is evident that overtime is needed. The Contractor must obtain approval from Facility Representatives for all work performed after dark.
- C. The Contractor shall provide the name and phone number of the Contractor's employee or agent who is in charge onsite; this individual must be able to be contacted in case of emergency. The Contractor must be able to furnish names and address of all employees upon request.
- D. The Contractor shall provide Facility Representatives notice twenty-four (24) hours prior to any possible vehicle entry and/or required escort. The Contractor shall maintain a time log of any delays in gaining entrance to the Facility due to lack of an escort, which is to be submitted monthly with the Contractor's pay request materials. The purpose of this log is to establish a basis for a contract change, if required. The log shall contain the date and time of delay, date and time of request of entry, workers delayed (name and occupation), and name of the Facility Representative to whom the request was made, if possible. Any delay in entry must be

validated by sallyport and pass office personnel at the Facility. Only delays greater than thirty (30) minutes will be considered for a contract change. A 30-minute delay upon arrival with a vehicle to enter the sallyport should be expected.

3.2 RULES OF THE FACILITY

- A. The Contractor and its workers shall observe the following rules:
 - 1. There shall be no fraternization with inmates.
 - 2. No intoxicating beverages or illegal drugs shall be brought onto Facility grounds.
 - 3. No firearms, other weapons, or explosives shall be carried onto Facility grounds.
 - 4. No prescription drugs above one day's dosage shall be carried on Facility grounds.
 - 5. Any vehicle or individual is subject to search at any time while on Facility grounds.
 - 6. The vehicles of the Contractor and its workers shall be locked whenever unattended.
 - 7. All tools and equipment shall be tightly secured during non-working hours in the Contractor's storage trailer or assigned area.
 - 8. The Facility will not be responsible for the Contractor's tools, equipment, or materials. The Contractor shall keep and maintain a current tool inventory. The tool inventory shall be made available to Facility Representatives and the Owner upon request.
 - 9. The Contractor shall report any missing tools to Facility Representatives immediately.
 - 10. Smoking shall be permitted only in accordance with the regulations of the Facility.
 - 11. Possession or use of smokeless tobacco or smokeless non-tobacco alternatives is strictly prohibited.
- B. All workers shall be required to sign an acknowledgement of receipt of these rules.

3.3 SECURITY CLEARANCES AND RESTRICTIONS

- A. DOC SECURITY CLEARANCE REQUIREMENTS
 - 1. [Security restrictions may vary between different Facilities. Verify and revise paragraph below if Facility requirement for construction personnel differ.] Prior to the commencement of any onsite work, the Contractor shall submit a list containing the name, date of birth, and Missouri driver's license number or social security number of all construction personnel to the Missouri Department of Corrections for the purpose of obtaining security clearances. The required information shall be submitted at the pre-construction meeting, or as otherwise directed by Department of Corrections' personnel. Any construction personnel with pending warrants or felony convictions within the last five (5) years or other offenses deemed to create a security risk by Department of Corrections shall not be allowed onsite. The Department of Corrections reserves the right to refuse admission to any individual they feel may be detrimental to the security of the Facility.

3.4 FIRE PROTECTION, SAFETY, AND HEALTH CONTROLS

A. The Contractor shall take all necessary precautions to guard against and eliminate possible fire hazards.

- 1. Onsite burning is prohibited.
- 2. The Contractor shall store all flammable or hazardous materials in proper containers located outside the buildings or offsite, if possible.
- 3. The Contractor shall provide and maintain, in good order, during construction fire extinguishers as required by the National Fire Protection Association. In areas of flammable liquids, asphalt, or electrical hazards, 15-pound carbon dioxide or 20-pound dry chemical extinguishers shall be provided.
- B. The Contractor shall not obstruct streets or walks without permission from the Owner's Construction Representative and Facility Representatives.
- C. The Contractor's personnel shall not exceed the speed limit of 15 mph while at the Facility unless otherwise posted.
- D. The Contractor shall take all necessary, reasonable measures to reduce air and water pollution by any material or equipment used during construction. The Contractor shall keep volatile wastes in covered containers, and shall not dispose of volatile wastes or oils in storm or sanitary drains.
- E. The Contractor shall keep the project site neat, orderly, and in a safe condition at all times. The Contractor shall immediately remove all hazardous waste, and shall not allow rubbish to accumulate. The Contractor shall provide onsite containers for collection of rubbish and shall dispose of it at frequent intervals during the progress of the Work.
- F. Fire exits, alarm systems, and sprinkler systems shall remain fully operational at all times, unless written approval is received from the Owner's Construction Representative and the appropriate Facility Representative at least twenty-four (24) hours in advance. The Contractor shall submit a written time schedule for any proposed shutdowns.
- G. For all hazardous materials brought onsite, Material Safety Data Sheets shall be on site and readily available upon request at least a day before delivery.
- H. The Contractor's workers shall not be under the influence of any intoxicating substances while on the Facility premises.

3.5 TUBERCULOSIS TESTING REQUIREMENTS

- A. All workers who will be in the confines of the Facility for more than ten (10) consecutive working days must provide proof of a negative tuberculin skin test. The test results must be no more than six (6) months old at the commencement of construction. The Contractor or the worker, not the Owner, shall pay the cost of the test.
- B. The Contractor shall submit to Facility Representatives current tuberculin skin test results for all workers who are required to have such a test in accordance with paragraph A above. If the contract period extends for more than twelve (12) months, the Contractor must provide new test results for all workers prior to the anniversary of the contract commencement date.
- C. Any worker required to have a tuberculin skin test under paragraph A above who fails or refuses to do so will be denied admission to the facility until such time as proof of the test results are provided.

- D. If any worker has a tuberculin skin test with positive results, the worker shall be denied access to the facility until the worker produces a certification from a physician licensed to practice in the State of Missouri that the worker does not have infectious tuberculosis.
- E. The Contractor shall not be entitled to any additional time or compensation if any of its workers are denied access to the facility because of failure to produce negative tuberculin skin test results.
- F. Failure or refusal of the Contractor to maintain and produce the required tuberculin skin test records shall be a material breach of this contract, which shall subject the Contractor to a declaration of default.

3.6 PREA FOR CONTRACTORS AND EMPLOYEES

- A. The contractor and all of the contractor's employees and agents providing services in any Department of Corrections institution must be at least 18 years of age. A Missouri Uniform Law Enforcement System (MULES) check or other background investigation may be required on the contractor, the contractor's employees and agents before they are allowed entry into the institution. The contractor, its employees and agents understand and agree that the Department may complete criminal background records checks annually for the contractor and the contractor's employees and agents that have the potential to have contact with inmates.
- B. The institution shall have the right to deny access into the institution for the contractor and any of the contractor's employees and agents for any reason, at the discretion of the institution.
- C. The contractor, its employees and agents under active federal or state felony or misdemeanor supervision must receive written division director approval prior to providing services pursuant to a Department contract. Similarly, contractors/employees/agents with prior felony convictions and not under active supervision must receive written division director approval in advance.
- D. The contractor, its employees and agents shall at all times observe and comply with all applicable state statutes, Department rules, regulations, guidelines, internal management policies and procedures, and general orders of the Department that are applicable, regarding operations and activities in and about all Department property. Furthermore, the contractor, its employees and agents, shall not obstruct the Department or any of its designated officials from performing their duties in response to court orders or in the maintenance of a secure and safe correctional environment. The contractor shall comply with the Department's policies and procedures relating to employee conduct.
 - 1. The Department has a zero tolerance policy for any form of sexual misconduct to include staff/contractor/volunteer on offender, or offender on offender, sexual harassment, sexual assault, sexual abuse and consensual sex.
 - a. Any contractor or contractor's employee or agent who witnesses any form of sexual misconduct must immediately report it to the warden of the institution. If a contractor or contractor's employee or agent fails to report or knowingly condones sexual harassment or sexual contact with or between offenders, the Department may cancel the contract, or at the Department's sole discretion, require the contractor to remove the employee/agent from providing services under the contract.

- b. Any contractor or contractor's employee or agent who engages in sexual abuse shall be prohibited from entering the institution and shall be reported to law enforcement agencies and licensing bodies, as appropriate.
- E. The contractor, its employees and agents shall not interact with the offenders except as is necessary to perform the requirements of the contract. The contractor, its employees and agents shall not give anything to nor accept anything from the offenders except in the normal performance of the contract.
- F. If any contractor or contractor's employee or agent is denied access into the institution for any reason or is denied approval to provide service to the Department for any reason stated herein, it shall not relieve the contractor of any requirements of the contract. If the contractor is unable to perform the requirements of the contract for any reason, the contractor shall be considered in breach.

3.7 DISRUPTION OF UTILITIES

- A. The Contractor shall give a minimum of seventy-two (72) hours written notice to the Construction Representative and the Facility Representative before disconnecting electric, gas, water, fire protection, or sewer service to any building.
- B. The Contractor shall give a minimum of seventy-two (72) hours written notice to the Construction Representative and Facility Representative before closing any access drives, and shall make temporary access available, if possible. The Contractor shall not obstruct streets, walks, or parking

3.8 CELL PHONES AND ELECTRONIC DEVICES

- A. Cell Phones, pagers, smart watches (that can send/receive messages), fitness wrist bands (that can send/receive messages) or other electronic devices are not permitted.
 - 1. Contractors, repairpersons, or information technology services department staff may be permitted to bring in a cell phone and portable wireless router (Wi-Fi, MiFi, etc.) if approved by the Chief Administrative Officer (CAO) when the phone is necessary to complete job duties relating to repairs on a case by case basis.
 - 2. Tables (IPad, etc.) are not allowed with the exception of for re-entry purposes approved via the division of adult institutions (DAI) director and the re-entry manager.
 - 3. Laptop computers may be permitted by the CAO on a case by case basis.

3.9 PROTECTION OF PERSONS AND PROPERTY

A. SAFETY PRECAUTIONS AND PROGRAMS

1. The Contractor shall at all times conduct operations under this Contract in a manner to avoid the risk of bodily harm to persons or risk of damage to any property. The Contractor shall promptly take precautions which are necessary and adequate against conditions created during the progress of the Contractor's activities hereunder which involve a risk of bodily harm to persons or a risk of damage to property. The Contractor

shall continuously inspect Work, materials, and equipment to discover and determine any such conditions and shall be solely responsible for discovery, determination, and correction of any such conditions. The Contractor shall comply with applicable safety laws, standards, codes, and regulations in the jurisdiction where the Work is being performed, specifically, but without limiting the generality of the foregoing, with rules regulations, and standards adopted pursuant to the Williams-Steiger Occupational Safety and Health Act of 1970 and applicable amendments.

- 2. All contractors, subcontractors and workers on this project are subject to the Construction Safety Training provisions 292.675 RSMo.
- 3. In the event the Contractor encounters on the site, material reasonably believed to be asbestos, polychlorinated biphenyl (PCB), lead, mercury, or other material known to be hazardous, which has not been rendered harmless, the Contractor shall immediately stop Work in the area affected and report the condition to the Owner's Representative and the Architect in writing. The Work in the affected area shall not thereafter be resumed except by written agreement of the Owner's Representative and Contractor if in fact the material is asbestos or polychlorinated biphenyl (PCB) and has not been rendered harmless. The Work in the affected area shall be resumed in the absence of asbestos or polychlorinated biphenyl (PCB), or when it has been rendered harmless by written agreement of the Owner's Representative and the Contractor. "Rendered Harmless" shall mean that levels of such materials are less than any applicable exposure standards, including but limited to OSHA regulations.

B. SAFETY OF PERSONS AND PROPERTY

- 1. The Contractor shall take reasonable precautions for safety of, and shall provide protection to prevent damage, injury, or loss to:
 - a. clients, staff, the public, construction personnel, and other persons who may be affected thereby;
 - b. the Work and materials and equipment to be incorporated therein, whether in storage on or off the site, under care, custody, or control of the Contractor or the Contractor's Subcontractors of any tier; and
 - c. other property at the site or adjacent thereto, such as trees, shrubs, lawns, walks, pavements, roadways, structures, and utilities not designated for removal, relocation, or replacement in the course of construction.
- 2. The Contractor shall give notices and comply with applicable laws, standards, codes, ordinances, rules, regulations, and lawful orders of public authorities bearing on safety of persons or property or their protection from damage, injury, or loss.
- 3. The Contractor shall erect and maintain, as required by existing conditions and performance of the Contract, safeguards for safety and protection, including, but not limited to, posting danger signs and other warnings against hazards, promulgating safety regulations, and notifying owners and users of adjacent sites and utilities.
- 4. When use or storage of explosives or other hazardous materials or equipment or unusual methods are necessary for execution of the Work, the Contractor shall exercise the highest degree of care and carry on such activities under supervision of properly qualified personnel.
- 5. The Contractor shall promptly remedy damage and loss (other than damage or loss insured under property insurance required by the Contract Documents) to property referred to in this Section caused in whole or in part by the Contractor, a Subcontractor of any tier, or anyone directly or indirectly employed by any of them, or by anyone for

whose acts they may be liable, and for which the Contractor is responsible under this Section, except damage or loss attributable solely to acts or omissions of Owner or the Architect or anyone directly or indirectly employed by either of them, or by anyone for whose acts either of them may be liable, and not attributable to the fault or negligence of the Contractor. The foregoing obligations of the Contractor are in addition to the Contractor's other obligations stated elsewhere in the Contract.

- 6. The Contractor shall designate a responsible member of the Contractor's organization at the site whose duty shall be the prevention of accidents, and the maintaining, enforcing and supervising of safety precautions and programs. This person shall be the Contractor's superintendent unless otherwise designated by the Contractor in writing to the Owner's Representative and Architect. The Contractor shall hold regularly scheduled safety meetings to instruct Contractor personnel on safety practices, accident avoidance and prevention, and the Project Safety Program. The Contractor shall furnish safety equipment and enforce the use of such equipment by its employees and its subcontractors of any tier.
- 7. The Contractor shall not load or permit any part of the construction or site to be loaded so as to endanger its safety.
- 8. The Contractor shall promptly report in writing to the Owner all accidents arising out of or in connection with the Work which cause death, lost time injury, personal injury, or property damage, giving full details and statements of any witnesses. In addition, if death, serious personal injuries, or serious property damages are caused, the accident shall be reported immediately.
- 9. The Contractor shall promptly notify in writing to the Owner of any claims for injury or damage to personal property related to the work, either by or against the Contractor.
- 10. The Owner assumes no responsibility or liability for the physical condition or safety of the Work site or any improvements located on the Work site. The Contractor shall be solely responsible for providing a safe place for the performance of the Work. The Owner shall not be required to make any adjustment in either the Contract Sum or Contract Time concerning any failure by the Contractor or any Subcontractor to comply with the requirements of this Paragraph.
- 11. In no event shall the Owner have control over, charge of, or any responsibility for construction means, methods, techniques, sequences or procedures or for safety precautions and programs in connection with the Work, notwithstanding any of the rights and authority granted the Owner in the Contract Documents.
- 12. The Contractor shall maintain at his own cost and expense, adequate, safe and sufficient walkways, platforms, scaffolds, ladders, hoists and all necessary, proper, and adequate equipment, apparatus, and appliances useful in carrying on the Work and which are necessary to make the place of Work safe and free from avoidable danger for clients, staff, the public and construction personnel, and as may be required by safety provisions of applicable laws, ordinances, rules regulations and building and construction codes.

END OF SECTION 013513.16

SECTION 015000 – CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions, Bid Form, and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. This Section includes requirements for construction facilities and temporary controls including temporary utilities, support facilities, security, and protection.
- B. Temporary utilities include, but are not limited to, the following:
 - 1. Water service and distribution
 - 2. Temporary electric power and light
 - 3. Temporary heat
 - 4. Ventilation
 - 5. Telephone service
 - 6. Sanitary facilities, including drinking water
 - 7. Storm and sanitary sewer
- C. Support facilities include, but are not limited to, the following:
 - 1. Field offices and storage sheds
 - 2. Temporary roads and paving
 - 3. Dewatering facilities and drains
 - 4. Temporary enclosures
 - 5. Hoists and temporary elevator use
 - 6. Temporary project identification signs and bulletin boards
 - 7. Waste disposal services
 - 8. Rodent and pest control
 - 9. Construction aids and miscellaneous services and facilities
- D. Security and protection facilities include, but are not limited to, to following:
 - 1. Temporary fire protection
 - 2. Barricades, warning signs, and lights
 - 3. Sidewalk bridge or enclosure fence for the site
 - 4. Environmental protection

1.3 SUBMITTALS

- A. Temporary Utilities: Submit reports of tests, inspections, meter readings, and similar procedures performed on temporary utilities.
- B. Implementation and Termination Schedule: Within (15) days of the date established for commencement of the Work, submit a schedule indicating implementation and termination of each temporary utility.

1.4 QUALITY ASSURANCE

- A. Regulations: Comply with industry standards and applicable laws and regulations including, but not limited to, the following:
 - 1. Building code requirements
 - 2. Health and safety regulations
 - 3. Utility company regulations
 - 4. Police, fire department, and rescue squad rules
 - 5. Environmental protection regulations
- B. Standards: Comply with NFPA 241 "Standard for Safeguarding Construction, Alterations, and Demolition Operations". ANSI A10 Series standards for "Safety Requirements for Construction and Demolition", and NECA Electrical Design Library "Temporary Electrical Facilities".
 - 1. Electrical Service: Comply with NEMA, NECA, and UL standards and regulations for temporary electric service. Install service in compliance with NFPA 70 "National Electric Code".
- C. Inspections: Arrange for authorities having jurisdiction to inspect and test each temporary utility before use. Obtain required certifications and permits.

1.5 PROJECT CONDITIONS

- A. Temporary Utilities: Prepare a schedule indicating dates for implementation and termination of each temporary utility. At the earliest feasible time, when acceptable to the Owner, change over from use of temporary service to use of permanent service.
- B. Conditions of Use: Keep temporary services and facilities clean and neat in appearance. Operate in a safe and efficient manner. Relocate temporary services and facilities as the Work progresses. Do not overload facilities or permit them to interfere with progress. Take necessary fire-prevention measures. Do not allow hazardous, dangerous, or unsanitary conditions, or public nuisances to develop or persist onsite.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Provide new materials. If acceptable to the Designer, the Contractor may use undamaged, previously used materials in serviceable condition. Provide materials suitable for use intended.
- B. Lumber and Plywood: Comply with requirements in Division 6 Section "Rough Carpentry".
 - 1. For job-built temporary office, shops, and sheds within the construction area, provide UL-labeled, fire-treated lumber and plywood for framing, sheathing, and siding.
 - 2. For signs and directory boards, provide exterior-type, Grade B-B high-density concrete form overlay plywood of sized and thicknesses indicated.
 - 3. For fences and vision barriers, provide minimum 3/9" (9.5mm) thick exterior plywood.
 - 4. For safety barriers, sidewalk bridges, and similar uses, provide minimum 5/8" (16mm) thick exterior plywood.
- C. Gypsum Wallboard: Provide gypsum wallboard on interior walls of temporary offices.
- D. Roofing Materials: Provide UL Class A standard-weight asphalt shingles or UL Class C mineral-surfaced roll roofing on roofs of job-built temporary office, shops, and shed.
- E. Paint: Comply with requirements of Division 9 Section "Painting".
 - 1. For job-built temporary offices, shops, sheds, fences, and other exposed lumber and plywood, provide exterior-grade acrylic-latex emulsion over exterior primer.
 - 2. For sign panels and applying graphics, provide exterior-grade alkyd gloss enamel over exterior primer.
 - 3. For interior walls of temporary offices, provide two (2) quarts interior latex-flat wall paint.
- F. Tarpaulins: Provide waterproof, fire-resistant, UL-labeled tarpaulins with flame-spread rating of (15) or less. For temporary enclosures, provide translucent, nylon-reinforced laminated polyethylene or polyvinyl chloride, fire-retardant tarpaulins.
- G. Water: Provide potable water approved by local health authorities.
- H. Open-Mesh Fencing: Provide 0.120" (3mm) thick, galvanized 2" (50mm) chainlink fabric fencing 6' (2m) high with galvanized barbed-wire top strand and galvanized steel pipe posts, 1¹/₂" (38mm) ID for line posts and 2¹/₂" (64mm) ID for corner posts.

2.2 EQUIPMENT

A. General: Provide new equipment. If acceptable to the Designer, the Contractor may use undamaged, previously used equipment in serviceable condition. Provide equipment suitable for use intended.

- B. Water Hoses: Provide ³/₄" (19mm), heavy-duty, abrasion-resistant, flexible rubber hoses 100' (30m) long, with pressure rating greater than the maximum pressure of the water distribution system. Provide adjustable shutoff nozzles at hose discharge.
- C. Electrical Outlets: Provide properly configured, NEMA-polarized outlets to prevent insertion of 110 to 120V plugs into higher voltage outlets. Provide receptacle outlets equipped with ground-fault circuit interrupters, reset button, and pilot light for connection of power tools and equipment.
- D. Electrical Power Cords: Provide grounded extension cords. Use hard-service cords where exposed to abrasion and traffic. Provide waterproof connectors to connect separate lengths of electric cords if single lengths will not reach areas where construction activities are in progress. Do not exceed safe length-voltage rating.
- E. Lamps and Light Fixtures: Provide general service incandescent lamps of wattage required for adequate illumination. Provide guard cages or tempered-glass enclosures where exposed to breakage. Provide exterior fixture where exposed to moisture.
- F. Heating Units: Provide temporary heating units that have been tested and labeled by UL, FM, or another recognized trade association related to the type of fuel being consumed.
- G. Temporary Offices: Provide prefabricated or mobile units or similar job-built construction with lockable entrances, operable windows, and serviceable finishes. Provide heated and air-conditioned units on foundations adequate for normal loading.
- H. Temporary Toilet Units: Provide self-contained, single-occupant toilet units of the chemical, aerated re-circulation, or combustion type. Provide units properly vented and fully enclosed with a glass-fiber-reinforced polyester shell or similar nonabsorbent material.
- I. Fire Extinguishers: Provide hand-carried, portable, UL-rated, Class A fire extinguishers for temporary offices and similar spaces. In other locations, provide hand-carried, portable, UL-rated, Class ABC, dry-chemical extinguishers, or a combination of extinguishers of NFPA-recommended classes for the exposures.
 - 1. Comply with NFPA 10 and NFPA 241 for classification, extinguishing agent, and size required by location and class of fire exposure.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Use qualified personnel for installation of temporary facilities. Locate facilities where they will serve the Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required.
- B. Provide each Facility ready for use when needed to avoid delay. Maintain and modify as required. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

- A. General: Engage the appropriate local utility company to install temporary service or connect to existing service. Where company provides only part of the service, provide the remainder with matching, compatible materials and equipment. Comply with company recommendations.
 - 1. Arrange with company and existing users for a time when service can be interrupted, if necessary, to make connections for temporary services.
 - 2. Provide adequate capacity at each stage of construction. Prior to temporary utility availability, provide trucked-in services.
 - 3. Obtain easements to bring temporary utilities to the site where the Owner's easements cannot be used for that purpose.
 - 4. Use Charges: Cost or use charges for temporary facilities are not chargeable to the Owner or Designer. Neither the Owner nor Designer will accept cost or use charges as a basis of claims for Contract Change.
- B. Temporary Water Service: The Owner will provide water for construction purposes from the existing building system. All required temporary extensions shall be provided and removed by the Contractor. Connection points and methods of connection shall be designated and approved by the Construction Representative.
- C. Temporary Electric Power Service: Provide weatherproof, grounded electric power service and distribution system of sufficient size, capacity, and power characteristics during construction period. Include meters, transformers, overload-protected disconnects, automatic ground-fault interrupters, and main distribution switch gear.
 - 1. Install electric power service underground, except where overhead service must be used.
 - 2. Power Distribution System: Install wiring overhead and rise vertically where least exposed to damage. Where permitted, wiring circuits not exceeding 125V, AC 20ampere rating, and lighting circuits may be nonmetallic sheathed cable where overhead and exposed for surveillance.
- D. Temporary Electric Power Service: The Owner will provide electric power for construction lighting and power tools. Contractors using such services shall pay all costs of temporary services, circuits, outlet, extensions, etc.
- E. Temporary Lighting: When overhead floor or roof deck has been installed, provide temporary lighting with local switching.
 - 1. Install and operate temporary lighting that will fulfill security and protection requirements without operating the entire system. Provide temporary lighting that will provide adequate illumination for construction operations and traffic conditions.
- F. Temporary Heating and Cooling: The normal heating and/or cooling system of the building shall be maintained in operation during the construction. Should the Contractor find it necessary to interrupt the normal HVAC service to spaces, which have not been vacated for construction, such interruptions shall be pre-scheduled with the Construction Representative.

- G. Temporary Telephones: Provide temporary telephone service throughout the construction period for all personnel engaged in construction activities.
 - 1. Telephone Lines: Provide telephone lines for the following:
 - a. Where an office has more than two (2) occupants, install a telephone for each additional occupant or pair of occupants.
 - b. Provide a dedicated telephone for a fax machine in the field office.
 - c. Provide a separate line for the Owner's use.
 - 2. At each telephone, post a list of important telephone numbers.
- H. Temporary Toilets: Install self-contained toilet units. Use of pit-type privies will not be permitted. Comply with regulations and health codes for the type, number, location, operation, and maintenance of fixtures and facilities. Install where facilities will best serve the Project's needs.
 - 1. Shield toilets to ensure privacy.
 - 2. Provide separate facilities for male and female personnel.
 - 3. Provide toilet tissue materials for each facility.
- I. Wash Facilities: Install wash facilities supplied with potable water at convenient locations for personnel involved in handling materials that require wash-up for a health and sanitary condition. Dispose of drainage properly. Supply cleaning compounds appropriate for each condition.
 - 1. Provide paper towels or similar disposable materials for each facility.
 - 2. Provide covered waste containers for used material.
 - 3. Provide safety showers, eyewash fountains, and similar facilities for convenience, safety, and sanitation of personnel.
- J. Drinking-Water Facilities: The Owner will provide drinking water facilities within the building. All construction personnel will be allowed access only to those specific facilities designated by the Construction Representative.
- K. Provide earthen embankments and similar barriers in and around excavations and subgrade construction, sufficient to prevent flooding by runoff of storm water from heavy rains.

3.3 SUPPORT FACILITIES INSTALLATION

- A. General: Locate field offices, storage sheds, and other temporary construction and support facilities for easy access.
 - 1. Maintain support facilities until near Substantial Completion. Remove prior to Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to the Owner.

- B. Field Offices: Provide insulated, weathertight temporary offices of sufficient size to accommodate required office personnel at the Project site. Keep the office clean and orderly for use for small progress meetings. Furnish and equip office as follows:
 - 1. Furnish with a desk and chairs, a 4-drawer file cabinet, plan table, plan rack, and a 6-shelf bookcase.
 - 2. Equip with a water cooler and private toilet complete with water closet, lavatory, and medicine cabinet unit with a mirror.
- C. Storage Facilities: Limited areas for storage of building materials are available onsite. The Contractor shall provide his own security. Specific locations for storage and craning operations will be discussed at the Pre-Bid Meeting and the Pre-Construction Meeting.
- D. Temporary Paving: Construct and maintain temporary roads and paving to support the indicated loading adequately and to withstand exposure to traffic during the construction period. Locate temporary paving for roads, storage areas, and parking where the same permanent facilities will be located. Review proposed modifications to permanent paving with the Designer.
 - 1. Paving: Comply with Division 2 Section "Hot-Mixed Asphalt Paving" for construction and maintenance of temporary paving.
 - 2. Coordinate temporary paving development with subgrade grading, compaction, installation and stabilization of subbase, and installation of base and finish courses of permanent paving.
 - 3. Install temporary paving to minimize the need to rework the installations and to result in permanent roads and paved areas without damage or deterioration when occupied by the Owner.
 - 4. Delay installation of the final course of permanent asphalt concrete paving until immediately before Substantial Completion. Coordinate with weather conditions to avoid unsatisfactory results.
 - 5. Extend temporary paving in and around the construction area as necessary to accommodate delivery and storage of materials, equipment usage, administration, and supervision.
- E. Construction Parking: Parking at the site will be provided in the areas designated at the Pre-Construction Meeting.
- F. Dewatering Facilities and Drains: For temporary drainage and dewatering facilities and operations not directly associated with construction activities included under individual Sections, comply with dewatering requirements of applicable Division 2 Sections. Where feasible, utilize the same facilities. Maintain the site, excavations, and construction free of water.
- G. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities.
 - 1. Where heat is needed and the permanent building enclosure is not complete, provide temporary enclosures where there is no other provision for containment

of heat. Coordinate enclosure with ventilating and materials drying or curing requirements to avoid dangerous conditions and effects.

- 2. Install tarpaulins securely with incombustible wood framing and other materials. Close openings of 25SqFt (2.3SqM) or less with plywood or similar materials.
- 3. Close openings through floor or roof decks and horizontal surfaces with loadbearing, wood-framed construction.
- 4. Where temporary wood or plywood enclosure exceeds 100SqFt (9.2SqM) in area, use UL-labeled, fire-retardant-treated material for framing and main sheathing.
- H. Temporary Lifts and Hoists: Provide facilities for hoisting materials and employees. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.
- I. Temporary Elevator Use: The Owner will allow use of elevators within the building. All construction personnel will be allowed access only to those specific elevators designated by the Construction Representative.
- J. Project Identification and Temporary Signs: Prepare project identification and other signs of size indicated. Install signs where indicated to inform the public and persons seeking entrance to the Project. Support on posts or framing of preservative-treated wood or steel. Do not permit installation of unauthorized signs.
 - 1. Project Identification Signs: Engage an experienced sign painter to apply graphics. Comply with details indicated.
 - 2. Temporary Signs: Prepare signs to provide directional information to construction personnel and visitors.
- K. Temporary Exterior Lighting: Install exterior yard and sign lights so signs are visible when Work is being performed.
- L. Collection and Disposal of Waste: Collect waste from construction areas and elsewhere daily. Comply with requirements of NFPA 241 for removal of combustible waste material and debris. Enforce requirements strictly. Do not hold materials more than seven (7) days during normal weather or three (3) days when the temperature is expected to rise above 80°F (27°C). Handle hazardous, dangerous, or unsanitary waste materials separately from other waste by containerizing properly. Dispose of material lawfully.
- M. Rodent Pest Control: Before deep foundation work has been completed, retain a local exterminator or pest control company to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests. Employ this service to perform extermination and control procedures are regular intervals so the Project will be free of pests and their residues at Substantial Completion. Perform control operations lawfully, using environmentally safe materials.
- N. Stairs: Until permanent stairs are available, provide temporary stairs where ladders are not adequate. Cover finished, permanent stairs with a protective covering of plywood or similar material so finishes will be undamaged at the time of acceptance.

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

- A. Except for use of permanent fire protection as soon as available, do not change over from use of temporary security and protection facilities to permanent facilities until Substantial Completion, or longer, as requested by the Designer.
- B. Temporary Fire Protection: Until fire-protection needs are supplied by permanent facilities, install and maintain temporary fire-protection facilities of the types needed to protect against reasonable predictable and controllable fire losses. Comply with NFPA 10 "Standard for Portable Fire Extinguishers" and NFPA 241 "Standard for Safeguarding Construction, Alterations, and Demolition Operations".
 - 1. Locate fire extinguishers where convenient and effective for their intended purpose, but not less than one (1) extinguisher on each floor at or near each usable stairwell.
 - 2. Store combustible materials in containers in fire-safe locations.
 - 3. Maintain unobstructed access to fire extinguishers, fire hydrants, temporary fireprotection facilities, stairways, and other access routes for fighting fires. Prohibit smoking in hazardous fire-exposure areas.
 - 4. Provide supervision of welding operations, combustion-type temporary heating units, and similar sources of fire ignition.
- C. Barricades, Warning Signs, and Lights: Comply with standards and code requirements for erection of structurally adequate barricades. Paint with appropriate colors, graphics, and warning signs to inform personnel and the public of the hazard being protected against. Where appropriate and needed, provide lighting including flashing red or amber lights.
- D. Enclosure Fence: Before excavation begins, install an enclosure fence with lockable entrance gates. Locate where indicated, or enclose the entire site or the portion determined sufficient to accommodate construction operations. Install in a manner that will prevent people, dogs, and other animals from easily entering the site, except by the entrance gates.
 - 1. Provide open-mesh, chainlink fencing with posts set in a compacted mixture of gravel and earth.
 - 2. Provide plywood fence, 8' (2.5m) high, framed with (4) 2"x4" (50mm x 100mm) rails, and preservative-treated wood posts spaced not more than 8' (2.5m) apart.
- E. Covered Walkway: Erect a structurally adequate, protective covered walkway for passage of persons along the adjacent public street. Coordinate with entrance gates, other facilities, and obstructions. Comply with regulations of authorities having jurisdiction.
 - 1. Construct covered walkways using scaffold or shoring framing. Provide wood plank overhead decking, protective plywood enclosure walls, handrails, barricades, warning signs, lights, safe and well-drained walkways, and similar provisions for protection and safe passage. Extend the back wall beyond the structure to complete the enclosure fence. Paint and maintain in a manner acceptable to the Owner and the Designer.

- F. Security Enclosure and Lockup: Install substantial temporary enclosure of partially completed areas of construction. Provide locking entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security.
- 1. Storage: Where materials and equipment must be stored and are of value or attractive for theft, provide a secure lockup. Enforce discipline in connection with the installation and release of material to minimize the opportunity for theft and vandalism.
- G. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction in ways and by methods that comply with environmental regulations and minimize the possibility that air, waterways, and subsoil might be contaminated or polluted or that other undesirable effects might result. Avoid use of tools and equipment that produce harmful noise. Restrict use of noisemaking tools and equipment to hours that will minimize complaints from persons or firms near the site.

3.5 OPERATION, TERMINATION AND REMOVAL

- A. Supervision: Enforce strict discipline in use of temporary facilities. Limit availability of temporary facilities to essential and intended uses to minimize waste and abuse.
- B. Maintenance: Maintain facilities in good operating condition until removal. Protect from damage by freezing temperatures and similar elements.
 - 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.
 - 2. Protection: Prevent water-filled piping from freezing. Maintain markers for underground lines. Protect from damage during excavation operations.
- C. Termination and Removal: Unless the Designer requests that it be maintained longer, remove each temporary facility when the need has ended, when replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with the temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 - 1. Materials and facilities that constitute temporary facilities are the Contractor's property. The Owner reserves the right to take possession of project identification signs.
 - 2. Remove temporary paving not intended for or acceptable for integration into permanent paving. Where the area is intended for landscape development, remove soil and aggregate fill that do not comply with requirements for fill or subsoil in the area. Remove materials contaminated with road oil, asphalt and other petrochemical compounds, and other substances that might impair growth of plant materials or lawns. Repair or replace street paving, curbs, and sidewalks at the temporary entrances as required by the governing authority.
 - 3. At Substantial Completion, clean and renovate permanent facilities used during the construction period including, but not limited to, the following:
 - a. Replace air filters and clean inside of ductwork and housing.

- b. Replace significantly worn parts and parts subject to unusual operating conditions.
- c. Replace lamps burned out or noticeably dimmed by hours of use.

END OF SECTION 015000

SECTION 017400 – CLEANING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions, Bid Form, and other Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative and procedural requirements for cleaning during the Project.
- B. Environmental Requirements: Conduct cleaning and waste-disposal operations in compliance with local laws and ordinances. Comply fully with federal and local environmental and anti-pollution regulations.
 - 1. Do not dispose of volatile wastes such as mineral spirits, oil, or paint thinner in storm or sanitary drains.
 - 2. Burning or burying of debris, rubbish, or other waste material on the premises is not permitted.

PART 2 - PRODUCTS

- 2.1 MATERIALS
 - A. Cleaning Agents: Use cleaning materials and agents recommended by the manufacturer or fabricator for the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 PROGRESS CLEANING

- A. General
 - 1. Retain all stored items in an orderly arrangement allowing maximum access, not impending drainage or traffic, and providing the required protection of materials.
 - 2. Do not allow the accumulation of scrap, debris, waste material, and other items not required for construction of this Work.
 - 3. At least <once><twice> each month, and more often if necessary, completely remove all scrap, debris, and waste material from the jobsite.
 - 4. Provide adequate storage for all items awaiting removal from the jobsite, observing all requirements for fire protection and protection of the ecology.
- B. Site
 - 1. Daily, inspect the site and pick up all scrap, debris, and waste material. Remove all such items to the place designated for their storage.

- 2. Weekly, inspect all arrangements of materials stored onsite. Re-stack, tidy, or otherwise service all material arrangements.
- 3. Maintain the site in a neat and orderly condition at all times.
- C. Structures
 - 1. Daily, inspect the structures and pick up all scrap, debris, and waste material. Remove all such items to the place designated for their storage.
 - 2. Weekly, sweep all interior spaces clean. "Clean" for the purposes of this paragraph, shall be interpreted as meaning free from dust and other material capable of being removed by use of reasonable effort and handheld broom.
 - 3. In preparation for installation of succeeding materials, clean the structures or pertinent portions thereof to the degree of cleanliness recommended by the manufacturer of the succeeding material, using all equipment and materials required to achieve the required cleanliness.
 - 4. Following the installation of finish floor materials, clean the finish floor daily while work is being performed in the space in which finish materials have been installed. "Clean" for the purposes of this subparagraph, shall be interpreted as meaning free from all foreign material which, in the opinion of the Construction Representative, may be injurious to the finish of the finish floor material.

3.2 FINAL CLEANING

- A. General: Provide final cleaning operations when indicated. Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit of Work to the condition expected from a commercial building cleaning and maintenance program. Comply with manufacturer's instructions.
- B. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for the entire Project or a portion of the Project.
 - 1. Clean the Project Site, yard and grounds, in areas disturbed by construction activities including landscape development areas, of rubbish, waste material, litter, and foreign substances.
 - 2. Sweep paved areas broom clean. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 - 3. Remove petrochemical spills, stains, and other foreign deposits.
 - 4. Remove tools, construction equipment, machinery, and surplus material from the site.
 - 5. Remove snow and ice to provide safe access to the building.
 - 6. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - 7. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - 8. Broom clean concrete floors in unoccupied spaces.

- 9. Vacuum clean carpet and similar soft surfaces removing debris and excess nap. Shampoo, if required.
- 10. Clean transparent material, including mirrors and glass in doors and windows. Remove glazing compounds and other substances that are noticeable visionobscuring materials. Replace chipped or broken glass and other damaged transparent materials. Polish mirrors and glass, taking care not to scratch surfaces.
- 11. Remove labels that are not permanent labels.
- 12. Touch up and otherwise repair and restore marred, exposed finishes and surfaces. Replace finishes and surfaces that cannot be satisfactorily repaired or restored or that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and similar labels, including mechanical and electrical nameplates.
- 13. Wipe surfaces of mechanical and electrical equipment, elevator equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
- 14. Clean plumbing fixtures to a sanitary condition free of stains, including stains resulting from water exposure.
- 15. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- 16. Clean ducts, blowers, and coils if units were operated without filters during construction
- 17. Clean food-service equipment to a sanitary condition, ready and acceptable for its intended use.
- 18. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency. Replace burned-out bulbs and defective and noisy starters in fluorescent and mercury vapor fixtures.
- 19. Leave the Project clean and ready for occupancy.
- C. Pest Control: Engage an experienced, licensed exterminator to make a final inspection and rid the Project of rodents, insects, and other pests. Comply with regulations of local authorities.
- D. Removal of Protection: Remove temporary protection and facilities installed during construction to protect previously completed installations during the remainder of the construction period.
- E. Compliances: Comply with governing regulations and safety standards for cleaning operations. Remove waste materials from the site and dispose of lawfully.
 - 1. Where extra materials of value remain after Final Acceptance by the Owner, they become the Owner's property.

END OF SECTION 017400

SECTION 017900 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 - 1. Demonstration of operation of systems, subsystems, and equipment.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Demonstration and training video recordings.

1.3 INFORMATIONAL SUBMITTALS

- A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
- B. Attendance Record: For each training module, submit list of participants and length of instruction time.
- C. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.

1.4 CLOSEOUT SUBMITTALS

- A. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.
 - 1. Identification: On each copy, provide an applied label with the following information:
 - a. Name of Project.
 - b. Name and address of videographer.
 - c. Name of Architect.
 - d. Name of Construction Manager.
 - e. Name of Contractor.
 - f. Date of video recording.
 - 2. Transcript: Prepared in PDF electronic format. Include a cover sheet with same label information as the corresponding video recording and a table of contents with links to corresponding training components. Include name of Project and date of video recording on each page.

3. At completion of training, submit complete training manual(s) for Owner's use in PDF electronic file format on compact disc.

1.5 QUALITY ASSURANCE

- A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
- B. Instructor Qualifications: A factory-authorized service representative experienced in operation and maintenance procedures and training.
- C. Preinstruction Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Coordination". Review methods and procedures related to demonstration and training including, but not limited to, the following:
 - 1. Inspect and discuss locations and other facilities required for instruction.
 - 2. Review and finalize instruction schedule and verify availability of educational materials, instructors' personnel, audiovisual equipment, and facilities needed to avoid delays.
 - 3. Review required content of instruction.
 - 4. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.

1.6 COORDINATION

- A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.
- B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

- A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.
- B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:

- a. System, subsystem, and equipment descriptions.
- b. Performance and design criteria if Contractor is delegated design responsibility.
- c. Operating standards.
- d. Regulatory requirements.
- e. Equipment function.
- f. Operating characteristics.
- g. Limiting conditions.
- h. Performance curves.
- 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project record documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.

- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 007213 "General Conditions".
- B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

- A. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1. Architect will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2. Owner will furnish an instructor to describe Owner's operational philosophy.
 - 3. Owner will furnish Contractor with names and positions of participants.
- B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with Owner with at least seven days' advance notice.

- C. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.
- D. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

3.3 DEMONSTRATION AND TRAINING VIDEO RECORDINGS

- A. General: Engage a qualified commercial videographer to record demonstration and training video recordings. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.
 - 1. At beginning of each training module, record each chart containing learning objective and lesson outline.
- B. Video: Provide minimum 640 x 480 video resolution converted to format file type acceptable to Owner, on electronic media.
 - 1. Electronic Media: Read-only format compact disc acceptable to Owner, with commercial-grade graphic label.
 - 2. File Hierarchy: Organize folder structure and file locations according to project manual table of contents. Provide complete screen-based menu.
 - 3. File Names: Utilize file names based upon name of equipment generally described in video segment, as identified in Project specifications.
 - 4. Contractor and Installer Contact File: Using appropriate software, create a file for inclusion on the Equipment Demonstration and Training DVD that describes the following for each Contractor involved on the Project, arranged according to Project table of contents:
 - a. Name of Contractor/Installer.
 - b. Business address.
 - c. Business phone number.
 - d. Point of contact.
 - e. E-mail address.
- C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to adequately cover area of demonstration and training. Display continuous running time.
 - 1. Film training session(s) in segments not to exceed 15 minutes.
 - a. Produce segments to present a single significant piece of equipment per segment.
 - b. Organize segments with multiple pieces of equipment to follow order of Project Manual table of contents.
 - c. Where a training session on a particular piece of equipment exceeds 15 minutes, stop filming and pause training session. Begin training session again upon commencement of new filming segment.
- D. Light Levels: Verify light levels are adequate to properly light equipment. Verify equipment markings are clearly visible prior to recording.

- 1. Furnish additional portable lighting as required.
- E. Narration: Describe scenes on video recording by audio narration by microphone while video recording is recorded. Include description of items being viewed.
- F. Transcript: Provide a transcript of the narration. Display images and running time captured from videotape opposite the corresponding narration segment.
- G. Preproduced Video Recordings: Provide video recordings used as a component of training modules in same format as recordings of live training.

END OF SECTION 017900

SECTION 019113 - GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. The Owner's personnel will carry out commissioning activities during the construction phase. The Owner's commissioning agent will develop and carry out testing procedures on new equipment and systems. The contractor may be required to provide personal to assist the owner's commissioning agent in the commissioning activities. Test and balancing services shall be provided by the contractor.
- B. Section Includes:
 - 1. General requirements for coordinating and scheduling commissioning.
 - 2. Commissioning meetings.
 - 3. Use of test equipment, instrumentation, and tools for commissioning.
 - 4. Commissioning tests and commissioning test demonstration.
 - 5. Adjusting, verifying, and documenting identified systems and assemblies.
- C. Related Requirements:
 - 1. Section 013300 "Submittals" for submittal procedures.

1.3 DEFINITIONS

- A. Acceptance Criteria: Threshold of acceptable work quality or performance specified for a commissioning activity, including, but not limited to, construction checklists, performance tests, performance test demonstrations, commissioning tests and commissioning test demonstrations.
- B. Commissioning Authority (CxA): An entity engaged by Owner to evaluate Commissioning-Process Work.
- C. Commissioning: A quality-focused process for verifying and documenting that the facility and all of its systems and assemblies are planned, designed, installed, and tested to comply with Owner's Project Requirements. The requirements specified here are limited to the construction phase commissioning activities.
- D. Construction Phase Commissioning Completion: The stage of completion and acceptance of commissioning when resolution of deficient conditions and issues discovered during commissioning and retesting until acceptable results are obtained has been accomplished.
- 1. Commissioning is complete when the work specified in this Section and related Sections has been completed and accepted, including, but not limited to, the following:
 - a. Completion of tests and acceptance of test results.
 - b. Resolution of issues, as verified by retests performed and documented with acceptance of retest results.
 - c. Completion and acceptance of submittals and reports.
- E. Owner's Witness: Commissioning Authority, Owner's Project Manager, or Designer-designated witness authorized to authenticate test demonstration data and to sign completed test data forms.
- F. "Systems," "Assemblies," "Subsystems," "Equipment," and "Components": Where these terms are used together or separately, they shall mean "as-built" systems, assemblies, subsystems, equipment, and components.
- G. Test: Performance tests, performance test demonstrations, commissioning tests, and commissioning test demonstrations.

1.4 COMMISSIONING TEAM

- A. Members Appointed by Contractor(s):
 - 1. Commissioning Coordinator: A person or entity employed by Contractor to manage, schedule, and coordinate commissioning.
 - 2. Project superintendent and other employees that Contractor may deem appropriate for a particular portion of the commissioning.
 - 3. Subcontractors, installers, suppliers, and specialists that Contractor may deem appropriate for a particular portion of the commissioning.
 - 4. Appointed team members shall have the authority to act on behalf of the entity they represent.
- B. Members Appointed by Owner:
 - 1. Commissioning authority, plus consultants that Commissioning Authority may deem appropriate for a particular portion of the commissioning.
 - 2. Owner representative(s), facility operations and maintenance personnel, plus other employees, separate contractors, and consultants that Owner may deem appropriate for a particular portion of the commissioning.
 - 3. Architect/Engineer, plus employees and consultants that Architect/Engineer/Owner may deem appropriate for a particular portion of the commissioning.

1.5 SUB-CONTRACTOR'S RESPONSIBILITIES

- A. Contractor shall assign representatives with expertise and authority to act on its behalf and shall schedule them to participate in and perform commissioning process activities include, but not limited to, the following:
 - 1. Cooperate with the CxA for resolution of issues recorded in the Issues Log.

- 2. Attend commissioning team meetings held on a biweekly basis.
- 3. Complete electronic construction checklists as Work is completed and provide to the Commissioning Authority on a weekly basis. Provide representatives and equipment to support commissioning process.
- 4. Complete commissioning process test procedures.

1.6 GENERAL CONTRACTOR'S RESPONSIBILITIES

- 1. Evaluate performance deficiencies identified in test reports and, in collaboration with entity responsible for system and equipment installation, recommend corrective action.
- 2. Integrate and coordinate commissioning process activities with construction schedule.
- 3. Review and accept construction checklists provided by the CxA.
- 4. Review and accept commissioning process test procedures provided by the Commissioning Authority.

1.7 COMMISSIONING AUTHORITY'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Coordinate with Contractor and Designer to provide commissioning plan.
- C. Convene commissioning team meetings.
- D. Verify the execution of commissioning process activities for 100% of the HVAC controls and equipment. When a commissioning activity does not meet the requirements, the CxA will report the failure in the Issues Log.
- E. Prepare and maintain the Issues Log. Provide Issues log to the General Contractor on a weekly basis.
- F. Prepare and maintain completed construction checklist log.
- G. Witness systems, assemblies, equipment, and component start-up.
- H. Compile test data, inspection reports, and certificates; include them in the commissioning process report.

1.8 INFORMATIONAL SUBMITTALS

- A. Comply with requirements in Section 013300 "Submittals" for submittal procedures general requirements for commissioning.
- B. Commissioning Plan Information:
 - 1. List of Contractor-appointed commissioning team members to include specific personnel and subcontractors to the performance of the various commissioning requirements.

- 2. Schedule of commissioning activities, integrated with the construction schedule. Comply with requirements in Section 013200.10 "Schedules CPM" for construction schedule requirements.
- C. Two-week look-ahead schedules.

1.9 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For proprietary test equipment, instrumentation, and tools to include in operation and maintenance manuals.
- B. Equipment startup reports.
- C. TAB Reports: Systems shall be balanced and reports submitted at the end of each phase. Systems shall be re-balanced and final report submitted after all phases are complete and systems are fully installed.

1.10 COMPENSATION

- A. Should Architect, Commissioning Authority, other Owner's witness, or Owner's staff perform additional services or incur additional expenses due to actions of Contractor listed below, compensate Owner for such additional services and expenses.
 - 1. Failure to provide timely notice of commissioning activities schedule changes.
 - 2. Failure to meet acceptance criteria for test demonstrations.
- B. Contractor shall compensate Owner for such additional services and expenses at the rate of \$525.00 per additional site visit required.

PART 2 - PRODUCTS

2.1 PROPRIETARY TEST EQUIPMENT, INSTRUMENTATION, AND TOOLS

- A. Proprietary test equipment, instrumentation, and tools are those manufactured or prescribed by tested equipment manufacturer and required for work on its equipment as a condition of equipment warranty, or as otherwise required to service, repair, adjust, calibrate or perform work on its equipment.
 - 1. Identify proprietary test equipment, instrumentation, and tools required in the test equipment identification list submittal.
 - 2. Proprietary test equipment, instrumentation, and tools shall become the property of Owner at Substantial Completion.

PART 3 - EXECUTION

3.1 CONSTRUCTION CHECKLISTS

- A. Construction checklists will be created by the Commissioning Team based on actual systems and equipment to be included in Project.
- B. Material Checks: Commissioning Team will compare specified characteristics and approved submittals with materials as received.
 - 1. Included optional features.
 - 2. Delivery Receipt Check: Inspection of physical condition of materials and equipment on delivery to Project site, including agreement with approved submittals, cleanliness and lack of damage.
 - 3. Installation Checks:
 - a. Location according to Drawings and approved Shop Drawings.
 - b. Configuration.
 - c. Compliance with manufacturers' written installation instructions.
 - d. Attachment to structure.
 - e. Access clearance to allow for maintenance, service, repair, removal, and replacement without the need to disassemble or remove other equipment or building elements. Access coordinated with other building elements and equipment, including, but not limited to, ceiling and wall access panels, in a manner consistent with OSHA fall-protection regulations and safe work practices.
 - f. Utility connections.
 - g. Correct labeling and identification.
- C. Startup: Perform and document initial operation of equipment to prove that it is installed properly and operates as intended according to manufacturer's standard startup procedures, minimum.
- D. Performance Tests:
 - 1. Static Tests: As specified elsewhere, including, but not limited to, duct and pipe leakage tests, insulation-resistance tests, and water-penetration tests.
 - 2. Component Performance Tests: Tests evaluate the performance of an input or output of components under a full range of operating conditions.
 - 3. Equipment and Assembly Performance Tests: Test and evaluate performance of equipment and assemblies under a full range of operating conditions and loads.
 - 4. System Performance Tests: Test and evaluate performance of systems under a full range of operating conditions and loads.
 - 5. Intersystem Performance Tests: Test and evaluate the interface of different systems under a full range of operating conditions and loads.

3.2 GENERAL EXECUTION REQUIREMENTS

- A. Coordinate commissioning with the construction schedule.
- B. Perform test demonstrations for Owner's witness.
- C. Report test data and commissioning issue resolutions.
- D. Schedule personnel to participate in and perform Commissioning-Process Work.
- E. Installing contractors' commissioning responsibilities include, but are not limited to, the following:
 - 1. Operating the equipment and systems they install during tests.
 - 2. In addition, installing contractors may be required to assist in tests of equipment and systems with which their work interfaces.

3.3 COMMISSIONING TESTING

- A. Commissioning work of Divisions 23, 25, and 26 shall include, but not be limited to:
 - 1. Testing and start-up of the equipment.
 - 2. Completion of pre-functional/startup checklists.
 - 3. Testing, adjusting and balancing of air and water systems.
 - 4. Cooperation with the CA.
 - 5. Providing qualified personnel for participation in commissioning tests, including seasonal testing required.
 - 6. Completion of Contractor directed functional testing and associated forms.
 - 7. Completion of CA witnessed functional testing.
 - 8. Providing equipment, materials, and labor as necessary to correct construction and/or equipment deficiencies found during the commissioning process.
 - 9. Providing operation and maintenance manuals and as-built drawings to the CA for review.
- B. The work included in the commissioning process involves a complete and thorough evaluation of the operation and performance of all components, systems, and sub-systems. The following equipment and systems shall be included:
 - 1. Chilled Water Plant (Chiller, Pump, VFDs, Specialties, etc.)
 - 2. Heating Hot Water Plant (Boilers, Pumps, VFDs, Specialties, Propane Backup etc.)
 - 3. AHUs
 - 4. Blower Coils
 - 5. Makeup air units
 - 6. Ductless Mini-Splits
 - 7. Duct Heating Coils
 - 8. VAV Boxes
 - 9. Building Automation System
- C. Quality Control: Construction checklists, including tests, are quality-control tools designed to improve the functional quality of Project. Test demonstrations evaluate the effectiveness of Contractor's quality-control process.

- D. Pre-functional/startup checklists are comprised of a full range of checks and tests to determine that all components, equipment, systems, and interfaces between systems operate in accordance with contract documents. These checks and tests are completed by the Division 23, 25, and 26 sub-contractors and documented using pre-functional/startup checklists.
- E. Owner's witness will be present to witness commissioning work requiring the signature of an owner's witness, including, but not limited to, test demonstrations. Owner's project manager will coordinate attendance by Owner's witness with Contractor's published commissioning schedule.
- F. Performance of Test Demonstration:
 - 1. Notify Owner's witness at least three working days in advance of each test demonstration.
 - 2. Provide full access to Owner's witness to directly observe the performance of all aspects of system response during the test demonstration.
 - 3. False load test requirements are specified in related sections.
 - a. Where false load testing is specified, provide temporary equipment, power, controls, wiring, piping, valves, and other necessary equipment and connections required to apply the specified load to the system. False load system shall be capable of steady-state operation and modulation at the level of load specified. Equipment and systems permanently installed in this work shall not be used to create the false load without Designer's written approval.
- G. Commissioning Compliance Issues:
 - 1. Test results that are not within the range of acceptable results are commissioning compliance issues.
 - 2. If a test demonstration fails, determine the cause of failure. Direct timely resolution of issue and then repeat the demonstration.
 - 3. Test Results: If a test demonstration fails to meet the acceptance criteria, perform the following:
 - a. Determine the cause of the failure.
 - b. Establish responsibility for corrective action if the failure is due to conditions found to be Contractor's responsibility.
 - 4. Diagnose and correct failed test demonstrations as follows:
 - a. Perform diagnostic tests and activities required to determine the fundamental cause of issues observed.
 - b. Record the conclusion of the diagnostic procedure on the fundamental cause of the issue.
 - c. Determine and record corrective measures.
 - 5. Retest:
 - a. Schedule and repeat the complete test procedure for each test demonstration for which acceptable results are not achieved. Repeat test demonstration until acceptable results are achieved. Except for issues that are determined to result from design errors or omissions, or other conditions beyond Contractor's responsibility.

- 6. Do not correct commissioning compliance issues during test demonstrations.
 - a. Exceptions will be allowed if the cause of the issue is obvious and resolution can be completed in less than five minutes.

3.4 COMMISSIONING MEETINGS

A. Commissioning Authority will schedule and conduct commissioning meetings. Comply with requirements in Section 013100 "Coordination".

3.5 SEQUENCING

- A. Before commissioning tests are preformed, verify that materials, equipment, assemblies, and systems are delivered, installed, started, and adjusted to perform as designed.
- B. Verify readiness of materials, equipment, assemblies, and systems by performing tests prior to performing test demonstrations. Notify Designer if acceptable results cannot be achieved due to conditions beyond Contractor's control or responsibility.

3.6 SCHEDULING

- A. Commissioning Schedule: Integrate commissioning into Contractor's construction schedule. See Section 013200.10 "Schedules CPM".
 - 1. Include detailed commissioning activities in monthly updated Contractor's construction schedule and short interval schedule submittals.
 - 2. Schedule the start date and duration for the following commissioning activities:
 - a. Submittals.
 - b. Preliminary operation and maintenance manual submittals.
 - c. Installation checks.
 - d. Startup, where required.
 - e. Performance test demonstrations.
 - f. Commissioning tests.
 - 3. Determine milestones and prerequisites for commissioning. Show commissioning milestones, prerequisites, and dependencies in monthly updated critical-path-method construction schedule and short interval schedule submittals.
- B. Two-Week Look-Ahead Schedule:
 - 1. Two weeks prior to the beginning of tests, submit a detailed two-week look-ahead schedule. Thereafter, submit updated two-week look-ahead schedules weekly for the duration of commissioning.
 - 2. Use two-week look-ahead schedules to notify and coordinate participation of Owner's witnesses.

END OF SECTION 019113

SECTION 024100 - DEMOLITION

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Selective demolition of building elements for alteration purposes.

1.2 REFERENCE STANDARDS

- A. 29 CFR 1926 U.S. Occupational Safety and Health Standards; current edition.
- B. NFPA 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations; 2013.

1.3 SUBMITTALS

A. Project Record Documents: Accurately record actual locations of capped and active utilities and subsurface construction.

PART 3 - EXECUTION

3.1 DEMOLITION

- A. Remove items indicated on the drawings..
- B. Remove other items indicated, for salvage, relocation, and recycling.

3.2 GENERAL PROCEDURES AND PROJECT CONDITIONS

- A. Comply with applicable codes and regulations for demolition operations and safety of adjacent structures and the public.
 - 1. Obtain required permits.
 - 2. Use of explosives is not permitted.
 - 3. Take precautions to prevent catastrophic or uncontrolled collapse of structures to be removed; do not allow worker or public access within range of potential collapse of unstable structures.
 - 4. Provide, erect, and maintain temporary barriers and security devices.
 - 5. Use physical barriers to prevent access to areas that could be hazardous to workers or the public.

- 6. Conduct operations to minimize effects on and interference with adjacent structures and occupants.
- 7. Do not close or obstruct roadways or sidewalks without permits from authority having jurisdiction.
- 8. Conduct operations to minimize obstruction of public and private entrances and exits. Do not obstruct required exits at any time. Protect persons using entrances and exits from removal operations.
- 9. Obtain written permission from owners of adjacent properties when demolition equipment will traverse, infringe upon, or limit access to their property.
- B. Do not begin removal until receipt of notification to proceed from Owner.
- C. Do not begin removal until built elements to be salvaged or relocated have been removed.
- D. Do not begin removal until vegetation to be relocated has been removed and vegetation to remain has been protected from damage.
- E. Protect existing structures and other elements to remain in place and not removed.
 - 1. Provide bracing and shoring.
 - 2. Prevent movement or settlement of adjacent structures.
 - 3. Stop work immediately if adjacent structures appear to be in danger.
- F. Minimize production of dust due to demolition operations. Do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.
- G. Perform demolition in a manner that maximizes salvage and recycling of materials.
 - 1. Dismantle existing construction and separate materials.
 - 2. Set aside reusable, recyclable, and salvageable materials; store and deliver to collection point or point of reuse.

3.3 SELECTIVE DEMOLITION FOR ALTERATIONS

- A. Existing construction and utilities indicated on drawings are based on casual field observation and existing record documents only.
 - 1. Verify construction and utility arrangements are as indicated.
 - 2. Report discrepancies to Architect before disturbing existing installation.
 - 3. Beginning of demolition work constitutes acceptance of existing conditions that would be apparent upon examination prior to starting demolition.
- B. Separate areas in which demolition is being conducted from areas that remain occupied.
 - 1. Provide, erect, and maintain temporary dustproof partitions of construction where required. .
- C. Remove existing work as indicated and required to accomplish new work.

- 1. Remove items indicated on drawings.
- D. Services (Including but not limited to HVAC, Plumbing, and Electrical): Remove existing systems and equipment as indicated.
 - 1. Maintain existing active systems to remain in operation, and maintain access to equipment and operational components.
 - 2. Where existing active systems serve occupied facilities but are to be replaced with new services, maintain existing systems in service until new systems are complete and ready for service.
 - 3. Verify that abandoned services serve only abandoned facilities before removal.
 - 4. Remove abandoned pipe, ducts, conduits, and equipment, including those above accessible ceilings. Remove back to source of supply where possible, otherwise cap stub and tag with identification.
- E. Protect existing work to remain.
 - 1. Prevent movement of structure. Provide shoring and bracing as required.
 - 2. Perform cutting to accomplish removal work neatly and as specified for cutting new work.
 - 3. Repair adjacent construction and finishes damaged during removal work.
 - 4. Patch to match new work.

3.4 DEBRIS AND WASTE REMOVAL

- A. Remove debris, junk, and trash from site.
- B. Remove from site all materials not to be reused on site; do not burn or bury.
- C. Leave site in clean condition, ready for subsequent work.
- D. Clean up spillage and wind-blown debris from public and private lands.

END OF SECTION 024100

SECTION 042000 - UNIT MASONRY

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Concrete block.
- B. Mortar.
- C. Reinforcement and anchorage.

1.2 REFERENCE STANDARDS

- A. ASTM A153/A153M Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware; 2009.
- B. ASTM A615/A615M Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement; 2015.
- C. ASTM A641/A641M Standard Specification for Zinc-Coated (Galvanized) Carbon Steel Wire; 2009a (Reapproved 2014).
- D. ASTM A951/A951M Standard Specification for Steel Wire for Masonry Joint Reinforcement; 2016.
- E. ASTM A1064/A1064M Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete; 2015.
- F. ASTM C90 Standard Specification for Loadbearing Concrete Masonry Units; 2014.
- G. ASTM C91/C91M Standard Specification for Masonry Cement; 2012.
- H. ASTM C129 Standard Specification for Nonloadbearing Concrete Masonry Units; 2011.
- I. ASTM C144 Standard Specification for Aggregate for Masonry Mortar; 2011.
- J. ASTM C270 Standard Specification for Mortar for Unit Masonry; 2014a.
- K. ASTM C404 Standard Specification for Aggregates for Masonry Grout; 2011.
- L. ASTM C1072 Standard Test Method for Measurement of Masonry Flexural Bond Strength; 2013.

- M. ASTM C1314 Standard Test Method for Compressive Strength of Masonry Prisms; 2016.
- N. ASTM E514/E514M Standard Test Method for Water Penetration and Leakage Through Masonry; 2014a.
- O. TMS 402/602 Building Code Requirements and Specification for Masonry Structures; 2016.

1.3 SUBMITTALS

- A. Product Data: Provide data for masonry units, fabricated wire reinforcement, mortar, and masonry accessories.
- B. Manufacturer's Certificate: Certify that water repellent admixture manufacturer has certified masonry unit manufacturer as an approved user of water repellent admixture in the manufacture of concrete block.

1.4 QUALITY ASSURANCE

A. Comply with provisions of ACI 530/530.1/ERTA, except where exceeded by requirements of Contract Documents.

PART 2 - PRODUCTS

2.1 CONCRETE MASONRY UNITS

- A. Concrete Block: Comply with referenced standards and as follows:
 - 1. Size: Standard units with nominal face dimensions of 16 by 8 inches and nominal depths as indicated on drawings for specific locations.
 - 2. Special Shapes: Provide nonstandard blocks configured for corners.
 - a. Provide bullnose units for outside corners.
 - 3. Load-Bearing Units: ASTM C90, normal weight.
 - a. Hollow block.
 - 4. Nonloadbearing Units: ASTM C129.
 - a. Lightweight.
 - 5. Units with Integral Water Repellent: Concrete block units as specified in this section with polymeric liquid admixture added to concrete masonry units at the time of manufacture.

- a. Performance of Units with Integral Water Repellent:
 - 1) Water Permeance: When tested per ASTM E514/E514M and for a minimum of 72 hours.
 - (a) No water visible on back of wall above flashing at the end of 24 hours.
 - (b) No flow of water from flashing equal to or greater than 0.032 gallons per hour at the end of 24 hours.
 - (c) No more than 25 percent of wall area above flashing visibly damp at end of test.
 - 2) Flexural Bond Strength: ASTM C1072; minimum 10 percent increase.
 - 3) Compressive Strength: ASTM C1314; maximum 5 percent decrease.
- b. Use only in combination with mortar that also has integral water repellent admixture.
- c. Use water repellent admixtures for masonry units and mortar by a single manufacturer.
- d. Manufacturers:

2.2 MORTAR AND GROUT MATERIALS

- A. Masonry Cement: ASTM C91/C91M, Type N.
- B. Mortar Aggregate: ASTM C144.
- C. Grout Aggregate: ASTM C404.
- D. Water: Clean and potable.
- E. Integral Water Repellent Admixture for Mortar: Polymeric liquid admixture added to mortar at the time of manufacture.
 - 1. Use only in combination with masonry units manufactured with integral water repellent admixture.
 - 2. Use only water repellent admixture for mortar from the same manufacturer as water repellent admixture in masonry units.
 - 3. Meet or exceed performance specified for water repellent admixture used in masonry units.

2.3 REINFORCEMENT AND ANCHORAGE

A. Reinforcing Steel: ASTM A615/A615M, Grade 40 (40,000 psi), deformed billet bars; galvanized.

- B. Joint Reinforcement: Use ladder type joint reinforcement where vertical reinforcement is involved and truss type elsewhere, unless otherwise indicated.
- C. Single Wythe Joint Reinforcement: ASTM A951/A951M.
 - 1. Type: Truss or ladder.
 - 2. Material: ASTM A1064/A1064M steel wire, mill galvanized to ASTM A641/A641M, Class 3.
 - 3. Size: 0.1483 inch side rods with 0.1483 inch cross rods; width as required to provide not less than 5/8 inch of mortar coverage on each exposure.

2.4 MORTAR AND GROUT MIXING

- A. Mortar for Unit Masonry: ASTM C270, using the Proportion Specification.
 - 1. Interior, loadbearing masonry: Type N.
 - 2. Interior, non-loadbearing masonry: Type O.
- B. Admixtures: Add to mixture at manufacturer's recommended rate and in accordance with manufacturer's instructions; mix uniformly.

PART 3 - EXECUTION

3.1 CLEANING

- A. Remove excess mortar and mortar droppings.
- B. Clean soiled surfaces with cleaning solution.

3.2 SCHEDULES

A. Interior Partitions: Single wythe concrete block units.

END OF SECTION - 042000

SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Joint backings and accessories.

1.2 REFERENCE STANDARDS

- A. ASTM C661 Standard Test Method for Indentation Hardness of Elastomeric-Type Sealants by Means of a Durometer; 2015.
- B. ASTM C794 Standard Test Method for Adhesion-In-Peel of Elastomeric Joint Sealants; 2018.
- C. ASTM C834 Standard Specification for Latex Sealants; 2014.
- D. ASTM C881/C881M Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete; 2015.
- E. ASTM C920 Standard Specification for Elastomeric Joint Sealants; 2014.
- F. ASTM C1087 Standard Test Method for Determining Compatibility of Liquid-Applied Sealants with Accessories Used in Structural Glazing Systems; 2016.
- G. ASTM C1193 Standard Guide for Use of Joint Sealants; 2013.
- H. ASTM C1248 Standard Test Method for Staining of Porous Substrate by Joint Sealants; 2008 (Reapproved 2012).
- I. ASTM C1330 Standard Specification for Cylindrical Sealant Backing for Use with Cold Liquid-Applied Sealants; 2018.
- J. SCAQMD 1168 South Coast Air Quality Management District Rule No.1168; current edition.

1.3 SUBMITTALS

- A. Product Data: Submit manufacturer's technical datasheets for each product to be used; include the following:
 - 1. Physical characteristics, including movement capability, VOC content, hardness, cure time, and color availability.
 - 2. List of backing materials approved for use with the specific product.

- 3. Substrates that product is known to satisfactorily adhere to and with which it is compatible.
- 4. Substrates the product should not be used on.
- B. Preconstruction Laboratory Test Reports: Submit at least four weeks prior to start of installation.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.
- B. Preconstruction Laboratory Testing: Arrange for sealant manufacturer(s) to test each combination of sealant, substrate, backing, and accessories.
 - 1. Adhesion Testing: In accordance with ASTM C794.
 - 2. Compatibility Testing: In accordance with ASTM C1087.
 - 3. Allow sufficient time for testing to avoid delaying the work.
 - 4. Deliver sufficient samples to manufacturer for testing.
 - 5. Report manufacturer's recommended corrective measures, if any, including primers or techniques not indicated in product data submittals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Nonsag Sealants:
 - 1. Bostik Inc: www.bostik-us.com/#sle.
 - 2. Dow: www.dow.com/#sle.
 - 3. Momentive Performance Materials, Inc (formerly GE Silicones): www.momentive.com/#sle.
 - 4. Pecora Corporation: www.pecora.com/#sle.
 - 5. Sika Corporation: www.usa.sika.com/#sle.
- B. Self-Leveling Sealants:
 - 1. Bostik Inc: www.bostik-us.com/#sle.
 - 2. Dow: www.dow.com/#sle.
 - 3. Pecora Corporation: www.pecora.com/#sle.
 - 4. Sika Corporation: www.usa.sika.com/#sle.

2.2 JOINT SEALANTS - GENERAL

A. Sealants and Primers: Provide products having lower volatile organic compound (VOC) content than indicated in SCAQMD 1168.

2.3 ACCESSORIES

- A. Backer Rod: Cylindrical cellular foam rod with surface that sealant will not adhere to, compatible with specific sealant used, and recommended by backing and sealant manufacturers for specific application.
 - 1. Type for Joints Not Subject to Pedestrian or Vehicular Traffic: ASTM C1330; Type O - Open Cell Polyurethane.
 - Type for Joints Subject to Pedestrian or Vehicular Traffic: ASTM C1330; Type B - Bi-Cellular Polyethylene.
 - 3. Open Cell: 40 to 50 percent larger in diameter than joint width.
 - 4. Closed Cell and Bi-Cellular: 25 to 33 percent larger in diameter than joint width.
 - 5. Products:
 - a. Adfast USA Inc; Adseal BR-2600 Backer Rod: www.adfastcorp.com/#sle.
 - b. Nomaco, Inc: www.nomaco.com/#sle.
 - B. Backing Tape: Self-adhesive polyethylene tape with surface that sealant will not adhere to and recommended by tape and sealant manufacturers for specific application.
 - B. Provide joint sealant installations complying with ASTM C1193.
 - C. Install bond breaker backing tape where backer rod cannot be used.
 - D. Install sealant free of air pockets, foreign embedded matter, ridges, and sags, and without getting sealant on adjacent surfaces.
 - E. Do not install sealant when ambient temperature is outside manufacturer's recommended temperature range, or will be outside that range during the entire curing period, unless manufacturer's approval is obtained and instructions are followed.
 - F. Nonsag Sealants: Tool surface concave, unless otherwise indicated; remove masking tape immediately after tooling sealant surface.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that joints are ready to receive work.
- B. Verify that backing materials are compatible with sealants.
- C. Verify that backer rods are of the correct size.

3.2 PREPARATION

- A. Remove loose materials and foreign matter that could impair adhesion of sealant.
- B. Clean joints, and prime as necessary, in accordance with manufacturer's instructions.
- C. Perform preparation in accordance with manufacturer's instructions and ASTM C1193.
- D. Mask elements and surfaces adjacent to joints from damage and disfigurement due to sealant work; be aware that sealant drips and smears may not be completely removable.

3.3 INSTALLATION

- A. Install this work in accordance with sealant manufacturer's requirements for preparation of surfaces and material installation instructions.
- B. Provide joint sealant installations complying with ASTM C1193.
- C. Install bond breaker backing tape where backer rod cannot be used.
- D. Install sealant free of air pockets, foreign embedded matter, ridges, and sags, and without getting sealant on adjacent surfaces.
- E. Do not install sealant when ambient temperature is outside manufacturer's recommended temperature range, or will be outside that range during the entire curing period, unless manufacturer's approval is obtained and instructions are followed.
- F. Nonsag Sealants: Tool surface concave, unless otherwise indicated; remove masking tape immediately after tooling sealant surface.

END OF SECTION - 079200

SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Non-fire-rated hollow metal doors and frames.

1.2 RELATED REQUIREMENTS

A. Section 08 7100 - Door Hardware.

1.3 REFERENCE STANDARDS

- A. ADA Standards Americans with Disabilities Act (ADA) Standards for Accessible Design; 2010.
- B. ANSI/ICC A117.1 American National Standard for Accessible and Usable Buildings and Facilities; International Code Council; 2009.
- C. ANSI/SDI A250.3 Test Procedure and Acceptance Criteria for Factory Applied Finish Coatings for Steel Doors and Frames; 2007 (R2011).
- D. ANSI/SDI A250.4 Test Procedure and Acceptance Criteria for Physical Endurance for Steel Doors, Frames and Frame Anchors; 2011.
- E. ANSI/SDI A250.6 Recommended Practice for Hardware Reinforcing on Standard Steel Doors and Frames; 2003 (R2009).
- F. ANSI/SDI A250.8 Specifications for Standard Steel Doors and Frames (SDI-100); 2014.
- G. ANSI/SDI A250.10 Test Procedure and Acceptance Criteria for Prime Painted Steel Surfaces for Steel Doors and Frames; 2011.
- H. ASTM A653/A653M Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process; 2015.
- I. ASTM A1008/A1008M Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable; 2015.
- J. ASTM A1011/A1011M Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength; 2014.

- K. BHMA A156.115 American National Standard for Hardware Preparation in Steel Doors and Steel Frames; 2014.
- L. ICC A117.1 Accessible and Usable Buildings and Facilities; 2009.
- M. NAAMM HMMA 830 Hardware Selection for Hollow Metal Doors and Frames; 2002.
- N. NAAMM HMMA 831 Hardware Locations for Hollow Metal Doors and Frames; 2011.
- O. NAAMM HMMA 840 Guide Specifications for Installation and Storage of Hollow Metal Doors and Frames; 2007.

1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements for submittal procedures.
- B. Product Data: Materials and details of design and construction, hardware locations, reinforcement type and locations, anchorage and fastening methods, and finishes; and one copy of referenced standards/guidelines.
- C. Manufacturer's Certificate: Certification that products meet or exceed specified requirements.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section, with not less than three years documented experience.
- B. Maintain at project site copies of reference standards relating to installation of products specified.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Comply with NAAMM HMMA 840 or ANSI/SDI A250.8 (SDI-100) in accordance with specified requirements.
- B. Protect with resilient packaging; avoid humidity build-up under coverings; prevent corrosion and adverse effects on factory applied painted finish.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Hollow Metal Doors and Frames:
 - 1. Ceco Door, an Assa Abloy Group company: www.assaabloydss.com/#sle.
 - 2. Curries, an Assa Abloy Group company: www.assaabloydss.com/#sle.
 - 3. Republic Doors, an Allegion brand: www.republicdoor.com/#sle.
 - 4. Steelcraft, an Allegion brand: www.allegion.com/#sle.
 - 5. Steelcraft: www.steelcraft.com.
 - 6. Substitutions: See Section 016000 Product Requirements.

2.2 PERFORMANCE REQUIREMENTS

- A. Requirements for Hollow Metal Doors and Frames:
 - 1. Steel Sheet: Comply with one or more of the following requirements; galvannealed steel complying with ASTM A653/A653M, cold-rolled steel complying with ASTM A1008/A1008M, or hot-rolled pickled and oiled (HRPO) steel complying with ASTM A1011/A1011M, commercial steel (CS) Type B, for each.
 - 2. Accessibility: Comply with ICC A117.1 and ADA Standards.
 - 3. Exterior Door Top Closures: Flush end closure channel, with top and door faces aligned.
 - 4. Door Edge Profile: Manufacturers standard for application indicated.
 - 5. Typical Door Face Sheets: Flush.
 - 6. Glazed Lights: Non-removable stops on non-secure side; sizes and configurations as indicated on drawings. Style: Manufacturer's standard.
 - Hardware Preparations, Selections and Locations: Comply with NAAMM HMMA 830 and NAAMM HMMA 831 or BHMA A156.115 and ANSI/SDI A250.8 (SDI-100) in accordance with specified requirements.
- B. Combined Requirements: If a particular door and frame unit is indicated to comply with more than one type of requirement, comply with the specified requirements for each type; for instance, an exterior door that is also indicated as being sound-rated must comply with the requirements specified for exterior doors and for sound-rated doors; where two requirements conflict, comply with the most stringent.

2.3 HOLLOW METAL DOORS

- A. Interior Doors, Non-Fire-Rated:
 - 1. Based on SDI Standards: ANSI/SDI A250.8 (SDI-100).
 - a. Level 1 Standard-duty.

- b. Physical Performance Level C, 250,000 cycles; in accordance with ANSI/SDI A250.4.
- c. Model 1 Full Flush.
- d. Door Face Metal Thickness: 16 gage, 0.053 inch, minimum.
- 2. Door Thickness: 1-3/4 inches, nominal.

2.4 HOLLOW METAL FRAMES

- A. Comply with standards and/or custom guidelines as indicated for corresponding door in accordance with applicable door frame requirements.
- B. Interior Door Frames, Non-Fire Rated: Full profile/continuously welded type.
 - 1. Terminated Stops: Provide at interior doors; closed end stop terminated 6 inch, maximum, above floor at 45 degree angle.
 - 2. Frame Metal Thickness: 14 gage, 0.067 inch, minimum.
 - 3. Frame Finish: Factory primed and field finished.
- C. Borrowed Lites Glazing Frames: Construction and face dimensions to match door frames, and as indicated on drawings.
- D. Provide mortar guard boxes for hardware cut-outs in frames to be installed in masonry or to be grouted.
- E. Frames in Masonry Walls: Size to suit masonry coursing with head member 2 inch high to fill opening without cutting masonry units.
- F. Frames Wider than 48 inches: Reinforce with steel channel fitted tightly into frame head, flush with top.

2.5 FINISHES

A. Primer: Rust-inhibiting, complying with ANSI/SDI A250.10, door manufacturer's standard.

2.6 ACCESSORIES

- A. Glazing: As specified in Section 08 8000, factory installed.
- B. Silencers: Resilient rubber, fitted into drilled hole; provide three on strike side of single door, three on center mullion of pairs, and two on head of pairs without center mullions.
- C. Temporary Frame Spreaders: Provide for factory- or shop-assembled frames.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify existing conditions before starting work.
- B. Verify that opening sizes and tolerances are acceptable.
- C. Verify that finished walls are in plane to ensure proper door alignment.

3.2 PREPARATION

A. Coat inside of frames to be installed in masonry or to be grouted, with bituminous coating, prior to installation.

3.3 INSTALLATION

- A. Install doors and frames in accordance with manufacturer's instructions and related requirements of specified door and frame standards or custom guidelines indicated.
- B. Coordinate frame anchor placement with wall construction.
- C. Install door hardware as specified in Section 08 7100.
- D. Touch up damaged factory finishes.

3.4 TOLERANCES

A. Maximum Diagonal Distortion: 1/16 inch measured with straight edge, corner to corner.

3.5 ADJUSTING

A. Adjust for smooth and balanced door movement.

3.6 SCHEDULE

A. Refer to Door and Frame Schedule on the drawings.

END OF SECTION - 081113

SECTION 083100 - ACCESS DOORS AND PANELS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Ceiling-mounted access units.

1.2 RELATED REQUIREMENTS

A. Section 09 9123 - Interior Painting: Field paint finish.

1.3 REFERENCE STANDARDS

- A. ASTM A1008/A1008M Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable; 2015.
- B. ASTM E-119 Standard Test Methods for Fire Tests of Building Costruction and Materials.
- C. UL (FRD) Fire Resistance Directory; current edition.

1.4 SUBMITTALS

- A. Product Data: Provide sizes, types, finishes, hardware, scheduled locations, and details of adjoining work.
- B. Shop Drawings: Indicate exact position of each access door and/or panel unit.
- C. Manufacturer's Installation Instructions: Indicate installation requirements.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

PART 2 - PRODUCTS

2.1 ACCESS DOORS AND PANELS ASSEMBLIES

A. Ceiling-Mounted Units:

- 1. Location: As indicated on drawings.
- 2. Material: 16 gauge steel.
- 3. Finish: Rust inhibitive primer electrostatic powder, baked white enamel.
- 4. Size Other Ceilings: 24 inch by 24 inch.
- 5. Door/Panel: ConcealeHinged, standard duty, with tool-operated spring or cam lock and no handle.

2.2 WALL- AND CEILING-MOUNTED ACCESS UNITS

A. Manufacturers:

- 1. ACUDOR Products Inc: [Model: DW-5040] www.acudor.com/#sle.
- 2. Babcock-Davis; Model: BNW: www.babcockdavis.com/#sle.
- 3. Karp Associates, Inc; Model: KDW: www.karpinc.com/#sle.
- 4. Milcor, Inc; Model: DW: www.milcorinc.com/#sle.
- 5. Nystrom, Inc; NP: www.nystrom.com/#sle.
- 6. Substitutions: See Section 01 6000 Product Requirements.
- B. Wall- and Ceiling-Mounted Units: Factory-fabricated door and frame, fully assembled units with corner joints welded, filled and ground flush; square and without rack or warp; coordinate requirements with type of installation assembly being used for each unit.
 - 1. Material: Steel.
 - 2. Style: Frame concealed by door panel.
 - a. Gypsum Board Mounting Criteria: Use drywall bead type frame.
 - 3. Door Style: Single thickness with rolled or turned in edges.
 - 4. Frames: 16-gauge, 0.0598-inch minimum thickness.
 - 5. Heavy-Duty Frames: 14-gauge, 0.0747-inch minimum thickness.
 - 6. Steel Finish: Primed.
 - 7. Hardware:
 - a. Hinges for Non-Fire-Rated Units: Concealed pivoting rod..
 - b. Latch/Lock: Spanner-head style / tamperproof tool-operated cam latch.
 PROVIDE ONE LATCH / LOCK PER NON-HINGED EDGE (THUS 3).

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Verify that rough openings are correctly sized and located.

3.2 INSTALLATION

- A. Install units in accordance with manufacturer's instructions.
- B. Install units such that all mounting screws are concealed and inaccessible when the panel is in the closed position.
- C. Install frames plumb and level in openings, and secure units rigidly in place.
- D. Position units to provide convenient access to concealed equipment when necessary.

END OF SECTION

SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Hardware for hollow metal and ceiling access panel doors.
- B. Electrically operated and controlled hardware.
- C. Thresholds.
- D. Weatherstripping and gasketing.

1.2 RELATED REQUIREMENTS

- A. Section 08 1113 Hollow Metal Doors and Frames.
- B. Section 08 1416 Flush Wood Doors.
- C. Section 08 1433 Stile and Rail Wood Doors.
- D. Section 08 4313 Aluminum-Framed Storefronts: Door hardware, except as noted in section.
- E. Section 28 1000 Access Control: Electronic access control devices.
- F. Section 083100 Access Doors and Panels

1.3 REFERENCE STANDARDS

- A. ADA Standards Americans with Disabilities Act (ADA) Standards for Accessible Design; 2010.
- B. BHMA (CPD) Certified Products Directory; Current Edition.
- C. BHMA A156.1 American National Standard for Butts and Hinges; 2013.
- D. BHMA A156.2 American National Standard for Bored and Preassembled Locks & Latches; 2011.
- E. BHMA A156.3 American National Standard for Exit Devices; 2014.
- F. BHMA A156.4 American National Standard for Door Controls Closers; 2013.

- G. BHMA A156.5 American National Standard for Cylinders and Input Devices for Locks; 2014.
- H. BHMA A156.6 American National Standard for Architectural Door Trim; 2010.
- I. BHMA A156.7 American National Standard for Template Hinge Dimensions; 2014.
- J. BHMA A156.8 American National Standard for Door Controls Overhead Stops and Holders; 2010.
- K. BHMA A156.13 American National Standard for Mortise Locks & Latches Series 1000; 2012.
- L. BHMA A156.15 American National Standard for Release Devices Closer Holder, Electromagnetic and Electromechanical; 2011.
- M. BHMA A156.16 American National Standard for Auxiliary Hardware; 2013.
- N. BHMA A156.17 American National Standard for Self Closing Hinges & Pivots; 2014.
- O. BHMA A156.18 American National Standard for Materials and Finishes; 2012.
- P. BHMA A156.20 American National Standard for Strap and Tee Hinges, and Hasps; 2006 (Reaffirmed 2012).
- Q. BHMA A156.21 American National Standard for Thresholds; 2014.
- R. BHMA A156.22 American National Standard for Door Gasketing and Edge Seal Systems, Builders Hardware Manufacturers Association; 2012.
- S. BHMA A156.28 American National Standard for Recommended Practices for Mechanical Keying Systems; 2018.
- T. BHMA A156.31 American National Standard for Electric Strikes and Frame Mounted Actuators; 2013.
- U. BHMA A156.115 American National Standard for Hardware Preparation in Steel Doors and Steel Frames; 2014.
- V. BHMA A156.115W Hardware Preparation in Wood Doors with Wood or Steel Frames; 2006.
- W. DHI (KSN) Keying Systems and Nomenclature; 1989.
- X. DHI (LOCS) Recommended Locations for Architectural Hardware for Standard Steel Doors and Frames; 2004.
- Y. DHI WDHS.3 Recommended Locations for Architectural Hardware for Flush Wood Doors; 1993; also in WDHS-1/WDHS-5 Series, 1996.

- Z. ICC A117.1 Accessible and Usable Buildings and Facilities; 2009.
- AA. NFPA 70 National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
- AB. NFPA 80 Standard for Fire Doors and Other Opening Protectives; 2016.
- AC. NFPA 101 Life Safety Code; 2015.
- AD. NFPA 105 Standard for Smoke Door Assemblies and Other Opening Protectives; 2016.
- AE. UL (DIR) Online Certifications Directory; current listings at database.ul.com.
- AF. UL 1784 Standard for Air Leakage Tests of Door Assemblies; Current Edition, Including All Revisions.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordinate the manufacture, fabrication, and installation of products that door hardware is installed on.
- B. Sequence installation to ensure utility connections are achieved in an orderly and expeditious manner.
- C. Furnish templates for door and frame preparation to manufacturers and fabricators of products requiring internal reinforcement for door hardware.
- D. Convey Owner's keying requirements to manufacturers.
- E. Cylinder Cores to be provided and installed by Owner.

1.5 SUBMITTALS

- A. Product Data: Manufacturer's catalog literature for each type of hardware, marked to clearly show products to be furnished for this project, and includes construction details, material descriptions, finishes, and dimensions and profiles of individual components.
- B. Shop Drawings Door Hardware Schedule: Submit detailed listing that includes each item of hardware to be installed on each door. Use door numbering scheme as included in Contract Documents.
 - 1. Prepared by or under supervision of Architectural Hardware Consultant (AHC).
 - 2. Provide complete description for each door listed.
 - 3. Provide manufacturer name, product names, and catalog numbers; include functions, types, styles, sizes and finishes of each item.
 - 4. Include account of abbreviations and symbols used in schedule.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section with minimum three years of documented experience.
- B. Installer Qualifications: Company specializing in performing work of the type specified for commercial door hardware with at least three years of documented experience.
- C. Supplier Qualifications: Company with certified Architectural Hardware Consultant (AHC) and Electrified Hardware Consultant (EHC) to assist in work of this section.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Package hardware items individually; label and identify each package with door opening code to match door hardware schedule.

1.8 WARRANTY

- A. Manufacturer's Warranty: Provide warranty against defects in material and workmanship for period indicated. Complete forms in Owner's name and register with manufacturer.
 - 1. Closers: Ten years, minimum.
 - 2. Exit Devices: Three years, minimum.
 - 3. Locksets and Cylinders: Three years, minimum.
 - 4. Other Hardware: Five years, minimum.

PART 2 - PRODUCTS

2.1 DESIGN AND PERFORMANCE CRITERIA

- A. Provide specified door hardware as required to make doors fully functional, compliant with applicable codes, and secure to extent indicated.
- B. Provide individual items of single type, of same model, and by same manufacturer.
- C. Provide door hardware products that comply with the following requirements:
 - 1. Applicable provisions of federal, state, and local codes.
 - 2. Accessibility: ADA Standards and ICC A117.1.
 - 3. Applicable provisions of NFPA 101.
 - 4. Hardware on Fire-Rated Doors: Listed and classified by UL (DIR) or testing firm acceptable to authorities having jurisdiction as suitable for application indicated.
 - 5. Hardware for Smoke and Draft Control Doors (Indicated as "S" on Drawings): Provide door hardware that complies with local codes, and requirements of assemblies tested in accordance with UL 1784.

- a. Air Leakage Rate: Tested in accordance with UL 1784, with air leakage rate not to exceed 3.0 cfm/sf of door opening at 0.10 inch of water for both ambient and elevated temperature tests.
- 6. Listed and certified compliant with specified standards by BHMA (CPD).
- 7. Auxiliary Hardware: BHMA A156.16.
- 8. Straps and Tee Hinges: BHMA A156.20.
- 9. Hardware Preparation for Steel Doors and Steel Frames: BHMA A156.115.
- 10. Hardware Preparation for Wood Doors with Wood or Steel Frames: BHMA A156.115W.
- 11. Products Requiring Electrical Connection: Listed and classified by UL (DIR) as suitable for the purpose specified.
- D. Electrically Operated and/or Controlled Hardware: Provide necessary power supplies, power transfer hinges, relays, and interfaces as required for proper operation; provide wiring between hardware and control components and to building power connection in compliance with NFPA 70.
 - 1. See Section 28 1000 for additional access control system requirements.
- E. Lock Function: Provide lock and latch function numbers and descriptions of manufacturer's series. See Door Hardware Schedule.
- F. Fasteners:
 - 1. Provide fasteners of proper type, size, quantity, and finish that comply with commercially recognized standards for proposed applications.
 - a. Aluminum fasteners are not permitted.
 - b. Provide phillips flat-head screws with heads finished to match door surface hardware unless otherwise indicated.
 - 2. Fire-Rated Applications: Comply with NFPA 80.
 - a. Provide wood or machine screws for hinges mortised to doors or frames, strike plates to frames, and closers to doors and frames.
 - b. Provide steel through bolts for attachment of surface mounted closers, hinges, or exit devices to door panels unless proper door blocking is provided.

2.2 HINGES

- A. Manufacturers:
 - 1. Basis of Design: McKinney: MPB79, 4.5"x4.5", US26D finish.
 - 2. McKinney; an Assa Abloy Group company: www.assaabloydss.com/#sle.
 - 3. Bommer Industries, Inc: www.bommer.com/#sle.
 - 4. C. R. Laurence Co., Inc: www.crl-arch.com/#sle.

- 5. Hager Companies: www.hagerco.com/#sle.
- 6. Stanley, dormakaba Group: www.stanleyhardwarefordoors.com/#sle.
- B. Hinges: Comply with BHMA A156.1, Grade 1.
 - 1. Self Closing Hinges: Comply with BHMA A156.17.
 - 2. Butt Hinges: Comply with BHMA A156.1 and BHMA A156.7 for templated hinges.
 - a. Provide hinge width required to clear surrounding trim.
 - 3. Provide hinges on every swinging door.
 - 4. Provide five-knuckle full mortise butt hinges unless otherwise indicated.
 - 5. Provide ball-bearing hinges at each door with closer.
 - 6. Provide non-removable pins on interior outswinging doors at locations as indicated.
 - 7. Provide following quantity of butt hinges for each door:
 - a. Doors up to 60 inches High: Two hinges.
 - b. Doors From 60 inches High up to 90 inches High: Three hinges.
 - c. Doors 90 inches High up to 120 inches High: Four hinges.
 - d. Doors over 120 inches High: One additional hinge per each additional 30 inches in height.
 - e. Dutch Doors: Two hinges each leaf.

2.3 EXIT DEVICES

- A. Manufacturers:
 - 1. Basis of Design: Von Duprin, an Allegion brand; 98-99 serires: www.allegion.com/us/#sle.
 - 2. Corbin Russwin, Sargent, or Yale; an Assa Abloy Group company: www.assaabloydss.com/#sle.
 - 3. C. R. Laurence Company, Inc: www.crl-arch.com/#sle.
 - 4. DORMA USA, Inc; 8000 Series: www.dorma.com/#sle.
 - 5. Stanley, dormakaba Group: www.stanleyhardwarefordoors.com/#sle.
 - 6. Substitutions: See Section 01 6000 Product Requirements.
- B. Exit Devices: Comply with BHMA A156.3, Grade 1.
 - 1. Lever design to match lockset trim.
 - 2. Provide cylinder with cylinder dogging or locking trim.
 - 3. Provide exit devices properly sized for door width and height.
 - 4. Provide strike as recommended by manufacturer for application indicated.
 - 5. Provide UL (DIR) listed exit device assemblies for fire-rated doors and panic device assemblies for non-fire-rated doors.

2.4 ELECTRIC STRIKES

- A. Manufacturers:
 - 1. Adams Rite, HES, or Securitron; an Assa Abloy Group company; 300, 700 series: www.assaabloydss.com/#sle.
 - 2. Pamex, Inc: www.pamexinc.com/#sle.
 - 3. Von Duprin 6200 series.
 - 4. Substitutions: See Section 01 6000 Product Requirements.
- B. Electric Strikes: Comply with BHMA A156.31, Grade 1.
 - 1. Provide UL (DIR) listed burglary-resistant electric strike; style to suit locks.
 - 2. Provide non-handed 24 VDC electric strike suitable for door frame material and scheduled lock configuration.
 - 3. Provide field selectable Fail Safe/Fail Secure modes.
 - 4. Provide transformer and rectifier as necessary for complete installation.
 - 5. Connect electric strikes into fire alarm where non-rated doors are scheduled to release with fire or sprinkler alarm condition.

2.5 LOCK CYLINDERS

- A. Lock Cylinders: Provide key access on outside of each lock, unless otherwise indicated.
 - 1. Provide standard, electronic, conventional, full size interchangeable core (FSIC), and small format interchangeable core (SFIC) type cylinders, Grade 1, with six-pin core in compliance with BHMA A156.5 at locations indicated.
 - 2. Provide cylinders from same manufacturer as locking device.
 - 3. Provide cams and/or tailpieces as required for locking devices.

2.6 CYLINDRICAL LOCKS

- A. Manufacturers:
 - 1. Corbin Russwin, Sargent, or Yale; an Assa Abloy Group company: www.assaabloydss.com/#sle.
 - 2. Best, dormakaba Group: www.bestaccess.com/#sle.
 - 3. DORMA USA, Inc; C300 Series, C500 Series, C800 Series, CL700 Series, and CK700 Series: www.dorma.com/#sle.
 - 4. Substitutions: See Section 01 6000 Product Requirements.
- B. Cylindrical Locks (Bored): Comply with BHMA A156.2, Grade 1, 4000 Series.
 - 1. Bored Hole: 2-1/8 inch diameter.
 - 2. Latchbolt Throw: 1/2 inch, minimum.
 - 3. Backset: 2-3/4 inch unless otherwise indicated.

- 4. Strikes: Provide manufacturer's standard strike for each latchset or lockset with strike box and curved lip extending to protect frame in compliance with indicated requirements.
 - a. Finish: To match lock or latch.
 - b. Flat-Lip Strikes: Provide for locks with three piece antifriction latchbolts as recommended by manufacturer.
 - c. Extra-Long-Lip Strikes: Provide for locks used on frames with applied wood casing trim.
 - d. Aluminum-Frame Strike Box: Provide strike box fabricated for use with aluminum framing by framing manufacturer.
 - e. Rabbet Front and Strike: Provide on locksets for use with rabbeted meeting rails.
- 5. Provide a lock for each door, unless otherwise indicated that lock is not required.
- 6. Provide an office lockset for swinging door where hardware set is not indicated.
- 7. Trim: Provide lever handle or pull trim on outside of each lock, unless otherwise indicated.

2.7 MORTISE LOCKS

- A. Mortise Locks: Comply with BHMA A156.13, Grade 1, Security, 1000 Series.
 - 1. Latchbolt Throw: 3/4 inch, minimum.
 - 2. Deadbolt Throw: 1 inch, minimum.
 - 3. Backset: 2-3/4 inch unless otherwise indicated.
 - 4. Strikes: Provide manufacturer's standard strike for each latchset or lockset with strike box and curved lip extending to protect frame in compliance with indicated requirements.
 - a. Finish: To match lock or latch.

2.8 DOOR PULLS AND PUSH PLATES

- A. Manufacturers:
- B. Door Pulls and Push Plates: Comply with BHMA A156.6.
 - 1. Pull Type: Straight, unless otherwise indicated.
 - 2. Push Plate Type: Flat, with square corners, unless otherwise indicated.
 - a. Edges: Beveled, unless otherwise indicated.
 - 3. Material: Stainless steel, unless otherwise indicated.

2.9 CLOSERS

A. Manufacturers; Surface Mounted:

- 1. Basis of Design: Norton; Product: 8000 series.
- 2. DORMA USA, Inc; 7400 Series, 8600 Series, 8900 Series, and TS93: www.dorma.com/#sle.
- 3. LCN, an Allegion brand; 4040XPH: www.allegion.com/us/#sle.
- 4. Substitutions: See Section 01 6000 Product Requirements.
- B. Closers: Comply with BHMA A156.4, Grade 1.
 - 1. Type: Surface mounted to door.
 - 2. Provide door closer on each exterior door.

2.10 OVERHEAD STOPS AND HOLDERS

- A. Manufacturers:
 - Rixson or Sargent; an Assa Abloy Group company; Rixson: 1 Concealed and 9 Surface Series. Sargent: 600 Concealed and 500 Surface Series: www.assaabloydss.com/#sle.
 - 2. DORMA USA, Inc; 900 Series: www.dorma.com/#sle.
 - 3. Glynn-Johnson, an Allegion brand; 100 Concealed and 90 Surface Series: www.allegion.com/us/#sle.
 - 4. Substitutions: See Section 01 6000 Product Requirements.
- B. Overhead Stops and Holders (Door Checks): Comply with BHMA A156.8, Grade 1.
 - 1. Provide stop for every swinging door, unless otherwise indicated.

2.11 ELECTROMAGNETIC DOOR HOLDERS

- A. Manufacturers:
 - 1. Basis of Design: Hager Companies: Products.
 - a. Wall Stop: 236W, US32D Finish.
 - b. Floor Stop: 241F, US32D Finish.
 - 2. Rixson or Sargent; an Assa Abloy Group company; 998 689: www.assaabloydss.com/#sle.
 - 3. DORMA USA, Inc; EM Series: www.dorma.com/#sle.
- B. Electromagnetic Door Holders: Comply with BHMA A156.15.
 - 1. Type: Wall mounted, single unit, standard duty, with strike plate attached to door.
 - 2. Holding Force, Standard Duty: 40 lbs-force, minimum.
 - 3. Voltage: 12 VDC, and provide power supplies by same manufacturer as holders.

- 4. Fail safe; door released to close automatically when electrical current is interrupted.
- 5. Provide interface with fire detectors and fire-alarm system for fire-rated door assemblies.

2.12 FLOOR STOPS

- A. Floor Stops: Comply with BHMA A156.16, Grade 1 and Resilient Material Retention Test as described in this standard.
 - 1. Type: Manual hold-open, with bumper floor stop.
 - 2. Material: Aluminum housing with rubber insert.

2.13 WALL STOPS

- A. Wall Stops: Comply with BHMA A156.16, Grade 1 and Resilient Material Retention Test as described in this standard.
 - 1. Type: Bumper, concave, wall stop.
 - 2. Material: Aluminum housing with rubber insert.

2.14 ASTRAGALS

- A. Astragals: Comply with BHMA A156.22.
 - 1. Type: Split, two parts, and with sealing gasket.
 - 2. Material: Aluminum, with neoprene weatherstripping.
 - 3. Provide non-corroding fasteners at exterior locations.

2.15 THRESHOLDS

- A. Thresholds: Comply with BHMA A156.21.
 - 1. Provide threshold at interior doors for transition between two different floor types, and over building expansion joints, unless otherwise indicated.
 - 2. Provide threshold at each exterior door, unless otherwise indicated.
 - 3. Type: Flat surface.
 - 4. Material: Aluminum.
 - 5. Threshold Surface: Thermally broken.
 - 6. Field cut threshold to profile of frame and width of door sill for tight fit.
 - 7. Provide non-corroding fasteners at exterior locations.

2.16 WEATHERSTRIPPING AND GASKETING

A. Weatherstripping and Gasketing: Comply with BHMA A156.22.
- 1. Head and Jamb Type: Adjustable.
- 2. Door Sweep Type: Encased in retainer.
- 3. Material: Aluminum, with brush weatherstripping.

2.17 SILENCERS

- A. Silencers: Provide at equal locations on door frame to mute sound of door's impact upon closing.
 - 1. Single Door: Provide three on strike jamb of frame.
 - 2. Pair of Doors: Provide two on head of frame, one for each door at latch side.
 - 3. Material: Rubber, gray color.

2.18 KEY CONTROL SYSTEMS

- A. Manufacturers:
- B. Key Control Systems: Comply with guidelines of BHMA A156.28.
 - 1. Provide keying information in compliance with DHI (KSN) standards.
 - 2. Keying: Grand master keyed.
 - 3. Include construction keying and control keying with removable core cylinders.
 - 4. Supply keys in following quantities:
 - a. 1 each Grand Master keys.
 - b. 6 each Construction Master keys.
 - c. 15 each Construction keys.
 - d. 2 each Construction Control keys.
 - e. 2 each Control keys if new system.

2.19 FINISHES

- A. Finishes: Provide door hardware of same finish, unless otherwise indicated.
 - 1. Primary Finish: 626; satin chromium plated over nickel, with brass or bronze base material (former US equivalent US26D); BHMA A156.18.
 - 2. Exceptions:
 - a. Where base material metal is specified to be different, provide finish that is an equivalent appearance in accordance with BHMA A156.18.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that doors and frames are ready to receive this work; labeled, fire-rated doors and frames are properly installed, and dimensions are as indicated on shop drawings.

B. Verify that electric power is available to power operated devices and of correct characteristics.

3.2 INSTALLATION

- A. Install hardware in accordance with manufacturer's instructions and applicable codes.
- B. Install hardware for smoke and draft control doors in accordance with NFPA 105.
- C. Use templates provided by hardware item manufacturer.
- D. Door Hardware Mounting Heights: Distance from finished floor to center line of hardware item. As indicated in following list; unless noted otherwise in Door Hardware Schedule or on drawings.
 - 1. For Steel Doors and Frames: Install in compliance with DHI (LOCS) recommendations.
 - 2. For Steel Doors and Frames: See Section 08 1113.
 - 3. For Steel Door Frames: See Section 08 1213.
 - 4. For Aluminum-Framed Storefront Doors and Frames: See Section 08 4313.
 - 5. For Wood Doors: Install in compliance with DHI WDHS.3 recommendations.
 - 6. Flush Wood Doors: See Section 08 1416.
 - 7. Stile and Rail Wood Doors: See Section 08 1433.
 - 8. Mounting heights in compliance with ADA Standards:
 - a. Locksets: 40-5/16 inch.
 - b. Push Plates/Pull Bars: 42 inch.
 - c. Deadlocks (Deadbolts): 48 inch.
 - d. Exit Devices: 40-5/16 inch.
 - e. Door Viewer: 43 inch; standard height 60 inch.
- E. Set exterior door thresholds with full-width bead of elastomeric sealant at each point of contact with floor providing a continuous weather seal; anchor thresholds with stainless steel countersunk screws.

3.3 FIELD QUALITY CONTROL

- A. Perform field inspection and testing under provisions of Section 01 4000 Quality Requirements.
- B. Provide an Architectural Hardware Consultant (AHC) to inspect installation and certify that hardware and installation has been furnished and installed in accordance with manufacturer's instructions and as specified.
- 3.4 ADJUSTING
 - A. Adjust work under provisions of Section 01 7000 Execution and Closeout Requirements.

- B. Adjust hardware for smooth operation.
- C. Adjust gasketing for complete, continuous seal; replace if unable to make complete seal.

3.5 CLEANING

- A. Clean finished hardware in accordance with manufacturer's written instructions after final adjustments have been made.
- B. Clean adjacent surfaces soiled by hardware installation.
- C. Replace items that cannot be cleaned to manufacturer's level of finish quality at no additional cost.

3.6 **PROTECTION**

- A. Protect finished Work under provisions of Section 01 7000 Execution and Closeout Requirements.
- B. Do not permit adjacent work to damage hardware or finish.

END OF SECTION - 087100

SECTION 092116 - GYPSUM BOARD ASSEMBLIES

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Metal channel ceiling framing.
- B. Gypsum wallboard.
- C. Joint treatment and accessories.

1.2 REFERENCE STANDARDS

- A. AISI S100 North American Specification for the Design of Cold-Formed Steel Structural Members; 2016, with Supplement (2020).
- B. AISI S220 North American Standard for Cold-Formed Steel Nonstructural Framing; 2020.
- C. AISI S240 North American Standard for Cold-Formed Steel Structural Framing; 2015, with Errata (2020).
- D. ASTM A1003/A1003M Standard Specification for Steel Sheet, Carbon, Metallic- and Nonmetallic-Coated for Cold-Formed Framing Members; 2015.
- E. ASTM C1007 Standard Specification for Installation of Load Bearing (Transverse and Axial) Steel Studs and Related Accessories; 2020.
- F. ASTM C514 Standard Specification for Nails for the Application of Gypsum Board; 2004 (Reapproved 2014).
- G. ASTM C754 Standard Specification for Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products; 2015.
- H. ASTM C840 Standard Specification for Application and Finishing of Gypsum Board; 2013.
- I. ASTM C954 Standard Specification for Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs From 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness; 2015.
- J. ASTM C1002 Standard Specification for Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs; 2014.

- K. ASTM C1047 Standard Specification for Accessories For Gypsum Wallboard and Gypsum Veneer Base; 2014a.
- L. ASTM C1396/C1396M Standard Specification for Gypsum Board; 2014.
- M. ASTM C1658/C1658M Standard Specification for Glass Mat Gypsum Panels; 2013.
- N. ASTM D3273 Standard Test Method for Resistance to Growth of Mold on the Surface of Interior Coatings in an Environmental Chamber; 2012.
- O. GA-216 Application and Finishing of Gypsum Board; 2013.
- P. GA-226 Application of Gypsum Board to Form Curved Surfaces; Gypsum Association; 2008.

1.3 SUBMITTALS

- A. Product Data:
 - 1. Provide manufacturer's data on partition head to structure connectors, showing compliance with requirements.
- B. Test Reports: For stud framing products that do not comply with AISI S220 or ASTM C754, provide independent laboratory reports showing maximum stud heights at required spacings and deflections.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Company specializing in performing gypsum board installation and finishing, with minimum 5 years of documented experience.

PART 2 - PRODUCTS

2.1 METAL FRAMING MATERIALS

- A. Steel Sheet: ASTM A1003/A1003M, subject to the ductility limitations indicated in AISI S220 or equivalent.
- B. Manufacturers Metal Framing, Connectors, and Accessories:
 - 1. ClarkDietrich: www.clarkdietrich.com/#sle.
 - 2. Jaimes Industries: www.jaimesind.com/#sle.
 - 3. Dietrich Metal Framing: www.dietrichindustries.com.

- C. Nonstructural Framing System Components: AISI S220; galvanized sheet steel, of size and properties necessary to comply with ASTM C754 for the spacing indicated, with maximum deflection of wall framing of L/120 at 5 psf.
 - 1. Exception: The minimum metal thickness and section properties requirements of ASTM C 645 are waived provided steel of 40 ksi minimum yield strength is used, the metal is continuously dimpled, the effective thickness is at least twice the base metal thickness, and maximum stud heights are determined by testing in accordance with ASTM E 72 using assemblies specified by ASTM C 754.
 - a. Acceptable Products:
 - 1) Dietrich Metal Framing; UltraSteel (tm): www.dietrichindustries.com.
 - 2) Clark Western Building Systems; UltraSteel (tm): www.clarkwestern.com.
 - 2. Studs: C-shaped with knurled or embossed faces.
 - 3. Runners: U shaped, sized to match studs.
 - 4. Ceiling Channels: C-shaped.
 - 5. Furring Members: Hat-shaped sections, minimum depth of 7/8 inch.
- D. Partition Head to Structure Connections: Provide mechanical anchorage devices that accommodate deflection and prevent rotation of studs while maintaining structural performance of partition.
 - 1. Structural Performance: Maintain lateral load resistance and vertical movement capacity required by applicable code, when evaluated in accordance with AISI S100.
 - 2. Material: ASTM A653/A653M steel sheet, SS Grade 50/340, with G60/Z180 hotdipped galvanized coating.

2.2 BOARD MATERIALS

- A. Manufacturers Gypsum-Based Board:
 - 1. CertainTeed Corporation: www.certainteed.com/#sle.
 - 2. Georgia-Pacific Gypsum: www.gpgypsum.com/#sle.
 - 3. National Gypsum Company: www.nationalgypsum.com/#sle.
 - 4. USG Corporation: www.usg.com/#sle.
- B. Gypsum Wallboard: Paper-faced gypsum panels as defined in ASTM C1396/C1396M; sizes to minimize joints in place; ends square cut.
 - 1. Application: Use for vertical surfaces, unless otherwise indicated.
 - 2. Glass mat faced gypsum panels, as defined in ASTM C1658/C1658M, suitable for paint finish, of the same core type and thickness may be substituted for paper-faced board.

- Mold Resistance: Score of 10, when tested in accordance with ASTM D3273.
 a. Mold resistant board is required at all locations.
- 4. Thickness:
 - a. Vertical Surfaces: 5/8 inch (laminated over existing block)
 - b. Ceilings: 5/8 inch.
- 5. Paper-Faced Products:
 - a. Georgia-Pacific Gypsum; ToughRock: www.gpgypsum.com/#sle.
 - b. National Gypsum Company; Gold Bond Brand Gypsum Wallboard.
 - c. USG Corporation; Sheetrock Brand Gypsum Panels.
- 6. Glass Mat Faced Products:
 - a. Georgia-Pacific Gypsum; DensArmor Plus: www.gpgypsum.com/#sle.
 - b. Gold Bond Building Products, LLC provided by National Gypsum Company; Gold Bond eXP Interior Extreme Fire-Shield Gypsum Panel: www.goldbondbuilding.com/#sle.
- C. Ceiling Board: Special sag resistant gypsum ceiling board as defined in ASTM C1396/C1396M; sizes to minimize joints in place; ends square cut.
 - 1. Application: Ceilings, unless otherwise indicated.
 - 2. Thickness: 5/8 inch.
 - 3. Edges: Tapered.

2.3 GYPSUM BOARD ACCESSORIES

- A. Finishing Accessories: ASTM C1047, extruded aluminum alloy (6063 T5) or galvanized steel sheet ASTM A924/A924M G90, unless noted otherwise.
 - 1. Types: As detailed or required for finished appearance.
- B. Screws for Fastening of Gypsum Panel Products to Cold-Formed Steel Studs Less than 0.033 inches in Thickness and Wood Members: ASTM C1002; self-piercing tapping screws, corrosion-resistant.
- C. Screws for Fastening of Gypsum Panel Products to Steel Members from 0.033 to 0.112 inch in Thickness: ASTM C954; steel drill screws, corrosion-resistant.
- D. Nails for Attachment to Wood Members: ASTM C514.
- E. Anchorage to Substrate: Tie wire, nails, screws, and other metal supports, of type and size to suit application; to rigidly secure materials in place.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that project conditions are appropriate for work of this section to commence.

3.2 FRAMING INSTALLATION

- A. Metal Framing: Install in accordance with ASTM C1007AISI S220 and manufacturer's instructions.
- B. Suspended Ceilings and Soffits: Space framing and furring members as permitted by standard.
- C. Studs: Space studs at 16 inches on center.
 - 1. Extend partition framing to structure where indicated and to ceiling in other locations.
 - 2. Partitions Terminating at Ceiling: Attach ceiling runner securely to ceiling track in accordance with manufacturer's instructions.
 - 3. Partitions Terminating at Structure: Attach top runner to structure, maintain clearance between top of studs and structure, and connect studs to track using specified mechanical devices in accordance with manufacturer's instructions; verify free movement of top of stud connections; do not leave studs unattached to track.
- D. Blocking: Install wood blocking for support of:
 - 1. Wall-mounted cabinets.
 - 2. Plumbing fixtures.
 - 3. Wall-mounted door hardware.

3.3 BOARD INSTALLATION

- A. Comply with ASTM C840, GA-216, and manufacturer's instructions. Install to minimize butt end joints, especially in highly visible locations.
- B. Single-Layer Nonrated: Install gypsum board in most economical direction, with ends and edges occurring over firm bearing.
 - 1. Exception: Tapered edges to receive joint treatment at right angles to framing.
- C. Curved Surfaces: Apply gypsum board to curved substrates in accordance with GA-226.
- D. Moisture Protection: Treat cut edges and holes in moisture resistant gypsum board with sealant.

3.4 INSTALLATION OF TRIM AND ACCESSORIES

- A. Control Joints: Place control joints consistent with lines of building spaces and as indicated.
- B. Corner Beads: Install at external corners, using longest practical lengths.
- C. Edge Trim: Install at locations where gypsum board abuts dissimilar materials.

END OF SECTION - 092116

SECTION 099000 - PAINTING AND COATING

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Surface preparation.
- B. Field application of paints.
- C. Scope: Finish all interior and exterior surfaces exposed to view, unless fully factory-finished and unless otherwise indicated, including the following:
 - 1. Mechanical and Electrical:
 - a. In finished areas, paint all insulated and exposed pipes, conduit, boxes, insulated and exposed ducts, hangers, brackets, collars and supports, mechanical equipment, and electrical equipment, unless otherwise indicated.
- D. Do Not Paint or Finish the Following Items:
 - 1. Items fully factory-finished unless specifically so indicated; materials and products having factory-applied primers are not considered factory finished.
 - 2. Items indicated to receive other finishes.
 - 3. Items indicated to remain unfinished.
 - 4. Fire rating labels, equipment serial number and capacity labels, and operating parts of equipment.
 - 5. Floors, unless specifically so indicated.
 - 6. Brick, architectural concrete, cast stone, integrally colored plaster and stucco.
 - 7. Glass.
 - 8. Concealed pipes, ducts, and conduits.

1.2 RELATED REQUIREMENTS

1.3 REFERENCE STANDARDS

A. 40 CFR 59, Subpart D - National Volatile Organic Compound Emission Standards for Architectural Coatings; U.S. Environmental Protection Agency; current edition.

1.4 **DEFINITIONS**

A. Conform to ASTM D 16 for interpretation of terms used in this section.

1.5 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide data on all finishing products, including VOC content.
- C. Samples: Submit two paper chip samples, 6 x 6 inch in size illustrating range of colors and textures available for each surface finishing product scheduled.
- D. Certification: By manufacturer that all paints and coatings comply with VOC limits specified.
- E. Manufacturer's Instructions: Indicate special surface preparation procedures.
- F. Maintenance Data: Submit data on cleaning, touch-up, and repair of painted and coated surfaces.
- G. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 01 6000 Product Requirements, for additional provisions.
 - 2. Extra Paint and Coatings: 1 gallon of each color; store where directed.
 - 3. Label each container with color in addition to the manufacturer's label.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the products specified, with minimum three years documented experience.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to site in sealed and labeled containers; inspect to verify acceptability.
- B. Container Label: Include manufacturer's name, type of paint, brand name, lot number, brand code, coverage, surface preparation, drying time, cleanup requirements, color designation, and instructions for mixing and reducing.
- C. Paint Materials: Store at minimum ambient temperature of 45 degrees F and a maximum of 90 degrees F, in ventilated area, and as required by manufacturer's instructions.

1.8 FIELD CONDITIONS

- A. Do not apply materials when surface and ambient temperatures are outside the temperature ranges required by the paint product manufacturer.
- B. Follow manufacturer's recommended procedures for producing best results, including testing of substrates, moisture in substrates, and humidity and temperature limitations.

- C. Do not apply exterior coatings during rain or snow, or when relative humidity is outside the humidity ranges required by the paint product manufacturer.
- D. Minimum Application Temperatures for Latex Paints: 45 degrees F for interiors; 50 degrees F for exterior; unless required otherwise by manufacturer's instructions.
- E. Provide lighting level of 80 ft candles measured mid-height at substrate surface.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Provide all paint and coating products used in any individual system from the same manufacturer; no exceptions.
- B. Paints:
 - 1. Kwal Paint, a Comex Group company: www.kwalpaint.com.
 - 2. Benjamin Moore & Co: www.benjaminmoore.com/#sle.
 - 3. PPG Paints: www.ppgpaints.com/#sle.
 - 4. Sherwin Williams Company: www.sherwin.com.
- C. Substitutions: See Section 01 6000 Product Requirements.

2.2 PAINTS AND COATINGS - GENERAL

- A. Paints and Coatings: Ready mixed, unless intended to be a field-catalyzed coating.
 - 1. Provide paints and coatings of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing properties, and capable of drying or curing free of streaks or sags.
 - 2. Supply each coating material in quantity required to complete entire project's work from a single production run.
 - 3. Do not reduce, thin, or dilute coatings or add materials to coatings unless such procedure is specifically described in manufacturer's product instructions.
- B. Primers: As follows unless other primer is required or recommended by manufacturer of top coats; where the manufacturer offers options on primers for a particular substrate, use primer categorized as "best" by the manufacturer.
 - 1. Gypsum Board: Interior Institutional Low Odor/VOC Primer Sealer; MPI #149.
 - 2. Concrete Masonry: Interior/Exterior Latex Block Filler; MPI #4.
- C. Volatile Organic Compound (VOC) Content:
 - 1. Provide coatings that comply with the most stringent requirements specified in the following:

- a. 40 CFR 59, Subpart D--National Volatile Organic Compound Emission Standards for Architectural Coatings.
- 2. Determination of VOC Content: Testing and calculation in accordance with 40 CFR 59, Subpart D (EPA Method 24), exclusive of colorants added to a tint base and water added at project site; or other method acceptable to authorities having jurisdiction.
- D. Colors: Match surrounding finish colors
 - 1. Selection to be made by Architect after award of contract.
 - 2. Allow for minimum of two colors for each system, unless otherwise indicated, without additional cost to Owner.
 - 3. Extend colors to surface edges; colors may change at any edge as directed by Architect.
 - 4. In finished areas, finish pipes, ducts, conduit, and equipment the same color as the wall/ceiling they are mounted on/under.

2.3 PAINT SYSTEMS - INTERIOR

- A. All Interior Surfaces Indicated to be Painted, Unless Otherwise Indicated: Including gypsum board, concrete, concrete masonry, brick, wood, plaster, uncoated steel, shop primed steel, galvanized steel, and aluminum.
 - 1. Two top coats and one coat primer.
 - 2. Top Coat(s): Institutional Low Odor/VOC Interior Latex; MPI #143-148.
 - 3. Top Coat Product(s):
 - a. Sherwin-Williams ProMar 200 Zero VOC Interior Latex. (MPI #43, 44, 52, 54, 144)
 - 4. Primer(s): As recommended by manufacturer of top coats.

2.4 ACCESSORY MATERIALS

- A. Accessory Materials: Provide all primers, sealers, cleaning agents, cleaning cloths, sanding materials, and clean-up materials required to achieve the finishes specified whether specifically indicated or not; commercial quality.
- B. Patching Material: Latex filler.
- C. Fastener Head Cover Material: Latex filler.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that surfaces are ready to receive work as instructed by the product manufacturer.
- B. Examine surfaces scheduled to be finished prior to commencement of work. Report any condition that may potentially affect proper application.
- C. Test shop-applied primer for compatibility with subsequent cover materials.
- D. Measure moisture content of surfaces using an electronic moisture meter. Do not apply finishes unless moisture content of surfaces are below the following maximums:
 - 1. Gypsum Wallboard: 12 percent.
 - 2. Masonry, Concrete, and Concrete Unit Masonry: 12 percent.

3.2 PREPARATION

- A. Clean surfaces thoroughly and correct defects prior to coating application.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- C. Remove or mask surface appurtenances, including electrical plates, hardware, light fixture trim, escutcheons, and fittings, prior to preparing surfaces or finishing.
- D. Surfaces: Correct defects and clean surfaces which affect work of this section. Remove or repair existing coatings that exhibit surface defects.
- E. Seal surfaces that might cause bleed through or staining of topcoat.
- F. Remove mildew from impervious surfaces by scrubbing with solution of tetra-sodium phosphate and bleach. Rinse with clean water and allow surface to dry.
- G. Concrete and Unit Masonry Surfaces to be Painted: Remove dirt, loose mortar, scale, salt or alkali powder, and other foreign matter. Remove oil and grease with a solution of tri-sodium phosphate; rinse well and allow to dry. Remove stains caused by weathering of corroding metals with a solution of sodium metasilicate after thoroughly wetting with water. Allow to dry.
- H. Gypsum Board Surfaces to be Painted: Fill minor defects with filler compound. Spot prime defects after repair.
- I. Plaster Surfaces to be Painted: Fill hairline cracks, small holes, and imperfections with latex patching plaster. Make smooth and flush with adjacent surfaces. Wash and neutralize high alkali surfaces.

- J. Insulated Coverings to be Painted: Remove dirt, grease, and oil from canvas and cotton.
- K. Aluminum Surfaces to be Painted: Remove surface contamination by steam or high pressure water. Remove oxidation with acid etch and solvent washing. Apply etching primer immediately following cleaning.
- L. Galvanized Surfaces to be Painted: Remove surface contamination and oils and wash with solvent. Apply coat of etching primer.
- M. Corroded Steel and Iron Surfaces to be Painted: Prepare using at least SSPC-SP 2 (hand tool cleaning) or SSPC-SP 3 (power tool cleaning) followed by SSPC-SP 1 (solvent cleaning).
- N. Uncorroded Uncoated Steel and Iron Surfaces to be Painted: Remove grease, mill scale, weld splatter, dirt, and rust. Where heavy coatings of scale are evident, remove by hand wire brushing or sandblasting; clean by washing with solvent. Apply a treatment of phosphoric acid solution, ensuring weld joints, bolts, and nuts are similarly cleaned. Prime paint entire surface; spot prime after repairs.
- O. Shop-Primed Steel Surfaces to be Finish Painted: Sand and scrape to remove loose primer and rust. Feather edges to make touch-up patches inconspicuous. Clean surfaces with solvent. Prime bare steel surfaces. Re-prime entire shop-primed item.
- P. Interior Wood Surfaces to Receive Opaque Finish: Wipe off dust and grit prior to priming. Seal knots, pitch streaks, and sappy sections with sealer. Fill nail holes and cracks after primer has dried; sand between coats. Back prime concealed surfaces before installation.
- Q. Metal Doors to be Painted: Prime metal door top and bottom edge surfaces.

3.3 APPLICATION

- A. Remove unfinished louvers, grilles, covers, and access panels on mechanical and electrical components and paint separately.
- B. Apply products in accordance with manufacturer's instructions.
- C. Where adjacent sealant is to be painted, do not apply finish coats until sealant is applied.
- D. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.
- E. Apply each coat to uniform appearance.
- F. Dark Colors and Deep Clear Colors: Regardless of number of coats specified, apply as many coats as necessary for complete hide.
- G. Sand wood and metal surfaces lightly between coats to achieve required finish.

- H. Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.
- I. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

3.4 FINISHING MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Refer to Section 22 0553 and Section for schedule of color coding of equipment, duct work, piping, and conduit.
- B. Remove unfinished louvers, grilles, covers, and access panels on mechanical and electrical components and paint separately.
- C. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

3.5 CLEANING

A. Collect waste material that could constitute a fire hazard, place in closed metal containers, and remove daily from site.

3.06 PROTECTION

- A. Protect finished coatings until completion of project.
- B. Touch-up damaged coatings after Substantial Completion.

3.7 SCHEDULE - SURFACES TO BE FINISHED

- A. Do Not Paint or Finish the Following Items:
 - 1. Items fully factory-finished unless specifically noted.
 - 2. Fire rating labels, equipment serial number and capacity labels.
 - 3. Stainless steel items.
- B. Mechanical and Electrical: Use paint systems defined for the substrates to be finished.
 - 1. Paint all insulated and exposed pipes occurring in finished areas to match background surfaces, unless otherwise indicated.
 - 2. Paint shop-primed items occurring in finished areas.
 - 3. Paint interior surfaces of air ducts and convector and baseboard heating cabinets that are visible through grilles and louvers with one coat of flat black paint to visible surfaces.
 - 4. Paint dampers exposed behind louvers, grilles, and convector and baseboard cabinets to match face panels.

END OF SECTION - 099000

SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings, Agreement, Part 0, Special Conditions and Forms, and Division 01 Specifications Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Section 013000, Submittal Procedures.
 - 2. Section 017700, Closeout Procedures.
 - 3. Section 019113, General Commissioning Requirements.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. HVAC demolition.
 - 9. Equipment installation requirements common to equipment sections.
 - 10. Painting and finishing.
 - 11. Concrete bases.
 - 12. Supports and anchorages.
- B. The Drawings, Specifications, Referenced Standards, Verizon Wireless Standards, other RFP Attachments and the Terms and Conditions are complimentary of one another. In the event of conflict between the Drawings, Specifications, Referenced Standards, Verizon Wireless Standards, other RFP Attachments or Terms and Conditions, the Architect / Engineer shall be contacted for formal interpretation of the requirement. The Contractor shall be deemed to have provided the <u>most</u> detailed and expensive interpretation of the requirement. Any work installed in conflict with the Architect / Engineer interpretation shall be corrected by the contractor at his expense and at no expense to Owner.
- C. Assignment of Work: The Agreement between the Contractor and the Owner is a single prime contract. The Contractor is responsible for the complete scope of work including the coordination of subcontractors. The construction documents do not delineate between subcontractors and any inference to division of work is a suggestion only. Neither the Owner nor the Architect / Engineer will offer, at any time, any opinions or proposed

resolutions concerning assignment of work to subcontractors. In the event of missing or conflicting scope provided by the Contractor or any of the subcontractors, the Contractor shall be responsible for the work.

1.3 DEFINATIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. CPVC: Chlorinated polyvinyl chloride plastic.
 - 2. PE: Polyethylene plastic.
 - 3. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
- D. Source Limitations: Obtain each category of materials, products and equipment through one source from a single manufacturer unless otherwise specified.
- E. General:
 - 1. The Division 23 Contractor(s) shall be responsible for obtaining shop and installation drawings including meeting the requirements as imposed by the AHJ in addition to the requirements of Division 23 specifications as it applies to the mechanical systems. Any costs as a result of these requirements shall be the Division 23 Contractor(s) responsibility.
- F. Manufacturer's Qualifications:
 - 1. Firms regularly engaged in manufacture of mechanical systems of types, sizes, and electrical characteristics required, and whose products have been in satisfactory use in similar service for not less than five years.
 - 2. The name of the manufacturer, part numbers and serial numbers shall appear on all major components.
- G. Installer's Qualifications:
 - 1. The installing contractor shall be an experienced firm regularly engaged in the installation of mechanical systems in strict accordance with all applicable standards.
 - 2. The installing contractor must have a minimum of five (5) years experience in the installation and testing of mechanical systems. A list of systems of similar nature and scope shall be provided on request.
 - 3. Licensed from the state in which the work occurs.
 - 4. The installing contractor shall show proof of emergency service available on a twenty-four hour, seven-days-a-week basis during the warranty period.

1.6 DELIVERY, STORAGE, AND HANDLING

A. It is the Contractor's responsibility to ensure on-time delivery of all materials and equipment required for the Project. All materials furnished or incorporated in the Work shall be new, unused, of best quality, and especially adapted for the service required;

whenever the characteristics of any material are not particularly specified, such material shall be utilized as is customary in first class work of a nature for which the material is employed.

- B. Contractor shall provide necessary means to properly stage and store all materials and equipment until time of use or installation on the Project. Contractor shall be solely responsible for materials and equipment stored on the Site; type and extent of security provided to be at Contractor's discretion. Coordinate all requirements with Owner.
- C. Contractor shall be responsible for proper handling, rigging, and installing of all materials and equipment for the Project.
- D. Owner reserves the right to reject any materials or equipment that are not properly stored in accordance with these specifications or the manufacturers' requirements.
- E. Refer to Section 015000, Temporary Facilities and Controls, for additional delivery and storage requirements.

1.7 COORDINATION

- A. Contractor shall be responsible for all coordination of Owner-Furnished items on the project, including but not limited to, phasing for installation, use of premises, delivery, storage, handling, installation, testing, training, and Cx.
- B. Coordination Drawings: Refer to Section 013100, Coordination, for coordination drawing requirements.
- C. Coordinate mechanical equipment installation with other building components.
- D. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- E. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- F. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Section 083113, Access Doors and Frames.

1.8 COMMISSIONING

A. Timely and accurate documentation is essential for the commissioning process to be effective. Documentation required as part of the commissioning process shall be as specified in Section 019113, General Commissioning Requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Approved Manufacturers, no substitutions: Subject to compliance with requirements, provide products by named manufacturer(s). Substitution request will not be considered.
 - 2. Approved Manufacturers, substitutions by prior approval only: Subject to compliance with requirements, provide products by one of the named manufacturers. Substitutions will be considered for products by other manufacturers if submitted in advance of bidding in conformance with requirement of Division 1.
 - 3. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - 4. Approved Manufacturers Basis of Design bid: Subject to compliance with requirements, provide products by the Basis of Design manufacturer listed. Base bid shall include the Basis of Design. Substitutions will be considered for new products by other manufacturers listed, but are not required in advance of bid. When substitution requests are submitted, the Architect / Engineer will be the sole judge of equivalency.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

- a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
- b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- 3. ASME B16.20 for grooved, ring joint, steel flanges.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- H. Mechanical Couplings: Ductile iron body housing, fabricated to match outside diameters of grooved end steel pipe.
 - 1. Housing: ASTM A536, ductile iron.
 - 2. Gaskets: ASTM D2000, EPDM molded synthetic rubber.
 - 3. Bolts and Nuts: ASTM A183 carbon steel.
 - 4. Finish: Enamel paint.
- I. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.4 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 degrees F.
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an

approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.

- a. Capitol Manufacturing Co.
- b. Central Plastics Company.
- c. Eclipse, Inc.
- d. Epco Sales, Inc.
- e. Hart Industries, International, Inc.
- f. Watts Industries, Inc.; Water Products Div.
- g. Zurn Industries, Inc.; Wilkins Div.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 degrees F.

- 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 degrees F.
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.6 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.1. Finish: Polished chrome-plated.
- E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

2.7 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.8 FIRESTOPPING

A. Firestopping: See Part 3 of this Section for coordination of firestopping and division of work. Firestopping products are specified in Section 078000, Fire and Smoke Protection.

2.9 ELECTRICAL REQUIREMENTS

- A. Electrical Requirements: Coordinate electrical voltage and phase of electrical components of mechanical equipment. Electrical components of mechanical equipment and systems such as motors, starters and controls shall be provided under this division and shall be as specified herein and as necessary for complete and operable systems. Interconnecting wiring for components of packaged equipment shall be provided as an integral part of the equipment. Low voltage "rated for less than 100 volts" interconnecting power wiring and conduit for field erected equipment and all control wiring and conduit shall be as specified in this Section. Motor control equipment forming part of motor control centers or switchgear assemblies and all necessary conduit and wiring connecting such assemblies, centers or other power sources to mechanical equipment shall conform to Division 26.
- B. Control Wiring:
 - 1. Provide control and interlock wiring for safety controls specified hereinafter under Section 230900, Instrumentation and Control for HVAC. These requirements apply to wiring required in addition to the power and control wiring shown and specified as part of the electrical work.

- 2. Provide wiring as required by functions as specified and as recommended by equipment manufacturers, to serve specified control functions.
- 3. Extent of control wiring shall include wiring as called for in specifications for motors and controls, and for motor control centers, and schedules of equipment and shall also include all wiring as required by manufacturer of equipment to serve any specific control interlock function recommended by manufacturer.
- 4. Conduit: All control wiring shall be installed in conduit.

PART 3 - EXECUTION

3.1 HVAC DEMOLITION

- A. Refer to Section 017329, Cutting and Patching, and Section 024119, Selective Structure Demolition, for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 - 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 - 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deeppattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chromeplated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - 2. Existing Piping: Use the following:
 - a. Chrome-Plated Piping: Split-casting, cast-brass type with chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped-steel type with concealed or exposed-rivet hinge and spring clips.
- M. Sleeves are not required for core-drilled holes.
- N. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

- 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
- 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsumboard partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Section 076200, Sheet Metal Flashing and Trim, for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
- O. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Section 078413, Penetration Firestopping, for materials.
- P. Verify final equipment locations for roughing-in.
- Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.4 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Section 099123, Interior Painting, and Section 099100, Exterior Painting.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 EQUIPMENT PROTECTION

- A. At all times take such precautions as may be necessary to properly protect all material and equipment from damage. Failure to provide such protection will be sufficient cause for rejection of material or equipment.
- B. Install all work complete and protect from injury by others. Cap, plug, or otherwise protect all temporary openings in piping and ducts to prevent any dirt from entering. Take care to see that all pipe fittings are installed free from paint or grease. Deliver all finished work and equipment to Owner, clean.
- C. At jobsite, store piping, equipment, etc., too large to keep under cover in building, a minimum of 2 feet above ground. Keep covered with plastic sheeting, arranged to provide adequate ventilation and prevent trapping of moisture.
- D. Restore piping, equipment, etc. that rusts or is damaged by elements to new condition prior to installation, or such equipment may be rejected by Owner. Replace rejected piping, equipment, etc. with new materials.
- E. Cover all motors and bearings with watertight and dustproof covers during storage and construction.
- F. Deliver systems to Owner with clean filters, clean strainers, and all bearings properly lubricated.

3.8 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

- 1. Construct concrete bases of dimensions indicated, but not less than 6 inches larger in both directions than supported unit.
- 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
- 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
- 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.9 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- B. Field Welding: Comply with AWS D1.1.

3.10 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

3.11 SEALING PENETRATIONS THROUGH WALLS

A. General: Provide all sealing around pipes, ducts, fire damper sleeves and frames, motorized damper frames, and other mechanical work penetrating walls and slabs which are boundaries for recirculating and exhaust air.

- B. Sealing of Sleeves: Where pipe or duct/fire damper sleeves are used, the annular space around pipes or ducts shall be 1/2". Pack the annular space with an approved UL-listed packing, leaving 1-1/2" depth for caulking compound. Apply sealing compound filling this remaining annular space out to a point flush to the wall line.
- C. Sealant: Silicone acoustical sealant or non-hardening butyl, suitable to withstand moderate joint movement.

3.12 INSTALLATION OF FIRESTOPPING

A. Mechanical penetrations shall be firestopped using materials and methods. Firestopping of mechanical penetrations may be performed by the mechanical contractor, Contractor, or a special firestopping contractor. Division of work is a coordination issue between contractors. Coordinate coverage of firestopping with Contractor. Change orders will not be accepted to cover omission of firestopping from mechanical scope.

3.13 PROVISIONS FOR LATER INSTALLATION

- A. Where any mechanical work cannot be installed as structure is being erected, provide and arrange for building-in of boxes, sleeves, insets, fixtures, or devices necessary to permit installation later. Lay out any chases, holes, or other openings that must be provided in masonry, concrete, or other work.
- B. Verify nature and arrangement of materials and construction to which this work attaches or passes through.

3.14 CLEANING AND TESTING OF PIPING SYSTEMS

- A. General: Provide corrosion protection for all ferrous metal portions of mechanical work exposed to weather including fans, piping and accessories, supports and other items. During construction, properly cap all lines, to prevent the entrance of sand, dirt, etc. Each system of piping shall be flushed through after completion (for the purpose of removing grit, dirt, sand, etc., from coils and piping) for as long as required to thoroughly clean the apparatus. See Section 230593, Testing, Adjusting, and Balancing for HVAC, for additional requirements.
- B. Protection: All ferrous metal, after fabrication, shall be hot-dip galvanized, cadmium plated or similarly protected against corrosion prior to installation as approved by the Architect / Engineer.

END OF SECTION 230500

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 **RELATED DOCUMENTS**

Drawings and general provisions of the Contract, including General and Supplementary A. Conditions and Division 01 Specification Sections, apply to this Section.

1.2 **SUMMARY**

Section includes general requirements for single-phase and polyphase, general-purpose, A. horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- Coordinate features of motors, installed units, and accessory devices to be compatible with the A. following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - Ratings and characteristics of supply circuit and required control sequence. 3.
 - Ambient and environmental conditions of installation location. 4.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- Comply with NEMA MG 1 unless otherwise indicated. A.
- Comply with requirements in this Section except when stricter requirements are specified in B. HVAC equipment schedules or Sections.

2.2 MOTOR CHARACTERISTICS

- Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above A. sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

SECTION 230513, PAGE 1

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Premium efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

- 1. Permanent-split capacitor.
- 2. Split phase.
- 3. Capacitor start, inductor run.
- 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513

SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, anticorrosion coated or zinc coated, with plain ends and integral welded waterstop collar.

2.2 SLEEVE-SEAL SYSTEMS

A. Description:

- 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
- 2. Designed to form a hydrostatic seal of 20-psig.
- 3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
- 4. Pressure Plates: Carbon steel.
- 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B 633 of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Description: Nonshrink, recommended for interior and exterior sealing openings in nonfire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use sealants appropriate for size, depth, and location of joint.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal-system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls Above Grade:

- a. Piping Smaller Than NPS 6: Galvanized-Steel pipe sleeves.
- 2. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-Steel pipe sleeves.

END OF SECTION 230517

SECTION 230519 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Thermowells.
 - 2. Dial-type pressure gages.
 - 3. Gage attachments.
 - 4. Test plugs.
 - 5. Flowmeters.
- B. Related Requirements:
 - 1. Section 231123 "Facility Natural-Gas Piping" for gas meters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of meter and gage.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion in piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.2 DIAL-TYPE PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>AMETEK, Inc.; U.S. Gauge.</u>
 - b. <u>Ashcroft Inc</u>.
 - c. <u>Ernst Flow Industries</u>.
 - d. Flo Fab Inc.
 - e. <u>Marsh Bellofram</u>.
 - f. <u>Miljoco Corporation</u>.
 - g. <u>Noshok</u>.
 - h. Palmer Wahl Instrumentation Group.
 - i. <u>REOTEMP Instrument Corporation</u>.
 - j. <u>Tel-Tru Manufacturing Company</u>.
 - k. Trerice, H. O. Co.
 - 1. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - m. Weiss Instruments, Inc.
 - n. <u>WIKA Instrument Corporation USA</u>.
 - o. <u>Winters Instruments U.S</u>.
 - 2. Standard: ASME B40.100.
 - 3. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.

- 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 6. Movement: Mechanical, with link to pressure element and connection to pointer.
- 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
- 8. Pointer: Dark-colored metal.
- 9. Window: Glass.
- 10. Ring: Stainless steel.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.3 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4, ASME B1.20.1 pipe threads and piston-type surgedampening device. Include extension for use on insulated piping.
- B. Valves: Brass or stainless-steel needle, with NPS 1/4, ASME B1.20.1 pipe threads.

2.4 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. <u>Miljoco Corporation</u>.
 - 3. <u>National Meter, Inc.</u>
 - 4. <u>Peterson Equipment Co., Inc</u>.
 - 5. <u>Sisco Manufacturing Company, Inc</u>.
 - 6. <u>Trerice, H. O. Co</u>.
 - 7. <u>Watts Regulator Co.; a div. of Watts Water Technologies, Inc</u>.
 - 8. <u>Weiss Instruments, Inc</u>.
- B. Description: Test-station fitting made for insertion in piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- F. Core Inserts: Chlorosulfonated polyethylene synthetic self-sealing rubber.

2.5 FLOWMETERS

1. Provided by controls contractor, installed by mechanical contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
- H. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- I. Install remote-mounted pressure gages on panel.
- J. Install valve and snubber in piping for each pressure gage for fluids (except steam).
- K. Install valve and syphon fitting in piping for each pressure gage for steam.
- L. Install test plugs in piping tees.
- M. Install flow indicators in piping systems in accessible positions for easy viewing.
- N. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.
- O. Install flowmeter elements in accessible positions in piping systems.
- P. Install wafer-orifice flowmeter elements between pipe flanges.
- Q. Install differential-pressure-type flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.
- R. Install permanent indicators on walls or brackets in accessible and readable positions.
- S. Install connection fittings in accessible locations for attachment to portable indicators.
- T. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.

- U. Install thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic zone.
 - 2. Inlet and outlet of each hydronic boiler.
 - 3. Two inlets and two outlets of each chiller.
 - 4. Inlet and outlet of each hydronic coil in air-handling units.
 - 5. Two inlets and two outlets of each hydronic heat exchanger.
 - 6. Inlet and outlet of each thermal-storage tank.
 - 7. Outside-, return-, supply-, and mixed-air ducts.
- V. Install pressure gages in the following locations:
 - 1. Discharge of each pressure-reducing valve.
 - 2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
 - 3. Suction and discharge of each pump.

3.2 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow space for service and maintenance of meters, gages, machines, and equipment.
- B. Connect flowmeter-system elements to meters.
- C. Connect flowmeter transmitters to meters.

3.3 ADJUSTING

- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each hydronic boiler shall be one of the following:
 - 1. Sealed, bimetallic-actuated type.
 - 2. Direct-mounted, metal-case, vapor-actuated type.
 - 3. Compact-style, liquid-in-glass type.
 - 4. Test plug with EPDM self-sealing rubber inserts.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 deg F.
- B. Scale Range for Heating, Hot-Water Piping: 20 to 240 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at discharge of each pressure-reducing valve shall be one of the following:
 - 1. Liquid-filled, direct-mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 160 psi.
- B. Scale Range for Heating, Hot-Water Piping: 0 to 160 psi.

END OF SECTION 230519

SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.
 - 2. Iron, single-flange butterfly valves.
 - 3. Iron, center-guided check valves.
- B. Related Sections:
 - 1. Section 230553 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated and valve schedule.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to HVAC valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 2. Butterfly Valves: With extended neck.

- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Solder Joint: With sockets according to ASME B16.18.
 - 3. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Milwaukee Valve Company</u>.
 - b. <u>NIBCO INC</u>.
 - c. <u>Integrated Piping Systems.</u>
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Three piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 150 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Bray Controls</u>; a division of Bray International.
 - b. <u>Milwaukee Valve Company</u>.
 - c. <u>NIBCO INC</u>.
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 150 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.

- d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
- e. Seat: EPDM.
- f. Stem: One- or two-piece stainless steel.
- g. Disc: Aluminum bronze.

2.4 IRON, CENTER-GUIDED CHECK VALVES

- A. Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat, Class 125:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>The Metraflex Company.</u>
 - b. Milwaukee Valve Company.
 - c. <u>NIBCO INC</u>.
 - 2. Description:
 - a. Standard: MSS SP-125.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Material: ASTM A126, gray iron.
 - e. Style: Compact wafer.
 - f. Seat: Bronze.
- B. Iron, Globe, Center-Guided Check Valves with Metal Seat, Class 125:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>The Metraflex Company.</u>
 - b. <u>Milwaukee Valve Company</u>.
 - c. <u>NIBCO INC</u>.
 - 2. Description:
 - a. Standard: MSS SP-125.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Material: ASTM A126, gray iron.
 - e. Style: Globe, spring loaded.
 - f. Ends: Flanged.
 - g. Seat: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 CHILLED-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Three piece, full port, bronze with stainless-steel trim.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron Ball Valves, NPS 2-1/2 to NPS 10: Class 150.
 - 3. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, aluminumbronze disc.
 - 4. Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat, Class 125.

3.6 HEATING-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Three piece, full port, bronze with stainless-steel trim.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron Ball Valves, NPS 2-1/2 to NPS 10: Class 150.
 - 3. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, aluminumbronze disc.
 - 4. Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat, Class 125.

END OF SECTION 230523

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
 - 5. Equipment supports.
- B. Related Requirements:
 - 1. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Nonmetallic Coatings: Plastic coated, or epoxy powder-coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-plated steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-plated steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 FIBERGLASS PIPE HANGERS

- A. Clevis-Type, Fiberglass Pipe Hangers:
 - 1. Description: Similar to MSS SP-58, Type 1, factory-fabricated steel pipe hanger except hanger is made of fiberglass or fiberglass-reinforced resin.
 - 2. Hanger Rods: Continuous-thread rod, washer, and nuts made of stainless steel.
 - 3. Flammability: ASTM D635, ASTM E84, and UL 94.
- B. Strap-Type, Fiberglass Pipe Hangers:
 - 1. Description: Similar to MSS SP-58, Type 9 or Type 10, steel pipe hanger except hanger is made of fiberglass-reinforced resin.
 - a. Flammability: ASTM D635, ASTM E84, and UL 94.
 - 2. Hanger Rod and Fittings: Continuous-thread rod, washer, and nuts made of stainless steel.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Carpenter & Paterson, Inc</u>.
 - 2. <u>Clement Support Services</u>.
 - 3. <u>ERICO International Corporation</u>.
 - 4. <u>National Pipe Hanger Corporation</u>.
 - 5. <u>PHS Industries, Inc</u>.
 - 6. <u>Pipe Shields, Inc.</u>; a subsidiary of Piping Technology & Products, Inc.
 - 7. <u>Piping Technology & Products, Inc</u>.
 - 8. <u>Rilco Manufacturing Co., Inc</u>.
 - 9. <u>Value Engineered Products, Inc.</u>
- B. Insulation-Insert Material for Cold Piping: ASTM C591, Type VI, Grade 1 polyisocyanurate with 125psi minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pullout, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Hilti, Inc</u>
 - b. <u>MKT Fastening, LLC</u>
 - c. <u>Ramset</u>
- B. Mechanical-Expansion Anchors: Insert-wedge-type anchors for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. B-LINE, AN Eaton Business
 - b. <u>Hilti, Inc</u>
 - c. <u>MKT Fastening, LLC</u>
 - 2. Indoor Applications: stainless steel.
 - 3. Outdoor Applications: Stainless steel.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 OUTDOOR EQUIPMENT STANDS

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. MIRO Industries
 - b. <u>RectorSeal HVAC; a CSW Industrials Company</u>
 - c. Rooftop Support Systems, a division of Eberl Iron Works, Inc.
- 2. Description: Individual foot supports with elevated adjustable channel cross bars and clamps/fasteners/bolts for ground or roof supported outdoor equipment components, without roof membrane penetration, in a pre-fabricated system that can be modularly-assembled on site.
- 3. Foot Material: Rubber or polypropylene.
- 4. Rails Material: Hot dip galvanized carbon steel.
- 5. Wind/Sliding Load Resistance: Up to 100 mph minimum.

2.9 MATERIALS

- A. Aluminum: ASTM B221.
- B. Carbon Steel: ASTM A1011/A1011M.
- C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.
- D. Stainless Steel: ASTM A240/A240M.
- E. Threaded Rods: Continuously threaded. Zinc-plated or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar materials as rods.
- F. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-58. Install hangers and attachments as required to properly support piping from building structure.

- D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled strut systems.
- E. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- F. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- G. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.
- H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- I. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- K. Install lateral bracing with pipe hangers and supports to prevent swaying.
- L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- O. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.

- b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
- c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications.

- F. Use stainless steel pipe hangers fiberglass pipe hangers and fiberglass strut systems and stainless steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and stainless steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 - 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 - 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.

- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.

- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- P. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.
 - 5. Stencils.
 - 6. Valve tags.
 - 7. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- a. <u>Brady Corporation</u>.
- b. <u>Carlton Industries, LP</u>.
- c. <u>Craftmark Pipe Markers</u>.
- d. <u>Seton Identification Products; a Brady Corporation company</u>.
- 2. Material and Thickness: stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
- 3. Letter Color: White.
- 4. Background Color: Black.
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Carlton Industries, LP</u>.
 - c. <u>Craftmark Pipe Markers</u>.
 - d. <u>Seton Identification Products; a Brady Corporation company</u>.
 - 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick and having predrilled holes for attachment hardware.
 - 3. Letter Color: White.
 - 4. Background Color: Black.
 - 5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 - 8. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Brady Corporation</u>.
 - 2. <u>Carlton Industries, LP</u>.
 - 3. <u>Craftmark Pipe Markers</u>.
 - 4. <u>Seton Identification Products; a Brady Corporation company</u>.
- B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- C. Letter Color: White.
- D. Background Color: Red.
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- H. Fasteners: Stainless-steel rivets or self-tapping screws.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Brady Corporation</u>.
 - 2. <u>Carlton Industries, LP</u>.
 - 3. <u>Craftmark Pipe Markers</u>.
 - 4. <u>Seton Identification Products; a Brady Corporation company</u>.
- B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.4 VALVE TAGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Brady Corporation</u>.
 - 2. Carlton Industries, LP.
 - 3. <u>Craftmark Pipe Markers</u>.
 - 4. Seton Identification Products; a Brady Corporation company.
- B. Description: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link chain or beaded chain.
- C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Brady Corporation</u>.
 - 2. <u>Carlton Industries, LP</u>.
 - 3. <u>Craftmark Pipe Markers</u>.
 - 4. <u>Seton Identification Products; a Brady Corporation company</u>.
- B. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Brass grommet and wire.

- 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
- 4. Color: Safety-yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

- A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

- B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- C. Pipe Label Color Schedule:
 - 1. Chilled-Water Piping: White letters on a safety-green background.
 - 2. Condenser-Water Piping: White letters on a safety-green background.
 - 3. Heating Water Piping: White letters on a safety-green background.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Chilled Water: 1-1/2 inches, round.
 - b. Condenser Water: 1-1/2 inches, round.
 - c. Refrigerant: 1-1/2 inches, round.
 - d. Hot Water: 1-1/2 inches, round.
 - e. Gas: 1-1/2 inches, round.
 - f. Low-Pressure Steam: 1-1/2 inches, round.
 - g. High-Pressure Steam: 1-1/2 inches, round.
 - h. Steam Condensate: 1-1/2 inches, round.
 - 2. Valve-Tag Colors:
 - a. Toxic and Corrosive Fluids: Black letters on a safety-orange background.
 - b. Flammable Fluids: Black letters on a safety-yellow background.
 - c. Combustible Fluids: White letters on a safety-brown background.
 - d. Potable and Other Water: White letters on a safety-green background.
 - e. Compressed Air: White letters on a safety-blue background.
 - f. Defined by User: White letters on a safety-purple background, black letters on a safety-white background, white letters on a safety-gray background, and white letters on a safety-black background

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - Balancing Air Systems:
 a. Variable-air-volume systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Variable-flow hydronic systems.
 - 3. Balancing steam systems.
 - 4. Testing, Adjusting, and Balancing Equipment:
 - a. Motors.
 - b. Chillers.
 - c. Boilers.
 - 5. Testing, adjusting, and balancing existing systems and equipment.
 - 6. Control system verification.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. BAS: Building automation systems.
- C. NEBB: National Environmental Balancing Bureau.
- D. TAB: Testing, adjusting, and balancing.
- E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- F. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

- A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.
 - 1. Minimum Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Needs for coordination and cooperation of trades and subcontractors.
 - d. Proposed procedures for documentation and communication flow.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- D. System Readiness Checklists: Within 30 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.
- E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.
- F. Certified TAB reports.
- G. Sample report forms.
- H. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.6 QUALITY ASSURANCE

- A. TAB Specialists Qualifications: Certified by AABC.
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.

- 2. TAB Technician: Employee of the TAB specialist and certified by AABC as a TAB technician.
- B. TAB Specialists Qualifications: Certified by NEBB.
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by NEBB as a TAB technician.
- C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 "System Balancing."

1.7 FIELD CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

- 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible, and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.
- L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.

- b. Duct systems are complete with terminals installed.
- c. Volume, smoke, and fire dampers are open and functional.
- d. Clean filters are installed.
- e. Fans are operating, free of vibration, and rotating in correct direction.
- f. Variable-frequency controllers' startup is complete, and safeties are verified.
- g. Automatic temperature-control systems are operational.
- h. Ceilings are installed.
- i. Windows and doors are installed.
- j. Suitable access to balancing devices and equipment is provided.
- 2. Hydronics:
 - a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 - b. Piping is complete with terminals installed.
 - c. Water treatment is complete.
 - d. Systems are flushed, filled, and air purged.
 - e. Strainers are pulled and cleaned.
 - f. Control valves are functioning per the sequence of operation.
 - g. Shutoff and balance valves have been verified to be 100 percent open.
 - h. Pumps are started and proper rotation is verified.
 - i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 - j. Variable-frequency controllers' startup is complete, and safeties are verified.
 - k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.
3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by main Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses, close to the fan and prior to any outlets, to obtain total airflow.
 - c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.

- c. Measure static pressure across each component that makes up the air-handling system.
- d. Report artificial loading of filters at the time static pressures are measured.
- 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 4. Obtain approval from Owner for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Adjust the variable-air-volume systems as follows:
 - 1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
 - 2. Verify that the system is under static pressure control.

- 3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
- 4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 - a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 - b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 - c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 - d. Adjust controls so that terminal is calling for minimum airflow.
 - e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 - f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
 - g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.
- 5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 - c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
- 6. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report any artificial loading of filters at the time static pressures are measured.

- 7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - b. Verify that terminal units are meeting design airflow under system maximum flow.
- 8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.
- 9. Verify final system conditions as follows:
 - a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 - b. Re-measure and confirm that total airflow is within design.
 - c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 - d. Mark final settings.
 - e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 - f. Verify tracking between supply and return fans.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:
 - 1. Check liquid level in expansion tank.
 - 2. Check highest vent for adequate pressure.
 - 3. Check flow-control valves for proper position.
 - 4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
 - 5. Verify that motor starters are equipped with properly sized thermal protection.
 - 6. Check that air has been purged from the system.

3.8 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

- A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.
- B. Adjust the variable-flow hydronic system as follows:
 - 1. Verify that the differential-pressure sensor is located as indicated.

- 2. Determine whether there is diversity in the system.
- C. For systems with no diversity:
 - 1. Adjust pumps to deliver total design water flow.
 - a. Measure total water flow.
 - 1) Position valves for full flow through coils.
 - 2) Measure flow by main flow meter, if installed.
 - 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 - b. Measure pump TDH as follows:
 - 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - 3) Convert pressure to head and correct for differences in gage heights.
 - 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 - c. Monitor motor performance during procedures and do not operate motor in an overloaded condition.
 - 2. Adjust flow-measuring devices installed in mains and branches to design water flows.
 - a. Measure flow in main and branch pipes.
 - b. Adjust main and branch balance valves for design flow.
 - c. Re-measure each main and branch after all have been adjusted.
 - 3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 - a. Measure flow at terminals.
 - b. Adjust each terminal to design flow.
 - c. Re-measure each terminal after it is adjusted.
 - d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 - e. Perform temperature tests after flows have been balanced.
 - 4. For systems with pressure-independent valves at terminals:
 - a. Measure differential pressure and verify that it is within manufacturer's specified range.
 - b. Perform temperature tests after flows have been verified.

- 5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 - a. Measure and balance coils by either coil pressure drop or temperature method.
 - b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
- 6. Prior to verifying final system conditions, determine the system differential-pressure set point.
- 7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
- 8. Mark final settings and verify that all memory stops have been set.
- 9. Verify final system conditions as follows:
 - a. Re-measure and confirm that total water flow is within design.
 - b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 - c. Mark final settings.
- 10. Verify that memory stops have been set.
- D. For systems with diversity:
 - 1. Determine diversity factor.
 - 2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.
 - 3. Adjust pumps to deliver total design gpm.
 - a. Measure total water flow.
 - 1) Position valves for full flow through coils.
 - 2) Measure flow by main flow meter, if installed.
 - 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 - b. Measure pump TDH as follows:
 - 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - 3) Convert pressure to head and correct for differences in gage heights.
 - 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 - c. Monitor motor performance during procedures and do not operate motor in an overloaded condition.

- 4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 - a. Measure flow in main and branch pipes.
 - b. Adjust main and branch balance valves for design flow.
 - c. Re-measure each main and branch after all have been adjusted.
- 5. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 - a. Measure flow at terminals.
 - b. Adjust each terminal to design flow.
 - c. Re-measure each terminal after it is adjusted.
 - d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 - e. Perform temperature tests after flows have been balanced.
- 6. For systems with pressure-independent valves at terminals:
 - a. Measure differential pressure and verify that it is within manufacturer's specified range.
 - b. Perform temperature tests after flows have been verified.
- 7. For systems without pressure-independent valves or flow-measuring devices at terminals:
 - a. Measure and balance coils by either coil pressure drop or temperature method.
 - b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
- 8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.
- 9. Prior to verifying final system conditions, determine system differential-pressure set point.
- 10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
- 11. Mark final settings and verify that memory stops have been set.
- 12. Verify final system conditions as follows:
 - a. Re-measure and confirm that total water flow is within design.
 - b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 - c. Mark final settings.
- 13. Verify that memory stops have been set.

3.9 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:

- 1. Manufacturer's name, model number, and serial number.
- 2. Motor horsepower rating.
- 3. Motor rpm.
- 4. Phase and hertz.
- 5. Nameplate and measured voltage, each phase.
- 6. Nameplate and measured amperage, each phase.
- 7. Starter size and thermal-protection-element rating.
- 8. Service factor and frame size.
- B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.10 PROCEDURES FOR CHILLERS

- A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:
 - 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
 - 2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
 - 3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
 - 4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
 - 5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
 - 6. Capacity: Calculate in tons of cooling.
 - 7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.11 PROCEDURES FOR BOILERS

- A. Hydronic Boilers:
 - 1. Measure and record entering- and leaving-water temperatures.
 - 2. Measure and record water flow.
 - 3. Record relief valve pressure setting.
- B. Steam Boilers:
 - 1. Measure and record entering-water temperature.
 - 2. Measure and record feed water flow.
 - 3. Measure and record leaving-steam pressure and temperature.
 - 4. Record relief valve pressure setting.

3.12 CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify temperature control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 - 3. Verify that controllers are calibrated and function as intended.
 - 4. Verify that controller set points are as indicated.
 - 5. Verify the operation of lockout or interlock systems.
 - 6. Verify the operation of valve and damper actuators.
 - 7. Verify that controlled devices are properly installed and connected to correct controller.
 - 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 - 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.13 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 - 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 - 3. Check the refrigerant charge.
 - 4. Check the condition of filters.
 - 5. Check the condition of coils.
 - 6. Check the operation of the drain pan and condensate-drain trap.
 - 7. Check bearings and other lubricated parts for proper lubrication.
 - 8. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 - 1. New filters are installed.
 - 2. Coils are clean and fins combed.
 - 3. Drain pans are clean.
 - 4. Fans are clean.
 - 5. Bearings and other parts are properly lubricated.
 - 6. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.

- 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
- 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
- 3. If calculations increase or decrease the airflow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
- 4. Balance each air outlet.

3.14 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.15 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.16 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.

- 5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

- 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
- 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Preheat-coil static-pressure differential in inches wg.
 - g. Cooling-coil static-pressure differential in inches wg.
 - h. Heating-coil static-pressure differential in inches wg.
 - i. Outdoor airflow in cfm.
 - j. Return airflow in cfm.
 - k. Outdoor-air damper position.
 - 1. Return-air damper position.
 - m. Vortex damper position.
- F. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft..

- h. Tube size in NPS.
- i. Tube and fin materials.
- j. Circuiting arrangement.
- 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Average face velocity in fpm.
 - c. Air pressure drop in inches wg.
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 - e. Return-air, wet- and dry-bulb temperatures in deg F.
 - f. Entering-air, wet- and dry-bulb temperatures in deg F.
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 - h. Water flow rate in gpm.
 - i. Water pressure differential in feet of head or psig.
 - j. Entering-water temperature in deg F.
 - k. Leaving-water temperature in deg F.
 - 1. Refrigerant expansion valve and refrigerant types.
 - m. Refrigerant suction pressure in psig.
 - n. Refrigerant suction temperature in deg F.
 - o. Inlet steam pressure in psig.
- G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btu/h.
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and rpm.
 - k. Motor volts, phase, and hertz.
 - 1. Motor full-load amperage and service factor.
 - m. Sheave make, size in inches, and bore.
 - n. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F.
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.

- g. Air static-pressure differential in inches wg.
- h. Low-fire fuel input in Btu/h.
- i. High-fire fuel input in Btu/h.
- j. Manifold pressure in psig.
- k. High-temperature-limit setting in deg F.
- 1. Operating set point in Btu/h.
- m. Motor voltage at each connection.
- n. Motor amperage for each phase.
- o. Heating value of fuel in Btu/h.
- H. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.

- e. Duct size in inches.
- f. Duct area in sq. ft..
- g. Indicated airflow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual airflow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.
- J. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft..
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary airflow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final airflow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.
- K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Entering-water temperature in deg F.
 - c. Leaving-water temperature in deg F.
 - d. Water pressure drop in feet of head or psig.
 - e. Entering-air temperature in deg F.
 - f. Leaving-air temperature in deg F.

- L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm.
 - g. Water pressure differential in feet of head or psig.
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump rpm.
 - j. Impeller diameter in inches.
 - k. Motor make and frame size.
 - 1. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.
- M. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.17 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Owner.
- B. Owner shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- E. If TAB work fails, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 - 3. If the second verification also fails, Owner may contact AABC Headquarters regarding the AABC National Performance Guaranty.
- F. Prepare test and inspection reports.

3.18 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Outdoor, exposed supply and return.
- B. Related Sections:
 - 1. Section 230716 "HVAC Equipment Insulation."
 - 2. Section 230719 "HVAC Piping Insulation."
 - 3. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Sheet Form Insulation Materials: 12 inches square.
 - 2. Sheet Jacket Materials: 12 inches square.

3. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534, Type II for sheet materials.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Aeroflex USA, Inc</u>.
 - b. <u>Armacell LLC</u>.
 - c. K-FLEX.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C553, Type II and ASTM C1290, Type III with factory-applied FSP jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>CertainTeed Corporation</u>.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. <u>Knauf Insulation</u>.

d. <u>Owens Corning</u>.

- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C612, Type IA or Type IB. For duct and plenum applications, provide insulation with factoryapplied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>CertainTeed Corporation</u>.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. <u>Knauf Insulation</u>.
 - d. <u>Owens Corning</u>.
- I. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied FSK jacket complying with ASTM C1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factoryapplied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>.
 - b. <u>Eagle Bridges Marathon Industries</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. <u>Mon-Eco Industries, Inc</u>.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Aeroflex USA, Inc</u>.
 - b. <u>Armacell LLC</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- a. Childers Brand; H. B. Fuller Construction Products.
- b. Eagle Bridges Marathon Industries.
- c. Foster Brand; H. B. Fuller Construction Products.
- d. <u>Mon-Eco Industries, Inc</u>.
- D. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. <u>Eagle Bridges Marathon Industries</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. <u>Mon-Eco Industries, Inc</u>.
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company
 - b. <u>P.I.C. Plastics, Inc.</u>
 - c. <u>Speedline Corporation</u>
 - d. <u>The Dow Chemical Company</u>

2.3 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Retarder Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Foster Brand; H. B. Fuller Construction Products.
 - b. <u>Knauf Insulation</u>.
 - c. <u>Vimasco Corporation</u>.
 - 2. Water-Vapor Permeance: Comply with ASTM C755, Section 7.2.2, Table 2, for insulation type and service conditions.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Comply with MIL-PRF-19565C, Type II, for permeance requirements.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. <u>Eagle Bridges Marathon Industries</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. <u>Knauf Insulation</u>.
 - e. <u>Mon-Eco Industries, Inc</u>.
 - f. <u>Vimasco Corporation</u>.
- 2. Water-Vapor Permeance: ASTM E96, greater than 1.0 perm at manufacturer's recommended dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24)
 - 2. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. <u>Vimasco Corporation</u>.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F.
 - 5. Color: White.

2.5 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. <u>Eagle Bridges Marathon Industries</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. <u>Mon-Eco Industries, Inc</u>.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.

- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>.
 - b. Foster Brand: H.B. Fuller Construction Products.
 - c. Epolux.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C1136, Type II.
 - 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E96/E96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>.
 - b. <u>Compac Corporation</u>.
 - c. Ideal Tape Co., Inc., an American Biltrite Company.
 - d. <u>Knauf Insulation</u>.
 - e. <u>Venture Tape</u>.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.

- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. <u>Compac Corporation</u>.
 - c. Ideal Tape Co., Inc., an American Biltrite Company.
 - d. <u>Knauf Insulation</u>.
 - e. <u>Venture Tape</u>.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Compac Corporation</u>.
 - b. Ideal Tape Co., Inc., an American Biltrite Company
 - c. <u>Venture Tape</u>.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.

2.8 SECUREMENTS

- A. Bands:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 2. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

- a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>AGM Industries, Inc</u>.
 - 2) <u>Gemco</u>.
 - 3) <u>Midwest Fasteners, Inc</u>.
- b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
- d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - c. Spindle: Nylon, 0.106-inch-diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>AGM Industries, Inc</u>.
 - 2) <u>Gemco</u>.
 - 3) <u>Midwest Fasteners, Inc</u>.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanizedsteel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- 1) <u>AGM Industries, Inc</u>.
- 2) <u>Gemco</u>.
- 3) Midwest Fasteners, Inc.
- b. <u>Nelson Stud Welding</u>.Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed, stainless steel.

2.9 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Seal penetrations through fire-rated assemblies.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

- 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inchwide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.

- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inchwide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.

- 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
- 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vaporbarrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies.

3.8 FINISHES

- A. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- B. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" 3.10 Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Outdoor, exposed supply and return.

B. Items Not Insulated:

- 1. Fibrous-glass ducts.
- 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
- 3. Factory-insulated flexible ducts.
- 4. Factory-insulated plenums and casings.
- 5. Flexible connectors.
- 6. Vibration-control devices.
- 7. Factory-insulated access panels and doors.

3.11 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. All indoor concealed, supply, return, exhaust and outside air ducts and plenum insulation shall be one of the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density. Min. Installed R-Value = 6.0.
 - 2. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. Ft. nominal density. Min installed R-Value=6.0.
- B. All indoor exposed supply, return, exhaust and outside air ducts and plenums located in non-conditioned space insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density. Min. Installed R-Value = 6.0.
 - 2. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. ft. nominal density. Min installed R-Value = 6.0.
- C. All exposed or concealed outside air ducts and plenums located in conditioned and non-conditioned spaces (from louver or penetration to unit inlet including return duct where outside air enters return duct) shall be the following:
 - 1. Flexible Elastomeric: 1-1/2 inches thick. Min R-Value 6.0.

- D. All exposed or concealed, exhaust-air ducts and plenums (from louver or penetration to fan outlet or 5ft from exterior wall penetration whichever is less) insulation shall be the following:
 - 1. Flexible Elastomeric: 1-1/2 inches thick. Min R-Value 6.0.

3.12 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.
- B. Exposed, Supply-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density. Min installed R-Value=8.0.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):
 - 1. Aluminum, Stucco Embossed: 0.024 inch (0.61 mm) thick.

END OF SECTION 230713

SECTION 230716 - HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating HVAC equipment that is not factory insulated.
- B. Related Sections:
 - 1. Section 230713 "Duct Insulation."
 - 2. Section 230719 "HVAC Piping Insulation."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail removable insulation at equipment connections.
 - 2. Detail application of field-applied jackets.
 - 3. Detail application at linkages of control devices.
 - 4. Detail field application for each equipment type.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Sheet Form Insulation Materials: 12 inches square.
 - 2. Sheet Jacket Materials: 12 inches square.
 - 3. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less and smoke-developed index of 50 or less.
- C. Insulation Installed Outdoors: Flame-spread index of 75 or less and smoke-developed index of 150 or less.
- D. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.
 - 1. Equipment Mockups:

.

- a. One chilled-water pump and one heating-hot-water pump.
- b. One tank or vessel.
- c.
- 2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
- 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
- 4. Obtain Architect's approval of mockups before starting insulation application.
- 5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
- 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- 7. Demolish and remove mockups when directed.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with equipment Installer for equipment insulation application.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

2.2 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.

- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable in accordance with ASTM C795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Comply with ASTM C552.
 - 1. Block Insulation: Type I.
 - 2. Special-Shaped Insulation: Type III.
 - 3. Board Insulation: Type IV.
 - 4. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.
 - 5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534/C534M, Type II for sheet materials.
- G. Mineral-Fiber Blanket: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C553, Type II, and ASTM C1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- H. High-Temperature, Mineral-Fiber Blanket: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C553, Type V, without factory-applied jacket.
- I. Mineral-Fiber Board: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C612, Type IA or Type IB. Provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- J. High-Temperature, Mineral-Fiber Board: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C612, Type III, without factory-applied jacket.
- K. Mineral-Fiber, Pipe and Tank: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C1393.
 - 1. Semirigid board material with factory-applied ASJ jacket.
 - 2. Nominal density is 2.5 lb/cu. ft. or more.
 - 3. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less.
 - 4. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- L. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C534/C534M or ASTM C1427, Type II, Grade 1 for sheet materials.
- M. Polystyrene: Rigid, extruded cellular polystyrene intended for use as thermal insulation. Comply with ASTM C578, Type IV or VIII.
 - 1. Fabricate shapes in accordance with ASTM C450 and ASTM C585.

2.3 INSULATING CEMENTS

A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C449.

2.4 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
- C. Polystyrene Adhesive: Solvent- or water-based, synthetic resin adhesive with a service temperature range of minus 20 to plus 140 deg F.
- D. ASJ Adhesive and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
- E. PVC Jacket Adhesive: Compatible with PVC jacket.

2.5 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates. comply with MIL-PRF-19565C, Type II.
- B. Vapor-Retarder Mastic, Water Based: Suitable for indoor and outdoor use on below-ambient services.
 - 1. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 2. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 3. Color: White.
 - 4. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 - 5. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 6. Comply with MIL-PRF-19565C, Type II, for permeance requirements, with supplier listing on DOD QPD Qualified Products Database.
 - 7. Color: White.

2.6 SEALANTS

- A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.
- B. Joint Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 4. Color: White or gray.
- C. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.

- 3. Service Temperature Range: Minus 40 to plus 250 deg F.
- 4. Color: Aluminum.
- D. ASJ Flashing Sealants and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
 - 4. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested in accordance with ASTM E96/E96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for equipment.

2.9 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C1136, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White.
 - 3. Factory-fabricated tank heads and tank side panels.
 - 4. Color: White.
 - 5. Factory-fabricated tank heads and tank side panels.
- D. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a

rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.

- E. PVDC Jacket for Indoor Applications: 4-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm when tested in accordance with ASTM E96/E96M and with a flame-spread index of 10 and a smoke-developed index of 20 when tested in accordance with ASTM E84.
- F. PVDC Jacket for Outdoor Applications: 6-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested in accordance with ASTM E96/E96M and with a flame-spread index of 25 and a smoke-developed index of 50 when tested in accordance with ASTM E84.
- G. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.

2.10 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.

- 5. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 6 mils.
 - 3. Adhesive Thickness: 1.5 mils.
 - 4. Elongation at Break: 145 percent.
 - 5. Tensile Strength: 55 psi in width.
- F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.
 - 2. Film Thickness: 6 mils.
 - 3. Adhesive Thickness: 1.5 mils.
 - 4. Elongation at Break: 145 percent.
 - 5. Tensile Strength: 55 psi in width.

2.11 SECUREMENTS

- A. Bands:
 - 1. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 2. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size is determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank; length to suit depth of insulation indicated.
 - c. Adhesive: Recommended by hanger manufacturer. Use product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - b. Spindle: Nylon, 0.106-inch-diameter shank; length to suit depth of insulation indicated, up to 2-1/2 inches.
 - c. Adhesive: Recommended by hanger manufacturer. Use product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

- 3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed; 0.106-inch-diameter shank; length to suit depth of insulation indicated.
 - c. Adhesive-backed base with a peel-off protective cover.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed, stainless steel.

2.12 CORNER ANGLES

- A. PVC Corner Angles: 30-mils- thick, minimum 1- by 1-inch PVC in accordance with ASTM D1784, Class 16354-C, white or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040-inch- thick, minimum 1- by 1-inch aluminum in accordance with ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range of between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, and jackets, of thicknesses required for each item of equipment, as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

- 1. Install insulation continuously through hangers and around anchor attachments.
- 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
- 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation more than 25 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- O. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive, anchor pins, and speed washers.
 - 1. Apply adhesives in accordance with manufacturer's recommended coverage rates per unit area, for 50 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints and 16 inches o.c. in both directions.
 - d. Do not over-compress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins, and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless steel or aluminum bands. Select band material compatible with insulation materials.
 - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
 - 7. Stagger joints between insulation layers at least 3 inches.
 - 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
 - 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
 - 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

- 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
- 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a field-adjustable latching mechanism.
 - 2. Fabricate boxes from aluminum, at least 0.050 inch thick.
 - 3. For below-ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.5 INSTALLATION OF CALCIUM SILICATE INSULATION

- A. Insulation Installation on Boiler Breechings:
 - 1. Secure single-layer insulation with stainless steel bands at 12-inch intervals, and tighten bands without deforming insulation material.
 - 2. Install two-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with wire spaced at 12-inch intervals. Secure outer layer with stainless steel bands at 12-inch intervals.
 - 3. On exposed applications without metal jacket, finish insulation surface with a skim coat of mineral-fiber, hydraulic-setting cement. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth. Overlap edges at least 1 inch. Apply finish coat of lagging adhesive over glass cloth. Thin finish coat to achieve smooth, uniform finish.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.
- D. Where PVDC jackets are indicated, install as follows:
 - 1. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. 33-1/2-inch-circumference limit allows for 2-inch-overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 2. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.8 FINISHES

- A. Equipment Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Owner will engage a qualified testing agency to perform tests and inspections.
- B. Engage a qualified testing agency to perform tests and inspections.

- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections with the assistance of a factory-authorized service representative.
- E. Tests and Inspections: Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in "Indoor Equipment Insulation Schedule" and "Outdoor, Aboveground Equipment Insulation Schedule? articles. For large equipment, remove only a portion adequate to determine compliance.
- F. All insulation applications will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports.

3.10 EQUIPMENT INSULATION SCHEDULE, GENERAL

- A. Insulation conductivity and thickness per pipe size shall comply with schedules in this Section or with requirements of authorities having jurisdiction, whichever is more stringent.
- B. Acceptable insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials is Contractor's option.

3.11 BREECHING INSULATION SCHEDULE

- A. Round, exposed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.
 - 2. High-Temperature Mineral-Fiber Blanket: 3 inches thick and 3-lb/cu. ft. nominal density.
 - 3. High-Temperature Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.
- B. Round, concealed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.
 - 2. High-Temperature Mineral-Fiber Blanket: 3 inches thick and 3-lb/cu. ft. nominal density.
 - 3. High-Temperature Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.
- C. Rectangular, exposed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.
 - 2. High-Temperature Mineral-Fiber Blanket: 3 inches thick and 3-lb/cu. ft. nominal density.
 - 3. High-Temperature Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.
- D. Rectangular, concealed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulation for HVAC piping systems.
- B. Related Sections:
 - 1. Section 230713 "Duct Insulation" for duct insulation.
 - 2. Section 230716 "HVAC Equipment Insulation" for equipment insulation.
 - 3. Section 232113.13 "Underground Hydronic Piping" loose-fill pipe insulation in underground piping outside the building.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.
 - 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 - 2. Sheet Form Insulation Materials: 12 inches square.
 - 3. Jacket Materials for Pipe: 12 inches long by NPS 2.
 - 4. Sheet Jacket Materials: 12 inches square.
 - 5. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come into contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable in accordance with ASTM C795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534/C534M, Type I for tubular materials, Type II for sheet materials.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Aeroflex USA, Inc</u>.
 - b. <u>Armacell LLC</u>.
 - c. <u>K-Flex USA</u>.
- G. Mineral-Fiber, Preformed Pipe: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. <u>Knauf Insulation</u>.
 - c. <u>Manson Insulation Inc</u>.
 - d. <u>Owens Corning</u>.

- 2. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ.
- 3. 850 deg F.
- 4. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.
- 5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

A. Mineral-Fiber Insulating Cement: Comply with ASTM C195.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Solvent-based adhesive.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Aeroflex USA, Inc</u>.
 - b. <u>Armacell LLC</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. <u>K-Flex USA</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.
 - 4. Wet Flash Point: Below 0 deg F.
 - 5. Service Temperature Range: 40 to 200 deg F.
 - 6. Color: Black.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>.
 - b. <u>Eagle Bridges Marathon Industries</u>.
 - c. <u>Foster Brand; H. B. Fuller Construction Products</u>.
 - d. <u>Mon-Eco Industries, Inc</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. ASJ Adhesive and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. <u>Eagle Bridges Marathon Industries</u>.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. <u>Mon-Eco Industries, Inc</u>.
- 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Dow Corning Corporation</u>.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. <u>P.I.C. Plastics, Inc</u>.
 - d. <u>Speedline Corporation</u>.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS AND COATINGS

- A. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Retarder Mastic, Water Based: Suitable for indoor use on below-ambient services.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Foster Brand; H. B. Fuller Construction Products.
 - b. <u>Knauf Insulation</u>.
 - c. <u>Vimasco Corporation</u>.
 - 2. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Comply with MIL-PRF-19565C, Type II, for permeance requirements, with supplier listing on DOD QPD Qualified Products Database.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Adhesives shall comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. <u>Vimasco Corporation</u>.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F.
 - 5. Color: White.

2.6 SEALANTS

- A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.
- B. Joint Sealants:
- C. ASJ Flashing Sealants and PVDC and PVC Jacket Flashing Sealants:
 - 1. Fire- and water-resistant, flexible, elastomeric sealant.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.
 - 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.
- B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd..

2.10 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C1136, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. <u>P.I.C. Plastics, Inc</u>.
 - c. <u>Proto Corporation</u>.
 - d. <u>Speedline Corporation</u>.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- D. Metal Jacket:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Childers Brand; H. B. Fuller Construction Products</u>.

- b. <u>ITW Insulation Systems; Illinois Tool Works, Inc.</u>
- c. <u>RPR Products, Inc</u>.
- 2. Aluminum Jacket: Comply with ASTM B209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.11 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>.
 - b. <u>Compac Corporation</u>.
 - c. <u>Knauf Insulation</u>.
 - d. <u>Venture Tape</u>.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

2.

- a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>.
- b. <u>Compac Corporation</u>.
- c. <u>Knauf Insulation</u>.
- d. Venture Tape.
- Width: 3 inches.
- 3. Thickness: 6.5 mils.
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Avery Dennison Corporation, Specialty Tapes Division</u>.
 - b. <u>Compac Corporation</u>.
 - c. <u>Knauf Insulation</u>.
 - d. <u>Venture Tape</u>.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.12 SECUREMENTS

A. Bands:

- 1. Stainless Steel: ASTM A240/A240M, Type 304; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
- 2. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- 3. Springs: Twin spring set constructed of stainless steel, with ends flat and slotted to accept metal bands. Spring size is determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4 inch wide, stainless steel or Monel.
- C. Wire: 0.062-inch soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 - 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 25 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fireresistive joint sealers.
- F. Insulation Installation at Floor Penetrations:

- 1. Pipe: Install insulation continuously through floor penetrations.
- 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges, mechanical couplings, and unions using a section of oversized preformed pipe insulation to fit. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and

unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.

- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as that of pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.

- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as that of pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vaporbarrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outwardclinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as that of straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as that of straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated and for horizontal applications, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.
- E. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 - 2. Wrap factory-presized jackets around individual pipe insulation sections, with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 - 3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer

to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.

- 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch-circumference limit allows for 2-inch-overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
- 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.9 FIELD QUALITY CONTROL

- A. Owner will engage a qualified testing agency to perform tests and inspections.
- B. Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- F. All insulation applications will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports.

3.10 PIPING INSULATION SCHEDULE, GENERAL

- A. Insulation conductivity and thickness per pipe size shall comply with schedules in this Section or with requirements of authorities having jurisdiction, whichever is more stringent.
- B. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- C. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Underground piping.
 - 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch thick.
- B. Chilled Water and Brine, above 40 Deg F:
 - NPS 1-1/2 and smaller and Smaller: Insulation shall be the following:

 Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - 1. NPS 2 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- C. Heating-Hot-Water Supply and Return, 200 Deg F and Below:
 - NPS 1-1/2 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inch thick.
 - NPS 2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
- D. Refrigerant Suction and Hot-Gas Piping:
 - All Pipe Sizes Exposed (or concealed, but not in Return Air Plenum): Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.
 - 2. All Pipe Sizes Concealed in Return Air Plenum: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Chilled Water and Brine:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 2 inches thick (two layers of 1" thick with overlapping seams).
- B. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inches thick.

3.13 OUTDOOR, UNDERGROUND, PIPING INSULATION SCHEDULE

A. Insulation, for belowground piping, is specified in Section 232113.13 "Underground Hydronic Piping" and Section 336313 "Underground Steam and Condensate Distribution Piping."

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. Aluminum, Smooth with Z-Shaped Locking Seam: 0.024 inch thick.

3.16 UNDERGROUND, FIELD-APPLIED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 230719

SECTION 230910 – VARIABLE FREQUENCY DRIVES (VFDS)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Section 230500, Common Work Results for HVAC.
 - 2. Section 231113, Metal Ducts.
 - 3. Section 233300, Air Duct Accessories.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Variable Frequency Drives (VFD) for 23 work. Instrumentation and Control for HVAC Equipment, in accordance with this Section.

1.3 ACTION SUBMITTALS

- A. Product Data:
 - 1. Statement guaranteeing compatibility of submitted motors with submitted variable frequency drives. Coordinate with the motor manufacturer to guarantee that the motor supplied are Inverter Duty class motors and will operate properly with the submitted variable frequency drives without objectionable motor noise, heat, or loss of efficiency.
 - 2. Calculations showing the effect of the variable frequency drives on the building system.
 - 3. Recommended spare parts list.
 - 4. Application specific programming plan showing the parameters and options selected for each drive.
- B. Operation and Maintenance Data: For variable frequency drives to include in emergency, operation, and maintenance manuals. In addition, submit the following:
 - 1. Troubleshooting, repair and maintenance manual.
 - 2. Service manuals including inter-board wiring, detailed trouble-shooting procedures, and spare parts list and suppliers.

- 3. Submit product manuals and drawings which include wiring diagrams, dimensions, front view and catalog information indicating complete electrical and mechanical characteristics.
- C. Qualifications of agent who will perform start-up and testing.
- D. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain all variable frequency drives through one source from a single manufacturer unless otherwise specified. VFDs shall be supplied by the same representative supplying the air handlers to ensure sole source responsibility for motor/drive compatibility.
- B. Service:
 - 1. Manufacturer shall maintain a service center or service representative within 180 miles of the job site. This center must normally provide the following services:
 - a. Factory coordinated start-up service.
 - b. Perform service calls and providing replacement parts within twenty-four (24) hours
 - c. Provide service agreements.
 - d. Training of customers in operation and basic troubleshooting.
 - e. Maintaining a stock of frequently replaceable parts at a local warehouse.
- C. All drives shall be burned-in for a minimum of seventy-two (72) hours, cycling load to simulate no load/full load and exercise drive power requirements.
- D. The complete drive shall be functionally tested with a motor before shipment to assure proper operation per specification.
- E. Standards Compliance:
 - 1. The drive shall be built to applicable NEMA standards for use as a component to meet NEC requirements.
 - 2. Drive is to be listed by Underwriter's Laboratories (UL).
 - 3. IEEE 519: Total harmonic distortion, 5 % maximum (complying with IEEE 519, without external isolation transformers, line reactors or filters)
 - 4. IEEE 587: Surge Protection
 - 5. FCC, Part 15, subpart J: EMI and RFI radiation
 - 6. NEC

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain all variable frequency drives through one source from a single manufacturer unless otherwise specified. VFDs shall be supplied by the same representative supplying the air handlers to ensure sole source responsibility for motor/drive compatibility.

B. Service:

- 1. Manufacturer shall maintain a service center or service representative within 180 miles of the job site. This center must normally provide the following services:
 - a. Factory coordinated start-up service.
 - b. Perform service calls and providing replacement parts within twenty-four (24) hours
 - c. Provide service agreements.
 - d. Training of customers in operation and basic troubleshooting.
 - e. Maintaining a stock of frequently replaceable parts at a local warehouse.
- C. All drives shall be burned-in for a minimum of seventy-two (72) hours, cycling load to simulate no load/full load and exercise drive power requirements.
- D. The complete drive shall be functionally tested with a motor before shipment to assure proper operation per specification.
- E. Standards Compliance:
 - 1. The drive shall be built to applicable NEMA standards for use as a component to meet NEC requirements.
 - 2. Drive is to be listed by Underwriter's Laboratories (UL).
 - 3. IEEE 519: Total harmonic distortion, 5 % maximum (complying with IEEE 519, without external isolation transformers, line reactors or filters)
 - 4. IEEE 587: Surge Protection
 - 5. FCC, Part 15, subpart J: EMI and RFI radiation
 - 6. NEC

1.6 DELIVERY, STORAGE, AND HANDLING

- A. It is the Contractor's responsibility to ensure on-time delivery of all materials and equipment required for the Project. All materials furnished or incorporated in the Work shall be new, unused, of best quality, and especially adapted for the service required; whenever the characteristics of any material are not particularly specified, such material shall be utilized as is customary in first class work of a nature for which the material is employed.
- B. Contractor shall provide necessary means to properly stage and store all materials and equipment until time of use or installation on the Project. Contractor shall be solely responsible for materials and equipment stored on the Site; type and extent of security provided to be at Contractor's discretion. Coordinate all requirements with Owner.
- C. Contractor shall be responsible for proper handling, rigging, and installing of all materials and equipment for the Project.
- D. Owner reserves the right to reject any materials or equipment that are not properly stored in accordance with these specifications or the manufacturers' requirements.

E. Refer to Section 015000, Temporary Facilities and Controls, for additional delivery and storage requirements.

1.7 COORDINATION

A. Variable frequency drives shall be provided where indicated in the equipment schedules that motors are to be inverter duty ready. Verify with the sequence of operations and clarify quantities prior to bid, as necessary.

1.8 WARRANTY

A. All hydronic pumps furnished and installed under this contract, shall be guaranteed against defects in design, materials and workmanship for the full warranty period which is standard with the manufacturer, but in no case less than one (1) year from the date of system acceptance.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Approved Manufacturers, no substitutions: Subject to compliance with requirements, provide products by named manufacturer(s). Substitution request will not be considered.
 - 2. Approved Manufacturers, substitutions by prior approval only: Subject to compliance with requirements, provide products by one of the named manufacturers. Substitutions will be considered for products by other manufacturers if submitted in advance of bidding in conformance with requirement of Division 1.
 - 3. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - 4. Approved Manufacturers Basis of Design bid: Subject to compliance with requirements, provide products by the Basis of Design manufacturer listed. Base bid shall include the Basis of Design. Substitutions will be considered for new products by other manufacturers listed, but are not required in advance of bid. When substitution requests are submitted, the Architect / Engineer will be the sole judge of equivalency.
2.2 VARIABLE FREQUENCY DRIVES

- A. Approved Manufacturers, substitutions by prior approval only: Subject to compliance with requirements, provide products by one of the named manufacturers. Substitutions will be considered for products by other manufacturers if submitted in advance of bidding in conformance with requirement of Division 1.
 - 1. ABB.
 - 2. Eaton.
 - 3. Danfoss.
- B. Refer to sheet M600 for equipment schedule.

PART 3 - EXECUTION

3.1 SIZING

- A. The drives shall be sized as required by the scheduled motors. See Division 23 and the mechanical drawing schedules for motor information. The drive shall be sized for the specified motor size plus a 10 % service factor.
- B. The drives shall be sized to continually operate the motors at 110 % of full load current or greater.
- C. Either a variable or constant torque drive shall be selected based on the application.

3.2 INSTALLATION

- A. Mounting and power wiring and power terminations shall be provided by Division 26.
- B. Control wiring and control terminations shall be provided by Section 260519, Low-Voltage Electrical Power Cables and Conductors.

3.3 FIELD QUALITY CONTROL

- A. The start up and testing is to be provided at the installation site by the manufacturer or other agent deemed acceptable by Architect / Engineer.
- B. Verify all installation connections and controls.
- C. Field adjust all safety controls.
- D. Field adjust all drive parameters (including acceleration and deceleration ramps and volts-tohertz ratio for smooth operation).
- E. All mechanical components shall be adjusted for proper alignment.

- F. Demonstrate satisfactory operation of drive including line reactors, filters, and the bypass contactor under full load rpm.
- G. Submit start-up and test report in accordance with Division 23 requirements.

3.4 DEMONSTRATION AND TRAINING

- A. Provide on-site operation and maintenance training by manufacturer or other agent deemed acceptable by Owner for two identical 2-hour sessions. Coordinate training times with the Verizon Wireless Switch Manager.
- B. At the sessions, include troubleshooting, repair, and maintenance manuals for six (6) maintenance personnel. This is in addition to copies furnished in the Operation and Maintenance Manuals.

END OF SECTION 230910

SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Manual gas shutoff valves.
 - 5. Valves
 - 6. Pressure regulators.

1.3 DEFINITIONS

- A. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Piping specialties.
 - 2. Corrugated, stainless-steel tubing with associated components.
 - 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 4. Pressure regulators. Indicate pressure ratings and capacities.
 - 5. Dielectric fittings.

- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 - 1. Detail mounting, supports, and valve arrangements for pressure regulator assembly.
- C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of seismic restraints.
 - 2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.
- B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- C. Qualification Data: For qualified professional engineer.
- D. Welding certificates.
- E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
- C. Protect stored PE pipes and valves from direct sunlight.

1.9 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083100 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 65 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

2.2 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A234/A234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - a. Material Group: 1.1.
 - b. End Connections: Threaded or butt welding to match pipe.
 - c. Lapped Face: Not permitted underground.
 - d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.

- e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.
- 5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- B. Aluminum Tubing: Comply with ASTM B210 and ASTM B241/B241M.
 - 1. Aluminum Alloy: Alloy 5456 is prohibited.
 - 2. Protective Coating: Factory-applied coating capable of resisting corrosion on tubing in contact with masonry, plaster, insulation, water, detergents, and sewerage.
 - 3. Flare Fittings: Comply with ASME B16.26 and SAE J513.
 - a. Copper-alloy fittings.
 - b. Metal-to-metal compression seal without gasket.
 - c. Dryseal threads shall comply with ASME B1.20.3.
- C. Drawn-Temper Copper Tube: Comply with ASTM B88, Type K.
 - 1. Copper Fittings: ASME B16.22, wrought copper, and streamlined pattern.
 - 2. Bronze Flanges and Flanged Fittings: ASME B16.24, Class 150.
 - a. Gasket Material: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
 - b. Bolts and Nuts: ASME B18.2.1, carbon steel or stainless steel.
 - 3. Protective Coating for Underground Tubing: Factory-applied, extruded PE a minimum of 0.022 inch thick.
- D. Annealed-Temper Copper Tube: Comply with ASTM B88, Type K.
 - 1. Copper Fittings: ASME B16.22, wrought copper, and streamlined pattern.
 - 2. Flare Fittings: Comply with ASME B16.26 and SAE J513.
 - a. Copper fittings with long nuts.
 - b. Metal-to-metal compression seal without gasket.
 - c. Dryseal threads complying with ASME B1.20.3.
 - 3. Protective Coating for Underground Tubing: Factory-applied, extruded PE a minimum of 0.022 inch thick.
- E. PE Pipe: ASTM D2513, SDR 11.
 - 1. PE Fittings: ASTM D2683, socket-fusion type or ASTM D3261, butt-fusion type with dimensions matching PE pipe.
 - 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D2513, SDR 11; and steel pipe complying with ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.

- 3. Anodeless Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D2513, SDR 11 inlet.
 - b. Casing: Steel pipe complying with ASTM A53/A53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 - c. Aboveground Portion: PE transition fitting.
 - d. Outlet shall be threaded or flanged or suitable for welded connection.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
- 4. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D2513, SDR 11 inlet connected to steel pipe complying with ASTM A53/A53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet shall be threaded or flanged or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
- 5. Plastic Mechanical Couplings, NPS 1-1/2 and Smaller: Capable of joining PE pipe to PE pipe.
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1) Lyall, R. W. & Company, Inc.
 - 2) <u>Mueller Co.; Gas Products Div</u>.
 - 3) <u>Perfection Corporation; a subsidiary of American Meter Company</u>.
 - b. PE body with molded-in, stainless-steel support ring.
 - c. Buna-nitrile seals.
 - d. Acetal collets.
 - e. Electro-zinc-plated steel stiffener.
- 6. Plastic Mechanical Couplings, NPS 2 and Larger: Capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1) Lyall, R. W. & Company, Inc.
 - 2) <u>Mueller Co.; Gas Products Div</u>.
 - 3) <u>Perfection Corporation; a subsidiary of American Meter Company</u>.
 - b. Fiber-reinforced plastic body.
 - c. PE body tube.
 - d. Buna-nitrile seals.

- e. Acetal collets.
- f. Stainless-steel bolts, nuts, and washers.
- 7. Steel Mechanical Couplings: Capable of joining plain-end PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe.
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1) Dresser Piping Specialties; Division of Dresser, Inc.
 - 2) <u>Smith-Blair, Inc</u>.
 - 3) <u>Romac Industries, Inc.</u>
 - b. Stainless-steel flanges and tube with epoxy finish.
 - c. Buna-nitrile seals.
 - d. Stainless-steel bolts, washers, and nuts.
 - e. Factory-installed anode for steel-body couplings installed underground.

2.3 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
 - 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
 - 4. Corrugated stainless-steel tubing with polymer coating.
 - 5. Operating-Pressure Rating: 0.5 psig.
 - 6. End Fittings: Zinc-coated steel.
 - 7. Threaded Ends: Comply with ASME B1.20.1.
 - 8. Maximum Length: 72 inches
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shutoff when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.
- C. Y-Pattern Strainers:
 - 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.
- D. Basket Strainers:

- 1. Body: ASTM A126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.
- E. T-Pattern Strainers:
 - 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
 - 2. End Connections: Grooved ends.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
 - 4. CWP Rating: 750 psig.
- F. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.5 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.

- 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig.
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>BrassCraft Manufacturing Company; a Masco company</u>.
 - b. <u>Conbraco Industries, Inc.; Apollo Div</u>.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. <u>Perfection Corporation; a subsidiary of American Meter Company</u>.
 - 2. Body: Bronze, complying with ASTM B584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Bronze Plug Valves: MSS SP-78.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Lee Brass Company</u>.
 - b. McDonald, A. Y. Mfg. Co.
 - c. <u>Hammond.</u>
 - 2. Body: Bronze, complying with ASTM B584.
 - 3. Plug: Bronze.
 - 4. Ends: Threaded, socket, or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Operator: Square head or lug type with tamperproof feature where indicated.
 - 6. Pressure Class: 125 psig.

- 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Lee Brass Company.
 - b. McDonald, A. Y. Mfg. Co.
 - c. <u>Hammond.</u>
 - 2. Body: Cast iron, complying with ASTM A126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.
 - 4. Seat: Coated with thermoplastic.
 - 5. Stem Seal: Compatible with natural gas.
 - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 7. Operator: Square head or lug type with tamperproof feature where indicated.
 - 8. Pressure Class: 125 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- G. Cast-Iron, Lubricated Plug Valves: MSS SP-78.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flowserve</u>.
 - b. <u>Homestead Valve; a division of Olson Technologies, Inc.</u>
 - c. McDonald, A. Y. Mfg. Co.
 - d. <u>Milliken Valve Company</u>.
 - e. <u>Mueller Co.; Gas Products Div</u>.
 - f. <u>R&M Energy Systems, A Unit of Robbins & Myers, Inc.</u>
 - 2. Body: Cast iron, complying with ASTM A126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.
 - 4. Seat: Coated with thermoplastic.
 - 5. Stem Seal: Compatible with natural gas.
 - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 7. Operator: Square head or lug type with tamperproof feature where indicated.
 - 8. Pressure Class: 125 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- H. PE Ball Valves: Comply with ASME B16.40.

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Kerotest Manufacturing Corp</u>.
 - b. Lyall, R. W. & Company, Inc.
 - c. <u>Perfection Corporation; a subsidiary of American Meter Company.</u>
- 2. Body: PE.
- 3. Ball: PE.
- 4. Stem: Acetal.
- 5. Seats and Seals: Nitrile.
- 6. Ends: Plain or fusible to match piping.
- 7. CWP Rating: 80 psig.
- 8. Operating Temperature: Minus 20 to plus 140 deg F.
- 9. Operator: Nut or flat head for key operation.
- 10. Include plastic valve extension.
- 11. Include tamperproof locking feature for valves where indicated on Drawings.
- I. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.6 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Actaris</u>.
 - b. <u>American Meter Company</u>.
 - c. <u>Eclipse Combustion, Inc</u>.
 - d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - e. <u>Invensys</u>.
 - f. <u>Maxitrol Company</u>.
 - g. <u>Richards Industries; Jordan Valve Div</u>.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.

- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
- 6. Orifice: Aluminum; interchangeable.
- 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
- 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
- 10. Overpressure Protection Device: Factory mounted on pressure regulator.
- 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- 12. Maximum Inlet Pressure: 2 psig.
- C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Canadian Meter Company Inc</u>.
 - b. <u>Eaton Corporation; Controls Div</u>.
 - c. <u>Harper Wyman Co</u>.
 - d. <u>Maxitrol Company</u>.
 - e. <u>SCP, Inc</u>.
 - 2. Body and Diaphragm Case: Die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber.
 - 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
 - 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
 - 9. Maximum Inlet Pressure: 1 psig.

2.7 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
- C. Dielectric Unions:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Capitol Manufacturing Company</u>.
 - b. <u>Central Plastics Company</u>.

- c. <u>Hart Industries International, Inc</u>.
- d. Jomar International Ltd.
- e. <u>Matco-Norca, Inc</u>.
- f. McDonald, A. Y. Mfg. Co.
- g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- h. <u>Wilkins; a Zurn company</u>.
- 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig minimum at 180 deg F.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.8 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

A. Comply with NFPA 54 and the International Fuel Gas Code for installation and purging of natural-gas piping.

- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D2774.
- D. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.
- E. Copper Tubing with Protective Coating:
 - 1. Apply joint cover kits over tubing to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
- F. Install fittings for changes in direction and branch connections.
- G. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 and the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.

- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 - 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 - 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
 - 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
 - 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 - a. Exception: Tubing passing through partitions or walls does not require striker barriers.
 - 5. Prohibited Locations:

- a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- b. Do not install natural-gas piping in solid walls or partitions.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- T. Do not use natural-gas piping as grounding electrode.
- U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- V. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

3.5 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.
- E. Install anode for metallic valves in underground PE piping.

3.6 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.

- 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
- 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
 - 2. Bevel plain ends of steel pipe.
 - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.
- G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.
- H. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Install hangers for steel piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- B. Install hangers for corrugated stainless-steel tubing, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- C. Support horizontal piping within 12 inches of each fitting.
- D. Support vertical runs of steel piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- E. Support vertical runs of corrugated stainless-steel tubing to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.8 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to NFPA 54, the International Fuel Gas Code and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.11 OUTDOOR PIPING SCHEDULE

- A. Underground natural-gas piping shall be one of the following:
 - 1. PE pipe and fittings joined by heat fusion, or mechanical couplings; service-line risers with tracer wire terminated in an accessible location.
 - 2. Steel pipe with wrought-steel fittings and welded joints, or mechanical couplings. Coat pipe and fittings with protective coating for steel piping.
- B. Aboveground natural-gas piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints.
- C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.12 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG

- A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 - 1. Annealed-temper, tin-lined copper tube with flared joints and fittings.
 - 2. Aluminum tube with flared fittings and joints.
 - 3. Steel pipe with malleable-iron fittings and threaded joints.
- B. Aboveground, distribution piping shall be the following:
 - 1. Steel pipe with steel welding fittings and welded joints.

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Bronze plug valve.
- B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
 - 3. Cast-iron, nonlubricated plug valve.
- C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.
 - 3. Cast-iron, nonlubricated plug valve.
- E. Valves in branch piping for single appliance shall be one of the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
 - 2. Bronze plug valve.

END OF SECTION 231123

SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Chilled-water piping.
 - 2. Makeup-water piping.
 - 3. Condensate-drain piping.
 - 4. Air-vent piping.
 - 5. Safety-valve-inlet and -outlet piping.

1.2 DEFINITIONS

- A. PTFE: Polytetrafluoroethylene.
- B. RTRF: Reinforced thermosetting resin (fiberglass) fittings.
- C. RTRP: Reinforced thermosetting resin (fiberglass) pipe.
- D. HDPE: High Density Polyethylene

1.3 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Chilled-Water Piping: 150psi at 200 deg F.
 - 2. Condensate-Drain Piping: 150 deg F.
 - 3. Air-Vent Piping: 200 deg F.
 - 4. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.4 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Pressure-seal fittings.
 - 2. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 3. Air control devices.

- 4. Chemical treatment.
- 5. Hydronic specialties.
- B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
- C. Welding certificates.
- D. Qualification Data: For Installer.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.
- B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
 - B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.

- C. DWV Copper Tubing: ASTM B 306, Type DWV.
- D. Wrought-Copper Fittings: ASME B16.22.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. S. P. Fittings; a division of Star Pipe Products.
 - c. Victaulic Company of America.
- E. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

- 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- D. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; AquaSpec Commercial Products Division.
 - 2. Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.
- D. Dielectric Flanges:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Factory-fabricated companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
- E. Dielectric-Flange Kits:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
- 2. Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
- 3. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Calpico, Inc.
 - b. Lochinvar Corporation.
 - c. Zurn
 - 2. Galvanized-steel coupling with inert and noncorrosive thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
- G. Dielectric Nipples:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Perfection Corporation; a subsidiary of American Meter Company.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Victaulic Company of America.
 - 2. Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

- B. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- C. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- D. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 - 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.
- E. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves or automatic flow control valves per construction drawings in the return pipe of each heating or cooling terminal.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.

- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- T. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples or unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges or flange kits.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGERS AND SUPPORTS

- A. Comply with the following requirements for maximum spacing of supports.
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 2. NPS 1: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 1/2 inch.
 - 7. NPS 3: Maximum span, 12 feet; minimum rod size, 1/2 inch.
 - 8. NPS 3-1/2: Maximum span, 13 feet; minimum rod size, 1/2 inch.
 - 9. NPS 4: Maximum span, 14 feet; minimum rod size, 5/8 inch.
 - 10. NPS 5: Maximum span, 16 feet; minimum rod size, 5/8 inch.
 - 11. NPS 6: Maximum span, 17 feet; minimum rod size, 3/4 inch.
 - 12. NPS 8: Maximum span, 19 feet; minimum rod size, 3/4 inch.
 - 13. NPS 10: Maximum span, 22 feet; minimum rod size, 7/8 inch.
- D. Install hangers for drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 3/8 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 1/2 inch.
 - 7. NPS 3: Maximum span, 10 feet; minimum rod size, 1/2 inch.
- E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.6 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- F. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.7 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only or as shown on drawings. Manual vents at heat-transfer coils and elsewhere as required for air venting.

3.8 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - 6. Flush all piping with a water/detergent mixture then rinse thoroughly with water prior to connection to existing chilled water system.
 - 7. Contractor shall install all main piping and flush system with water and contractor provided pumps prior to installing any branch piping or connecting any new piping to the existing chilled water system.
 - 8. After system has been flushed with water, the main piping shall be flushed a second time with a water/detergent solution with contractor provided pumps.
 - 9. The system shall then be drained and the connection of branch piping to the mains shall occur.
 - 10. All branch piping shall be cleaned as thoroughly as possible prior to connection to the main piping.
 - 11. Upon completion of branch piping installation, but prior to final equipment connections, the contractor shall flush the entire piping system with water/detergent mixture and then water using contractor provided pumps. The system shall then be drained and final equipment connections shall be made.
 - 12. Mesh screens shall be placed in all chilled water equipment strainers prior to initial startup.

- 13. The water shall then be circulated through the system using the system's chilled water pump. All mesh screens shall be removed and strainers cleaned prior to final start-up of chilled water system.
- 14. Engineer to witness the flushing of all chilled water piping. Provide engineer (2) days notice prior to work being completed. All flushing of the piing shall be performed as close to system design flow and pressure as possible.
- 15. Contractor shall fill the system with water/30% propylene glycol mixture upon completion of installation (contractor to provide sufficient glycol to get entire system (new and existing piping) up to 30% propylene glycol mixture.
- 16. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 - 7. Verify lubrication of motors and bearings.

END OF SECTION 232113

SECTION 232113.13 - UNDERGROUND HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following underground hydronic piping:1. Pre-insulated pipe and fittings.

1.3 DEFINITIONS

- A. Invert: Vertical distance from Project datum reference point to bottom interior pipe surface.
- B. Reinforced, Thermosetting Resin Fitting (RTRF): Fittings fabricated of composite materials, largely consisting of a reinforcement material embedded in, or surrounded by, cured thermosetting resin. Most common form of reinforced, thermosetting resin pipe is one in which fiberglass strands form reinforcement.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Pre-insulated piping systems.
- B. Shop Drawings: For underground hydronic piping. Signed and sealed by a professional engineer.
 - 1. Include calculations showing requirements for expansion compensation for underground piping.
 - 2. Show expansion compensators, offsets, and loops with appropriate materials to allow piping movement at required locations. Show anchors and guides that restrain piping movement with calculated loads, and show concrete thrust block dimensions.
 - 3. Show pipe sizes, locations, inverts, and pitch. Show piping in trench, piping in conduit, and cased pipe with details showing clearances between piping.
 - 4. Show insulation thickness.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from hydronic distribution piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
- B. Profile Drawings: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet and at vertical scale of not less than 1 inch equals 5 feet.
 - 1. Show locations and inverts of utility system manholes and piping. Show manholes and piping. Show types, sizes, materials, and inverts of other utilities crossing hydronic piping.
 - 2. Show depth of cover from top of hydronic system pipes to finished grade.
- C. Qualification Data: For Installer.
- D. Material Test Reports: For cased piping, by a qualified testing agency.
- E. Source quality-control reports.
- F. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Interruption of Existing Utilities: Do not interrupt utilities serving occupied facilities unless permitted under the following conditions and then only after arranging to provide temporary utility services in accordance with requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of utility.
 - 2. Do not proceed with interruption of utility without Owner's written permission.
 - 3. Furnish a complete system of factory preinsulated PVC piping for the specified service. All preinsulated pipe, fittings, insulating materials, and technical support shall be provided by the Preinsulated Piping System manufacturer.

1.7 COORDINATION

A. Coordinate pipe-fitting pressure classes with products specified in related Sections.

PART 2 - PRODUCTS

2.1 PRE-INSULATED PLASTIC PIPE AND FITTINGS

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Chill-Therm manufactured by Thermacor Process Inc. of Fort Worth, Texas</u>

- b. Perma-Pipe, Inc.
- c. <u>Insul-Pipe Systems</u>
- B. Carrier pipe shall be PVC, SDR-26, Class 160, bell and spigot, gasket joint pipe conforming to ASTM D-2241 and D-1784. PVC resin compound shall be PVC-1120, Class Designation 12454-B. Pipe is rated for 160 psi at 73°F. Pre-insulated pipe sections shall be insulated from the bell end to just short of the spigot insertion stop mark.
- C. Insulation shall be polyurethane foam either spray applied or injected with one shot into the annular space between carrier pipe and jacket, and shall be bonded to both. Insulation shall be rigid, minimum 90% closed cell polyurethane with a minimum 2.0 lbs. per cubic foot density, compressive strength of 30 psi @ 75°F, and coefficient of thermal conductivity (K-Factor) of not higher than 0.16 @ 75°F per ASTM C-518. Maximum operating temperature of urethane shall not exceed 250°F. Insulation thickness shall be specified by calling out appropriate carrier pipe and jacket size combinations as listed on drawing CTSG 5.103 or 5.104.
- D. Jacketing material shall be extruded, black, high density polyethylene (HDPE), having a minimum wall thickness not less than 100 mils for pipe sizes less than or equal to 12", 125 mils for jacket sizes larger than 12" to 24", and 150 mils for jacket sizes greater than 24". No tape jacket allowed. The inner surface of the HDPE jacket shall be oxidized by means of corona treatment, flame treatment (patent pending), or other approved methods. This will ensure a secure bond between the jacket and foam insulation preventing any ingression of water at the jacket/ foam interface.
- E. Straight Run Joints are not insulated to allow for expansion and contraction of the gasketed joint. Cover with an HDPE split sleeve and sealed with a heat shrink sleeve to prevent the ingression of moisture or debris.
- F. Fittings shall be PVC with a gasket joint similar to that of the PVC pipe. Fittings are <u>not</u> insulated and are poured in concrete thrust blocks at all changes of direction. Thrust block design and sizing is the responsibility of the installing contractor.

PART 3 - EXECUTION

- 3.1 Underground systems shall be buried in a trench of not less than two feet deeper than the top of the pipe and not less than eighteen inches wider than the combined O.D. of all piping systems. A minimum thickness of 24 inches of compacted backfill over the top of the pipe will meet H-20 highway loading.
- 3.2 Trench bottom shall have a minimum of 6" of sand, as a cushion for the piping. All field-cutting of the pipe shall be performed in accordance with the manufacturer's installation instructions. At least the center 75% of each section of pre-insulated pipe shall be covered (approximately one foot of cover per 100 psi of test pressure) with select backfill material and all fittings shall be suitably thrust blocked before attempting any pressure tests of the system.
- 3.3 A hydrostatic pressure test of the carrier pipe shall be performed per the engineer's specification with a factory recommendation of one and one-half times the normal system operating pressure for not less than two hours. Care shall be taken to insure all trapped air is removed from the system prior to the test. Appropriate safety precautions shall be taken to guard against possible injury to personnel in the event of a failure.
- 3.4 Field service, if required by project specifications, will be provided by a certified manufacturer's representative or company field service technician. The technician will be available at the job to check unloading, storing, and handling of pipe, joint installation, pressure testing, and backfilling techniques. This service will be added into the cost as part of the project technical services required by the pre-insulated pipe manufacturer.

3.5 PIPING APPLICATION

- A. Chilled-Water Piping:
 - 1. All sizes shall be the following:
 - a. PVC, SDR-26, Class 160, bell and spigot, gasket joint pipe

3.6 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Remove standing water in the bottom of trench.
- C. Bed the pipe on a minimum 6-inch layer of pipe system manufacturer's recommended granular fill material with a minimum 6-inch clearance between pipes.

- D. Do not backfill piping trench until field quality-control testing has been completed and results approved.
- E. Install piping at uniform grade of 0.2 percent. Install required fittings to accommodate capped drains at low points and elsewhere as required for system drainage. Install capped manual air vents at high points.
 - 1. Maintain continuous bedding under piping. Do not leave gaps in pipe bedding, allowing pipe to sag between contact points with the bedding.
- F. In conduits, install drain valves at low points and manual air vents at high points.
- G. Install components with pressure rating equal to or greater than system operating pressure.
- H. Install piping in straight lines. Do not bend pipe.
- I. Install fittings for changes in direction and branch connections.
- J. See Section 230517 "Sleeves and Sleeve Seals for HVAC Piping" for sleeves and mechanical sleeve seals through exterior building walls.
- K. Secure anchors with concrete thrust blocks.
- L. Connect to hydronic piping where it elbows up above grade.
- M. Secure anchors and fittings where piping changes direction, and where elsewhere required by manufacturer's written installation instructions, with concrete thrust blocks.
- N. Apply bitumastic coating to carbon-steel anchors and guides. Pour concrete thrust blocks and anchors.
- O. After field quality-control testing is complete, backfill with 6 inches of clean, granular material in accordance with piping system manufacturer's written instructions. If mechanical compaction is required, manually backfill to 12 inches before using mechanical-compaction equipment.

3.7 LOOSE-FILL INSULATION INSTALLATION

- A. Compact and stabilize bottom of trench and bedding to ensure continuous pipe support.
- B. Remove standing water in the bottom of trench before installing pipe.
- C. Bed the pipe on a minimum 6-inch layer of pipe system manufacturer's recommended granular fill material with a minimum 6-inch clearance between the pipes.
- D. Form insulation trench by excavation or by installing drywall side forms to establish required height and width of insulation.
- E. Support piping with proper pitch, separation, and clearance to backfill or side forms using temporary supporting devices that can be removed after backfilling with insulation.
- F. Place insulation and backfill after field quality-control testing has been completed and results approved.
- G. Insulate piping joints at fittings, expansion loops, and offsets with manufacturer-supplied joint insulation kit. Install insulation of thickness appropriate for calculated expansion amount.
- H. Pour loose-fill insulation to required dimension agitating insulation to eliminate voids around piping.
- I. Maintain pipe system manufacturer's recommended separation between adjacent and crossing pipes and other utilities.
- J. Remove temporary hangers and supports.
- K. Cover loose-fill insulation with polyethylene sheet a minimum of 4 mils thick, and empty loose-fill insulation bags on top.
- L. Manually backfill 6 inches of clean fill. If mechanical compaction is required, manually backfill to 12 inches before using mechanical-compaction equipment. Do not compact fill with excavating machinery buckets, wheels, or treads.

3.8 JOINT CONSTRUCTION

A. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.9 IDENTIFICATION

A. Install continuous plastic underground warning tapes during backfilling of trenches for underground hydronic piping. Locate tapes 6 to 8 inches below finished grade, directly over piping.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
 - 1. Prepare hydronic piping for testing in accordance with ASME B31.9 and as follows:
 - a. Leave joints, including welds, uninsulated and exposed for examination during test.
 - b. Isolate equipment and instrumentation. Do not subject equipment and instrumentation to test pressure.

- c. Install relief valve set to relieve at pressure no more than one-third higher than test pressure.
- d. Fill system with water. Where there is risk of freezing, perform testing with air or liquid that will not freeze or cause damage to piping system materials.
- e. For hydrostatic testing, install vents at high points to release trapped air while filling system. Remove test liquid at accessible low points.
- 2. Test hydronic piping as follows:
 - a. Subject hydronic piping to hydrostatic test pressure that is not less than 1.5 times system design pressure.
 - b. After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.
 - c. Do not pressurize carrier pipe with air.
 - d. Maintain test pressure for four hours with no loss of pressure.
- D. Piping will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Fill underground piping system with permanent system liquid prior to system testing and balancing.

END OF SECTION 232113.13

SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes special-duty valves and specialties for the following:
 - 1. Chilled-water piping.
 - 2. Makeup-water piping.
 - 3. Condensate-drain piping.
 - 4. Air-vent piping.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air-control devices.
 - 3. Hydronic specialties.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Chilled-Water Piping: Insert psig (kPa) at 200 deg F (93 deg C).
 - 2. Condensate-Drain Piping: 150 deg F (66 deg C).

2.2 VALVES

- A. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Nexus Valve, Inc.
 - g. Taco.
 - h. Tour & Andersson; available through Victaulic Company.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig.
 - 10. Maximum Operating Temperature: 250 deg F.
- B. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Nexus Valve, Inc.
 - g. Taco.

- h. Tour & Andersson.
- 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Stem Seals: EPDM O-rings.
- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig.
- 11. Maximum Operating Temperature: 250 deg F.
- C. Automatic Flow-Control Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Bell & Gossett.
 - b. Flow Design Inc.
 - c. Griswold Controls.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self-cleaning, and removable.
 - 4. Combination Assemblies: Include bronze or brass-alloy ball valve.
 - 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
 - 6. Size: Same as pipe in which installed.
 - 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
 - 8. Minimum CWP Rating: 175 psig (1207 kPa).
 - 9. Maximum Operating Temperature: 250 deg F (121 deg C).

2.3 AIR-CONTROL DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amtrol, Inc.
 - 2. Armstrong Pumps, Inc.
 - 3. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - 4. Taco.
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2.
 - 5. Discharge Connection: NPS 1/8.

- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 225 deg F.
- C. Automatic Air Vents:
 - 1. Body: Bronze or cast iron.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Noncorrosive metal float.
 - 4. Inlet Connection: NPS 1/2.
 - 5. Discharge Connection: NPS 1/4.
 - 6. CWP Rating: 150 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
- D. Expansion Tanks:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; a Xylem brand.
 - d. TACO Comfort Solutions, Inc.
 - 2. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested after taps are fabricated and shall be labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 3. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainlesssteel ball check, 80-gal.; sized for compression-tank diameter. Provide tank fittings for 125-psig working pressure and 250 deg F maximum operating temperature.
 - 4. Tank Drain Fitting: Brass body, nonferrous internal parts; 125-psig working pressure and 240 deg F maximum operating temperature; constructed to admit air to compression tank, drain water, and close off system.
 - 5. Refer to equipment schedule on drawings for additional information.
- E. In-Line Air Separators:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Armstrong Products, Inc.
 - c. Bell & Gossett; a Xylem brand.
 - d. Spirotherm, Inc.
 - e. TACO Comfort Solutions, Inc.
 - 2. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.

- 3. Maximum Working Pressure: Up to 175 psig.
- 4. Maximum Operating Temperature: Up to 300 deg F.
- 5. Refer to equipment schedule on drawings for additional information.

2.4 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: Stainless-steel, 60-mesh strainer, or perforated stainless-steel basket.
 - 4. CWP Rating: 125 psig (860 kPa).
- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
 - 4. CWP Rating: 150 psig (1035 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).
- C. Glycol Feed Systems:
 - 1. Refer to drawings for requirements.
- D. Expansion Fittings: Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping." Section 15124 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
- B. Install automatic flow control valves in the return pipe of each heating or cooling terminal.
- C. Install check valves at each pump discharge and elsewhere as required to control flow direction.

3.2 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents at high points of system piping in mechanical equipment rooms only or as indicated on drawings. Install manual vents at heat-transfer coils and elsewhere as required for air venting.

END OF SECTION 232113

SECTION 232513 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following water treatment for closed-loop hydronic systems:
 - 1. Manual chemical-feed equipment.
 - 2. Chemicals.

1.3 DEFINITIONS

- A. RO: Reverse osmosis.
- B. TDS: Total dissolved solids consist of salts and other materials that combine with water as a solution.
- C. TSS: Total suspended solids include both organic and inorganic solids that are suspended in the water. These solids may include silt, plankton, and industrial wastes.

1.4 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for the following products:
 - 1. Bypass feeders.
 - 2. Water meters.
 - 3. Inhibitor injection timers.
 - 4. pH controllers.
 - 5. Chemical solution tanks.
 - 6. Injection pumps.
 - 7. Chemical-treatment test equipment.
 - 8. Chemical material safety data sheets.
 - 9. Inhibited propylene glycol.
- B. Shop Drawings: Pretreatment and chemical-treatment equipment, showing tanks, maintenance space required, and piping connections to hydronic systems.
 - 1. Include plans, elevations, sections, and attachment details.

2. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Water-Analysis Provider Qualifications: Verification of experience and capability of HVAC water-treatment service provider.
- C. Field quality-control reports.
- D. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.
- E. Water Analysis: Illustrate water quality available at Project site.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sensors, injection pumps, and controllers to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC watertreatment service provider, capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

PART 2 - PRODUCTS

2.1 HVAC WATER-TREATMENT MANUFACTURERS

A. Approved Manufacturers, no substitutions: Subject to compliance with requirements, provide products by named manufacturer(s). Substitution request will not be considered.

1. Walter Louis Fluid Technologies

a. Contact Roger Smith at (217) 223-2017.

2.2 PERFORMANCE REQUIREMENTS

- A. Provide all hardware, chemicals, and other material necessary to maintain HVAC water quality in all systems, as indicated in this Specification. Water quality for hydronic systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of hydronic equipment without creating a hazard to operating personnel or the environment.
- B. Base HVAC water treatment on quality of water available at Project site, hydronic system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
- C. Closed hydronic systems, including hot-water heating below 250 deg F chilled water shall have the following water qualities:
 - 1. pH: Maintain a value within 9.0 to 10.5.
 - 2. Alkalinity: Maintain a value within 100 to 500 ppm.
 - 3. Steel Corrosion Inhibiters: Provide sufficient inhibitors to limit mild steel corrosion to mils per year. Maintain soluble iron concentrations at or below mg/L.
 - 4. Scale Control: Provide softened water for initial fill and makeup. Where softened water is not used, provide sufficient scale inhibitors to prevent formation of scale and maintain all scale-forming material in solution.
 - 5. Dispersants: Provide sufficient dispersants to prevent sedimentation of fine particulate matter.
 - 6. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/mL.
 - b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/mL.
 - c. Nitrate Reducers: Maintain a maximum value of 100 organisms/mL.
 - d. Sulfate Reducers: Maintain a maximum value of zero organisms/mL.
 - e. Iron Bacteria: Maintain a maximum value of zero organisms/mL.

2.3 MANUAL CHEMICAL-FEED EQUIPMENT

- A. Bypass Feeders: Provide steel feeders with corrosion-resistant exterior coating, minimum 3-1/2inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Provide quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.
 - 1. Capacity: 5 gal..
 - 2. Minimum Working Pressure: 125 psig.

2.4 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer, compatible with piping system components and connected equipment, and able to attain water quality specified in "Performance Requirements" Article.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

- A. Install chemical-application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units, so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate. Install all chemical application equipment within a spill-containment area without floor drain.
- B. Install seismic restraints for equipment and floor-mounting accessories, and anchor to building structure. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for seismic restraints.
- C. Install water-testing equipment on wall near water-chemical-application equipment.
- D. Install interconnecting control wiring for chemical-treatment controls and sensors.
- E. Mount sensors and injectors in piping circuits.
- F. Bypass Feeders: Install in closed hydronic systems, including hot-water heating, and chilled water, and equip with the following:
 - 1. Install bypass feeder in a bypass circuit around circulating pumps unless indicated otherwise on Drawings.
 - 2. Install water meter in makeup-water supply.
 - 3. Install test-coupon assembly in bypass circuit around circulating pumps unless otherwise indicated on Drawings.
 - 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below the feeder inlet.
 - 5. Install a swing check on the inlet after the isolation valve.
- G. Install automatic fluid make-up equipment for glycol water system, and include the following:
 - 1. Chemical solution tanks.
 - 2. Chemical solution injection pumps.
 - 3. Water meter in makeup supply to system.
 - 4. Pressure switch to operate injection pump as necessary to maintain glycol system pressure.

3.3 PIPING CONNECTIONS

A. Piping installation requirement are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

- B. Where installing piping adjacent to equipment, allow space for service and maintenance.
- C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Section 232113 "Hydronic Piping."
- D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet.

3.4 ELECTRICAL CONNECTIONS

- A. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.
- B. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Tests and Inspections:
 - 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 - 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 - 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of hydronic systems' startup procedures.
 - 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 - 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
 - 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and

allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.

- 8. Repair leaks and defects with new materials, and retest piping until no leaks exist.
- F. Equipment will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.
- H. Comply with ASTM D3370 and with the following standards:
 - 1. Silica: ASTM D859.
 - 2. Acidity and Alkalinity: ASTM D1067.
 - 3. Iron: ASTM D1068.
 - 4. Water Hardness: ASTM D1126.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.

END OF SECTION 232513

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Sealants and gaskets.
 - 5. Hangers and supports.
 - 6. Seismic-restraint devices.
- B. Related Sections:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.3 DEFINITIONS

A. OSHPD: Office of Statewide Health Planning and Development (State of California).

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.
- B. Sustainable Design Submittals:
 - 1. Product Data: For adhesives, indicating VOC content.
 - 2. Product Data: For sealants, indicating VOC content.
 - 3. Laboratory Test Reports: For sealants, indicating compliance with requirements for lowemitting materials.

- 4. Laboratory Test Reports: For antimicrobial coatings, indicating compliance with requirements for low-emitting materials.
- C. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
 - 13.
- D. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1/D9.1M, "Sheet Metal Welding Code," for duct joint and seam welding.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and ASCE/SEI 7. Seismically brace duct hangers and supports in accordance with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
 - 1. Construct ducts of galvanized sheet steel unless otherwise indicated.
 - 2. For ducts exposed to weather, construct of Type 304 stainless steel indicated by manufacturer to be suitable for outdoor installation.
- B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. For ducts with longest side less than 36 inches, select joint types in accordance with Figure 2-1.
 - 2. For ducts with longest side 36 inches or greater, use flange joint connector Type T-22, T-24, T-24A, T-25a, or T-25b. Factory-fabricated flanged duct connection system may be used if submitted and approved by engineer of record.
 - 3. Where specified for specific applications, all joints shall be welded.
- C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." All longitudinal seams shall be Pittsburgh lock seams unless otherwise specified for specific application.
 - 1. Where specified for specific applications, all joints shall be welded.
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and

Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Construct ducts of galvanized sheet steel unless otherwise indicated.
 - 2. For ducts exposed to weather, construct of Type 304 stainless steel indicated by manufacturer to be suitable for outdoor installation.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- C. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with buttwelded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

- B. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A1008/A1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304 or 316, as indicated in "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in "Duct Schedule" Article.
- E. Reinforcement Shapes and Plates: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- F. Tie Rods: Galvanized steel, 1/4-inch-minimum diameter for lengths 36 inches or less; 3/8-inchminimum diameter for lengths longer than 36 inches.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A492.
- F. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 SEISMIC-RESTRAINT DEVICES

- A. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - 1. Cooper B-Line, Inc.; a Division of Cooper Industries.
 - 2. Ductmate Industries, Inc.
 - 3. Hilti Corp.
 - 4. Kinetics Noise Control.
 - 5. Loos & Co.; Cableware Division.
 - 6. Mason Industries.
 - 7. TOLCO; a brand of NIBCO INC.
 - 8. Unistrut Corporation; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.

- D. Restraint Cables: ASTM A492, stainless-steel cables with end connections made of galvanizedsteel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested in accordance with ASTM E488/E488M.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.
- B. Install ducts in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install ducts in maximum practical lengths with fewest possible joints.
- D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- J. Install fire, combination fire/smoke, and smoke dampers where indicated on Drawings and as required by code, and by local authorities having jurisdiction. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers and specific installation requirements of the damper UL listing.

- K. Install heating coils, cooling coils, air filters, dampers, and all other duct-mounted accessories in air ducts where indicated on Drawings.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- M. Elbows: Use long-radius elbows wherever they fit.
 - 1. Fabricate 90-degree rectangular mitered elbows to include turning vanes.
 - 2. Fabricate 90-degree round elbows with a minimum of three segments for 12 inches and smaller and a minimum of five segments for 14 inches and larger.
- N. Branch Connections: Use lateral or conical branch connections.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts at a minimum to the following seal classes in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.

- 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
- 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
- 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
- 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
- 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
- 11. Conditioned Space, Exhaust Ducts: Seal Class B.
- 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with ASCE/SEI 7.
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.

- 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

- 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
- 2. Test the following systems:
 - a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Testing of each duct section is to be performed with access doors, coils, filters, dampers, and other duct-mounted devices in place as designed. No devices are to be removed or blanked off so as to reduce or prevent additional leakage.
- 5. Test for leaks before applying external insulation.
- 6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 7. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness in accordance with "Description of Method 3 NADCA Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use duct cleaning methodology as indicated in NADCA ACR.
- C. Use service openings for entry and inspection.
 - 1. Provide openings with access panels appropriate for duct static-pressure and leakage class at dampers, coils, and any other locations where required for inspection and cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

- 3. Remove and reinstall ceiling to gain access during the cleaning process.
- D. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- E. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- F. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans in accordance with NADCA ACR. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents in accordance with manufacturer's written instructions after removal of surface deposits and debris.

3.10 STARTUP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
 - 1. Fabricate all ducts to achieve SMACNA pressure class, seal class, and leakage class as indicated below.
- B. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 4-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 3-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- C. Return Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Equipment Not Listed above:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: B.

- c. SMACNA Leakage Class for Rectangular: 12.
- d. SMACNA Leakage Class for Round and Flat Oval: 6.
- D. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative2-inch wg.
 - b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Equipment Not Listed above:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: B if negative pressure; A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.

- 3. Aluminum Ducts: Aluminum.
- G. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.
- H. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Conical spin in.
 - Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Control dampers.
 - 4. Smoke dampers.
 - 5. Combination fire and smoke dampers.
 - 6. Turning vanes.
 - 7. Duct-mounted access doors.
 - 8. Flexible connectors.
 - 9. Duct accessory hardware.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop, dynamic insertion loss, and self-generated noise data. Include breakout noise calculations for high-transmission-loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail duct accessories' fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.
 - d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor-damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Duct security bars.
 - f. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with NFPA 90A and NFPA 90B.
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Ruskin Company</u>.
 - 3. American Warming and Ventilating
- B. Description: Gravity balanced.
- C. Performance:
 - 1. Maximum Air Velocity: 1000 fpm.
 - 2. Maximum System Pressure: 2 inches wg.
 - 3. AMCA Certification: Test and rate in accordance with AMCA 511.
 - 4. Leakage:
 - a. Class I: Leakage shall not exceed 4 cfm/sq. ft. against 1-inch wg differential static pressure.

D. Construction:

- 1. Frame:
 - a. Hat shaped.
 - b. 0.093-inch-thick extruded aluminum, with welded or mechanically attached corners.
- 2. Blades:
 - a. Multiple single-piece blades.
 - b. Center pivoted, maximum 6-inch width, 0.050-inch-thick aluminum sheet with sealed edges.
- 3. Blade Action: Parallel.
- E. Blade Seals: Extruded vinyl, mechanically locked.
- F. Blade Axles:
 - 1. Material: Nonferrous metal.
 - 2. Diameter: 0.20 inch.
- G. Tie Bars and Brackets: Aluminum.
- H. Return Spring: Adjustable tension.
- I. Bearings: synthetic pivot bushings.
- J. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Screen Material: Aluminum.
 - 4. Screen Type: Bird.
 - 5. 90-degree stops.

2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Ruskin Company</u>.
 - b. Greenheck
 - c. Air Balance
 - 2. Performance:

- a. Leakage Rating Class III: Leakage not exceeding 40 cfm/sq. ft. against 1-inch wg differential static pressure.
- 3. Construction:
 - a. Linkage out of airstream.
 - b. Suitable for horizontal or vertical airflow applications.
- 4. Frames:
 - a. Hat-shaped, 0.094-inch thick, galvanized sheet steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized steel; 16 gauge thick.
- 6. Blade Axles: Galvanized steel.
- 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers mounted with vertical blades to have thrust bearing at each end of every blade.
- 8. Tie Bars and Brackets: Galvanized steel.
- 9. Locking device to hold damper blades in a fixed position without vibration.
- B. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Ruskin Company</u>.
 - b. Greenheck
 - c. Air Balance
 - 2. Performance:
 - a. AMCA Certification: Test and rate in accordance with AMCA 511.
 - b. Leakage:
 - 1) Class I: Leakage shall not exceed 4 cfm/sq. ft. against 1-inch wg differential static pressure.
 - 3. Construction:
 - a. Linkage: Out of airstream.
 - b. Suitable for horizontal or vertical airflow applications.

- 4. Frames:
 - a. Hat, U, or angle shaped.
 - b. Thickness: 16-gauge galvanized sheet steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel; 16 gauge thick.
- 6. Blade Edging Seals:
 - a. Inflatable seal blade edging or replaceable rubber seals.
- 7. Blade Jamb Seals: Flexible metal compression type.
- 8. Blade Axles: Galvanized steel.
- 9. Bearings:
 - a. Molded synthetic.
 - b. Dampers mounted with vertical blades to have thrust bearing at each end of every blade.
- 10. Tie Bars and Brackets: Galvanized steel.
- 11. Locking device to hold damper blades in a fixed position without vibration.
- C. Jackshaft:
 - 1. Size: 0.5-inch diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- D. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle, made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.4 CONTROL DAMPERS

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>Ruskin Company</u>.

- b. Greenheck
- c. Pottorff
- B. General Requirements:
 - 1. Unless otherwise indicated, use parallel-blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed-blade configuration.
 - 2. Factory or field assemble multiple damper sections to provide a single damper assembly of size required by the application.
- C. Performance:
 - 1. AMCA Certification: Test and rate in accordance with AMCA 511.
 - 2. Leakage:
 - a. Class I: Leakage shall not exceed 4 cfm/sq. ft. against 1-inch wg differential static pressure.
 - 3. Pressure Drop: 0.05 inch wg at 1500 fpm across a 24-by-24-inch damper when tested in accordance with AMCA 500-D, Figure 5.3.
 - 4. Velocity: Up to 3000 fpm.
 - 5. Temperature: Minus 25 to plus 180 deg F.
 - 6. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
- D. Construction:
 - 1. Linkage out of airstream.
 - 2. Suitable for horizontal or vertical airflow applications.
 - 3. Frames:
 - a. Hat, U, or angle shaped.
 - b. 16-gauge-thick, galvanized sheet steel.
 - c. Interlocking, gusseted corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 4. Blades:
 - a. Multiple blade with maximum blade width of 6 inches.
 - b. Parallel-blade design.
 - c. Galvanized steel.
 - 5. Blade Edging Seals:
 - a. Replaceable Closed-cell neoprene.
 - b. Inflatable seal blade edging, or replaceable rubber seals.
 - 6. Blade Jamb Seal: Flexible stainless steel, compression type.
 - 7. Blade Axles: 1/2-inch diameter; galvanized steel.

- 8. Blade-Linkage Hardware: Zinc-plated steel and brass; ends sealed against blade bearings. Linkage mounted out of air stream.
- 9. Bearings:
 - a. Stainless steel sleeve.
 - b. Dampers mounted with vertical blades to have thrust bearings at each end of every blade.

2.5 SMOKE DAMPERS

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. Ruskin Company
 - b. Greenheck
 - c. Nailor Industries

B. General Requirements:

- 1. Label to indicate conformance to UL 555 and UL 555S by an NRTL.
- 2. Label to indicate conformance to NFPA 80 and NFPA 90A by an NRTL.
- 3. Unless otherwise indicated, use parallel-blade configuration.
- 4. Factory or field assemble multiple damper sections to provide a single damper assembly of size required by the application.
- 5. Factory install damper actuator by damper manufacturer as integral part of damper assembly. Coordinate actuator location, mounting, and electrical requirements with damper manufacturer.

C. Performance:

- 1. AMCA Certification: Test and rate in accordance with AMCA Publication 511.
- 2. Leakage:
 - a. Class I: Leakage shall not exceed 4 cfm/sq. ft. against 1-inch wg differential static pressure.
- 3. Pressure Drop: 0.05 inch wg at 1500 fpm across a 24-by-24-inch damper when tested in accordance with AMCA 500-D, Figure 5.3.
- 4. Velocity: Up to 3000 fpm.
- 5. Temperature: Minus 25 to plus 180 deg F.
- 6. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
- D. Construction:
 - 1. Suitable for horizontal or vertical airflow applications.
 - 2. Linkage out of airstream.
 - 3. Blade Edging Seals:
- a. Silicone rubber.
- 4. Blade Jamb Seal: Flexible stainless steel, compression type.
- 5. Blade Axles: 1/2-inch diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings. Linkage is to be mounted out of airstream.
- E. Mounting Sleeve: Factory-installed, galvanized sheet steel; length to suit wall or floor application with factoryfurnished silicone caulking; gauge in accordance with UL listing.
- F. Damper Actuator Electric:
 - 1. Electric 120 V ac.
 - 2. UL 873, plenum rated.
 - 3. Designed to operate in smoke-control systems complying with UL 555S requirements.
 - 4. Fully modulating with fail-safe spring return.
 - a. Sufficient motor torque and spring torque to drive damper fully open and fully closed with adequate force to achieve required damper seal.
 - b. Maximum 15-second full-stroke closure.
 - c. Minimum 90-degree drive rotation.
 - 5. Clockwise or counterclockwise drive rotation as required for application.
 - 6. Environmental Operating Range:
 - a. Temperature: Minus 40 to plus 130 deg F.
 - b. Humidity: 5 to 95 percent relative humidity noncondensing.
 - 7. Environmental Enclosure: NEMA 2.
 - 8. Actuator to be factory mounted and provided with single-point wiring connection.
- G. Controllers, Electrical Devices, and Wiring:
 - 1. Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 2. Electrical Connection: 115 V, single phase, 60 Hz.
- H. Accessories:
 - 1. Auxiliary switches for position indication.
 - 2. Smoke Detector: Integral, factory wired for single-point connection.

2.6 COMBINATION FIRE AND SMOKE DAMPERS

A. Approved Manufacturers – Basis of Design bid: Subject to compliance with requirements, provide products by the Basis of Design manufacturer listed. Base bid shall include the Basis of Design. Substitutions will be considered for new products by other manufacturers listed, but are not required in advance of bid. When substitution requests are submitted, the Architect / Engineer will be the sole judge of equivalency.

- 1. Ductmate Industries, Inc.
- 2. Nexus PDQ; Division of Shilco Holdings Inc.
- 3. Ward Industries, Inc.; a Division of Hart & Cooley, Inc.
- B. General Requirements:
 - 1. Label to indicate conformance to UL 555 and UL 555S by an NRTL.
 - 2. Label to indicate conformance to NFPA 80 and NFPA 90A by an NRTL.
 - 3. Unless otherwise indicated, use parallel-blade configuration.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000 fpm velocity.
- D. Fire Rating: 1-1/2 hours.
- E. Performance:
 - 1. AMCA Certification: Test and rate in accordance with AMCE Publication 511.
 - 2. Leakage:
 - 3. Pressure Drop: 0.05 in. wg at 1500 fpm across a 24-by-24-inch damper when tested in accordance with AMCA 500-D, Figure 5.3.
 - 4. Velocity: Up to 3000 fpm.
 - 5. Temperature: Minus 25 to plus 180 deg F.
 - 6. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
- F. Construction:
 - 1. Suitable or horizontal or vertical airflow applications.
 - 2. Linkage out of airstream.
 - 3. Frame:
 - a. Hat shaped.
 - b. Galvanized sheet steel, with welded corners and mounting flange.
 - c. Gauge is to be in accordance with UL listing.
 - 4. Blades:
 - a. Roll-formed, horizontal,, galvanized sheet steel.
 - b. Maximum width and gauge in accordance with UL listing.
 - 5. Blade Edging Seals:
 - a. Silicone rubber.
 - 6. Blade Jamb Seal: Flexible stainless steel, compression type.
 - 7. Blade Axles: 1/2-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings. Linkage mounted out of airstream.
 - 8. Bearings:

- a. Molded synthetic.
- G. Mounting Sleeve:
 - 1. Factory installed, galvanized sheet steel.
 - 2. Length to suit wall or floor application with factory-furnished silicone caulking.
 - 3. Gauge in accordance with UL listing.
- H. Heat-Responsive Device:
 - 1. Electric resettable device and switch package, factory installed, rated.
- I. Master control panel for use in dynamic smoke-management systems.

2.7 TURNING VANES

- A. Approved Manufacturers Basis of Design bid: Subject to compliance with requirements, provide products by the Basis of Design manufacturer listed. Base bid shall include the Basis of Design. Substitutions will be considered for new products by other manufacturers listed, but are not required in advance of bid. When substitution requests are submitted, the Architect / Engineer will be the sole judge of equivalency.
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. METALAIRE, Inc.
 - 4. SEMCO Incorporated.
 - 5. Ward Industries, Inc.; a Division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Fabricate curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrousglass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- E. Vane Construction:
 - 1. Double wall.

2.8 DUCT-MOUNTED ACCESS DOORS

- A. Approved Manufacturers Basis of Design bid: Subject to compliance with requirements, provide products by the Basis of Design manufacturer listed. Base bid shall include the Basis of Design. Substitutions will be considered for new products by other manufacturers listed, but are not required in advance of bid. When substitution requests are submitted, the Architect / Engineer will be the sole judge of equivalency.
 - 1. American Warming and Ventilating; a Division of Mestek, Inc.
 - 2. Cesco Products; a Division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Flexmaster U.S.A., Inc.
 - 5. Greenheck Fan Corporation.
 - 6. McGill AirFlow LLC.
 - 7. Nailor Industries Inc.
 - 8. Ventfabrics, Inc.
 - 9. Ward Industries, Inc.; a Division of Hart & Cooley, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figure 7-2 (7-2M), "Duct Access Doors and Panels," and Figure 7-3, "Access Doors - Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. 24-gauge-thick galvanized steel door panel.
 - d. Vision panel.
 - e. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 - f. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - a. 24-gauge-thick galvanized steel or 0.032-inch-thick aluminum frame.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 - d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - a. 24-gauge-thick galvanized steel door panel.

- 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
- 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
- 4. Factory set at 3.0 to 8.0 inches wg.
- 5. Doors close when pressures are within set-point range.
- 6. Hinge: Continuous piano.
- 7. Latches: Cam.
- 8. Seal: Neoprene or foam rubber.
- 9. Insulation Fill: 1-inch- thick, fibrous-glass or polystyrene-foam board.

2.9 FLEXIBLE CONNECTORS

- A. Approved Manufacturers Basis of Design bid: Subject to compliance with requirements, provide products by the Basis of Design manufacturer listed. Base bid shall include the Basis of Design. Substitutions will be considered for new products by other manufacturers listed, but are not required in advance of bid. When substitution requests are submitted, the Architect / Engineer will be the sole judge of equivalency.
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Ventfabrics, Inc.
 - 4. Ward Industries, Inc.; a Division of Hart & Cooley, Inc.
- B. Fire-Performance Characteristics: Adhesives, sealants, fabric materials, and accessory materials shall have flamespread index not exceeding 25 and smoke-developed index not exceeding 50 when tested in accordance with ASTM E84.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Materials: Flame-retardant or noncombustible fabrics.
- E. Coatings and Adhesives: Comply with UL 181, Class 1.
- F. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4inch-wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
- G. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 480 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- H. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 500 lbf/inch in the filling.

- 3. Service Temperature: Minus 50 to plus 250 deg F.
- I. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd..
 - 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- J. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.10 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.11 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless Steel Sheets: Comply with ASTM A480/A480M, Type 304, and having a No. 2 finish for concealed ducts and finish for exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, one-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B221, Alloy 6063, Temper T6.

- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories in accordance with applicable details in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible" for metal ducts and in NAIMA AH116 for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless steel accessories in stainless steel ducts, and aluminum accessories in aluminum ducts.
- C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- D. Set dampers to fully open position before testing, adjusting, and balancing.
- E. Install test holes at fan inlets and outlets and elsewhere as indicated and as needed for testing and balancing.
- F. Install fire and smoke dampers in accordance with UL listing.
- G. Duct security bars:
 - 1. Construct duct security bars from 0.164-inch steel sleeve, continuously welded at all joints, and 1/2-inchdiameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to four sides and both ends of sleeve.
 - 2. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.
 - 3. Secure duct security bar assembly to building structure as indicated in manufacturer's installation instructions.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream and downstream from duct filters.

- 3. At outdoor-air intakes and mixed-air plenums.
- 4. At drain pans and seals.
- 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
- 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
- 7. At each change in direction and at maximum 50-ft. spacing.
- 8. Upstream and downstream from turning vanes.
- 9. Upstream or downstream from duct silencers.
- 10. For grease ducts, install at locations and spacing as required by NFPA 96.
- 11. Control devices requiring inspection.
- 12. Elsewhere as indicated.
- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. For fans developing static pressures of 5 inches wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- N. Install duct test holes where required for testing and balancing purposes.
- O. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors, and verify that size and location of access doors are adequate to perform required operation.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and that proper heat-response device is installed.

- Inspect turning vanes for proper and secure installation, and verify that vanes do not move or rattle. Operate remote damper operators to verify full range of movement of operator and damper. 4.
- 5.

END OF SECTION 233300

SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Shutoff, single-duct air terminal units.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of air terminal unit.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for air terminal units.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For air terminal units.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Hangers and supports, including methods for duct and building attachment and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 2. Include design calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Ceiling suspension assembly members.

- 2. Size and location of initial access modules for acoustic tile.
- 3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan-Powered-Unit Filters: Furnish one spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- C. ASHRAE Compliance: Applicable requirements in ASHRAE/IES 90.1, "Section 6 Heating, Ventilating, and Air Conditioning."

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Price Industries</u>.
 - 2. <u>Titus</u>.
 - 3. <u>Carrier</u>
- B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.
- C. Casing: 22 gage galvanized G90 steel, single wall.

- 1. Casing Lining: Adhesive attached, 1-inch- thick, polyurethane foam insulation complying with UL 181 erosion requirements, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
- 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
- 3. Air Outlet: S-slip and drive connections.
- 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
- 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: AHRI 880 rated, 3 percent of nominal airflow at 3-inch wg inlet static pressure.
 - 2. Damper Position: Reference equipment schedule.
- E. Hydronic Heating Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test assembled air terminal units according to AHRI 880.
 - 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and AHRI certification seal.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Ch. 5, "Hangers and Supports" and with Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.

3.2 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install hangers and braces designed to support the air terminal units and to restrain against seismic forces required by applicable building codes. Comply with ASCE/SEI 7.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on air terminal units that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - 1. Identify position of reinforcing steel and other embedded items before drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Install heavy-duty sleeve anchors with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.3 TERMINAL UNIT INSTALLATION

- A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.
- C. Install wall-mounted thermostats.

3.4 PIPING CONNECTIONS

A. Where installing piping adjacent to air terminal unit, allow space for service and maintenance.

B. Hot-Water Piping: Connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.

3.5 DUCTWORK CONNECTIONS

- A. Comply with requirements in Section 233113 "Metal Ducts" for connecting ducts to air terminal units.
- B. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.6 ELECTRICAL CONNECTIONS

- A. Install field power to each air terminal unit electrical power connection. Coordinate with air terminal unit manufacturer and installers.
- B. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.
- E. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.7 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."

3.8 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.9 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Air terminal unit will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.10 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

3.11 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600

SECTION 235216 - CONDENSING BOILERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes gas-fired, fire-tube floor-mounted condensing boilers, trim, and accessories for generating hot water.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for boilers.
 - 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For boilers, boiler trim, and accessories.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Source quality-control reports.
- B. Field quality-control reports.
- C. Sample Warranty: For special warranty.
- D. Product Certificates:
 - 1. ASME Stamp Certification and Report: Submit "A," "S," or "PP" stamp certificate of authorization, as required by authorities having jurisdiction, and document hydrostatic testing of piping external to boiler.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For boilers to include in emergency, operation, and maintenance manuals.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of boilers that fail in materials or workmanship within specified warranty period. Where "prorated" is indicated, the boiler manufacturer will cover the indicated percentage of cost of replacement parts. With "prorated" type, covered cost decreases as age of equipment increases.
 - 1. Warranty Period for Floor-Mounted Fire-Tube Condensing Boilers:
 - a. Heat Exchanger and Tank: Free from defects in material and workmanship.
 - b. Warranty Coverage: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.
- C. ASHRAE/IES 90.1 Compliance: Boilers shall have minimum efficiency in accordance with Table 6.8.1-6 and other requirements in Ch. 6 of ASHRAE/IES 90.1.
- D. ASHRAE 90.2 Compliance: Boilers shall have minimum efficiency in accordance with Ch. 6 of ASHRAE 90.2.

2.2 FLOOR-MOUNTED, FORCED-DRAFT, FIRE-TUBE CONDENSING BOILERS

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>AERCO; A WATTS Brand</u>
 - b. <u>Lochinvar</u>
 - c. <u>Fulton Boiler Works, Inc.</u>
- B. Description: Factory-fabricated, -assembled, and -tested, fire-tube, forced-draft, condensing boiler with heat exchanger sealed pressure tight, built on a steel base, including insulated jacket; flue-gas vent; combustion-air intake connections; water supply, return, and condensate drain connections; and controls. Units are to be for water-heating service only.
- C. Refer to the Boiler Schedule on sheet M601.

2.3 TRIM - FOR HOT-WATER BOILERS

- A. Include devices sized to comply with ASME B31.1.
- B. Aquastat Controllers: Operating, firing rate, and high limit with automatic reset.
- C. Safety Relief Valve: ASME rated.
- D. Pressure and Temperature Gauge: Minimum 3-1/2-inch-diameter, combination water-pressure and -temperature gauge. Gauges shall have operating-pressure and -temperature ranges, so normal operating range is about 50 percent of full range.
- E. High and low gas-pressure switches.
- F. Alarm bell with silence switch.
- G. Boiler Air Vent: Automatic.
- H. Drain Valve: Minimum NPS 3/4 hose-end gate valve.
- I. Isolation Valve.

2.4 CONTROLS

A. Refer to the Boiler Schedule on sheet M601 and Boiler controls schematic on BA700 series drawings.

2.5 ELECTRICAL POWER

- A. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are shown on Drawings and specified in electrical Sections.
- B. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 - 1. House in NEMA 250, Type 1 enclosure.
 - 2. Wiring shall be numbered and color coded to match wiring diagram.
 - 3. Install factory wiring outside of an enclosure in a metal raceway.
 - 4. Field power interface shall be to wire lugs.
 - 5. Provide branch power circuit to each motor and to controls with a disconnect switch or circuit breaker.
 - 6. Provide each motor with overcurrent protection.

2.6 VENTING KITS

- A. Kit: Complete system, ASTM A959, Type 29-4C stainless steel pipe, vent terminal, thimble, indoor plate, vent adapter, condensate trap and dilution tank, and sealant.
- B. Combustion-Air Intake: Complete system, stainless steel pipe, vent terminal with screen, inlet air coupling, and sealant.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting performance of the Work.
 - 1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- B. Examine mechanical spaces for suitable conditions where boilers will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

- A. Equipment Mounting:
 - 1. Install floor-mounted boilers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Install wall-hung boilers where indicated on Drawings using suitable hangers. Comply with manufacturer's mounting instructions.
 - 3. Comply with requirements for vibration isolation and seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 4. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- B. Install gas-fired boilers according to NFPA 54.
- C. Assemble and install boiler trim.
- D. Install electrical devices furnished with boiler but not specified to be factory mounted.
- E. Install control wiring to field-mounted electrical devices.

3.3 PIPING CONNECTIONS

- A. Connect piping to boilers, except safety relief valve connections, with flexible connectors of materials suitable for service.
- B. Drawings indicate general arrangement of piping, fittings, and specialties.
- C. When installing piping adjacent to boiler, allow space for service and maintenance of condensing boilers. Arrange piping for easy removal of condensing boilers.
- D. Install condensate drain piping to condensate-neutralization unit and from neutralization unit to nearest floor drain. Piping shall be at least full size of connection. Install piping with a minimum of 2 percent downward slope in direction of flow.
- E. Install condensate piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Install piping with a minimum of 2 percent downward slope in direction of flow.
- F. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gastrain connection. Provide a reducer if required.
- G. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve, and union or flange at each connection.
- H. Install piping from safety relief valves to nearest floor drain.

3.4 DUCT CONNECTIONS

- A. Boiler Venting:
 - 1. Install flue-venting kit and combustion-air intake.
 - 2. Comply with all boiler manufacturer's installation instructions.
 - 3. Field fabricate and install boiler vent and combustion-air intake.
 - 4. Utilize vent and intake duct material, size, and configuration as indicated in boiler manufacturer's instructions and to comply with UL 1738.
 - 5. Comply with all boiler manufacturer's installation instructions.
 - 6. Connect boiler vent full size to boiler connections.
 - 7. Comply with all boiler manufacturer's installation instructions.

3.5 ELECTRICAL CONNECTIONS

- A. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
- D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.6 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."
- C. Install nameplate for each control connection, indicating field control panel designation and I/O control designation feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency, Owner: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency, Contractor: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections:
- E. Tests and Inspections:
 - 1. Perform installation and startup checks in accordance with manufacturer's written instructions.
 - 2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

- a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level, and water temperature.
- b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- F. Boiler will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.
- H. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 DEMONSTRATION

- A. Train Owner's maintenance personnel to adjust, operate, and maintain boilers. Video record the training sessions and provide electronic copy to Owner.
 - 1. Instructor shall be factory trained and certified.
 - 2. Provide not less than two hours of training.
 - 3. Train personnel in operation and maintenance and to obtain maximum efficiency in plant operation.
 - 4. Provide instructional videos showing general operation and maintenance that are coordinated with operation and maintenance manuals.
 - 5. Obtain Owner sign-off that training is complete.
 - 6. Owner training shall be held at Project site.

END OF SECTION 235216

SECTION 236426.13 - AIR-COOLED, ROTARY-SCREW WATER CHILLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Packaged, air-cooled chillers.

1.3 DEFINITIONS

- A. COP: Coefficient of performance. The ratio of the rate of heat removal to the rate of energy input using consistent units for any given set of rating conditions.
- B. DDC: Direct digital control.
- C. EER: Energy-efficiency ratio. The ratio of the cooling capacity given in terms of Btu/h to the total power input given in terms of watts at any given set of rating conditions.
- D. IPLV: Integrated part-load value. A single-number part-load efficiency figure of merit calculated per the method defined by AHRI 550/590 and referenced to AHRI standard rating conditions.
- E. kW/Ton: The ratio of total power input of the chiller in kilowatts to the net refrigerating capacity in tons at any given set of rating conditions.
- F. NPLV: Nonstandard part-load value. A single-number part-load efficiency figure of merit calculated per the method defined by AHRI 550/590 and intended for operating conditions other than AHRI standard rating conditions.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include refrigerant, rated capacities, operating characteristics, furnished specialties, and accessories.
 - 2. Performance at AHRI standard conditions and at conditions indicated.
 - 3. Performance at AHRI standard unloading conditions.
 - 4. Minimum evaporator flow rate.

- 5. Refrigerant capacity of chiller.
- 6. Oil capacity of chiller.
- 7. Fluid capacity of evaporator.
- 8. Characteristics of safety relief valves.
- 9. Minimum entering condenser-air temperature.
- 10. Maximum entering condenser-air temperature.
- 11. Performance at varying capacities with constant-design, entering condenser-air temperature. Repeat performance at varying capacities for different entering condenser-air temperatures from design to minimum in 10 deg F increments.
- B. Sustainable Design Submittals:
 - 1. <u>Must meet energy efficiency requirements per M600 Series Drawings.</u>
- C. Shop Drawings:
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural supports.
 - 2. Piping roughing-in requirements.
 - 3. Wiring roughing-in requirements, including spaces reserved for electrical equipment.
 - 4. Access requirements, including working clearances for mechanical controls and electrical equipment, and tube pull and service clearances.
- B. Product Certificates: For certification required in "Quality Assurance" Article.
- C. Source quality-control reports.
- D. Field Test Reports: Include startup service reports.
- E. Sample Warranty: For AHRI special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each chiller to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. AHRI Certification: Certify chiller according to AHRI 590 certification program(s).
- B. AHRI Rating: Rate chiller performance according to requirements in AHRI 550/590.
- C. ASHRAE Compliance:
 - 1. ASHRAE 15 for safety code for mechanical refrigeration.
 - 2. ASHRAE 147 for refrigerant leaks, recovery, and handling and storage requirements.
- D. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.
- E. ASME Compliance: Fabricate and label chiller to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, and include an ASME U-stamp and nameplate certifying compliance.
- F. Comply with NFPA 70.
- G. Comply with requirements of UL and UL Canada and include label by a qualified testing agency showing compliance.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Ship chillers from the factory fully charged with refrigerant.
- B. Ship each chiller with a full charge of refrigerant. Charge each chiller with nitrogen if refrigerant is shipped in containers separate from chiller.
- C. Ship each oil-lubricated chiller with a full charge of oil.
- D. Package chiller for export shipping in totally enclosed crate and bagging.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of chillers that fail in materials or workmanship within specified warranty period.
 - 1. Extended warranties include, but are not limited to, the following:
 - a. Complete chiller including refrigerant and oil charge.
 - b. Complete compressor and drive assembly including refrigerant and oil charge.
 - c. Refrigerant and oil charge.
 - d. Parts and labor.
 - e. Loss of refrigerant charge for any reason.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Chillers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."
- B. Site Altitude: Chiller shall be suitable for altitude in which installed without affecting performance indicated. Make adjustments to affected chiller components to account for site altitude.
- C. Performance Tolerance: Comply with the following in lieu of AHRI 550/590:
 - 1. Allowable Capacity Tolerance: Zero percent.
 - 2. Allowable IPLV/NPLV Performance Tolerance: Zero percent.

2.2 PACKAGED, AIR-COOLED CHILLERS

- A. Approved Manufacturers, substitutions by prior approval only: Subject to compliance with requirements, provide products by one of the named manufacturers. Substitutions will be considered for products by other manufacturers if submitted in advance of bidding in conformance with requirement of Division 1.
 - 1. Daikin
 - 2. Trane
 - 3. Multi-Stack
- B. Description: Factory-assembled and run-tested chiller complete with base and frame, condenser casing, compressors, compressor motors and motor controllers, evaporator, condenser coils, condenser fans and motors, electrical power, controls, and accessories.
 - 1. Refer to Air Cooled Water Chiller Schedule from M600 Series Drawings.

2.3 CHILLER COMPONENTS

A. Compressor Motors

A. Description: Motors shall be high-torque, two-pole, semi-hermetic, squirrel-cage induction-type with inherent thermal protection on all three phases and cooled by suction gas. The compressors shall be field serviceable, semi-hermetic, single-rotor screw type with one central helical rotor. The gate rotor contact element shall be constructed of engineered composite material, dimensionally stable up to 1500°F and wear resistant for extended life. Compressors shall be vibration isolated from the frame by neoprene compression mounts and include an internal discharge compressor muffler. If a twin-screw design is used, the manufacturer shall provide an extended 5-year parts and labor warranty covering all additional moving parts. Each compressor shall be equipped with a suction service shutoff valve. If compressor does not have an in

ternal discharge compressor muffler, additional sound attenuation must be provided. Each compressor shall be equipped with a VFD providing compressor speed control as a function of the cooling load. Each VFD shall provide controlled motor acceleration and deceleration and shall provide protection for the following conditions: electronic thermal overload, over/under current, stalled motor, input and output phase loss, high load current, and current unbalance. The VFD shall provide a minimum 95% displacement power factor at all load points. Compressors used in VFD controlled units must have electrically insulated, ceramic bearings to mitigate bearing and/or lubricant damage from stray electric current passage. Compressor shall be able to control compression ratio to optimize efficiency at all operating conditions. Units without this protection must have an extended 5-year compressor warranty.

B. Unit Controller

- 1. The following operating messages shall be capable of being displayed:
 - a. Line voltage not present
 - b. Voltage present, starter ready
 - c. Motor accelerating
 - d. Motor at full speed
 - e. Motor at full speed, ramp time expired
 - f. Stop command received, motor decelerating
 - g. Thermal overload has reached 90% to 99%
 - h. Thermal overload at 100%, motor stopped
 - i. Thermal overload reduced to 60%, motor can restart
 - j. Passcode enabled
 - k. Passcode disabled
 - 1. Thermal overload content in percentage
- 2. The following alarms and faults shall be capable of being displayed:
 - a. Over Current-Hold
 - b. Over Current-Unload
 - c. Over Current-Alarm
 - d. Overheat-Hold
 - e. Overheat-Unload
 - f. Overheat-Alarm
 - g. Communication Fault
 - h. System power not three phase
 - i. Phase sequence incorrect
 - j. Line frequency less than 25 Hz
 - k. Line frequency more than 72 Hz
 - I. Excessive current unbalance
 - m. Operating parameters lost
 - n. No current after "Run" command
 - o. Undercurrent trip occurred
 - p. Overcurrent trip occurred
 - q. Control power too low
 - r. Motor stalled during acceleration
 - s. External fault
- 3. The following alarms and faults shall be capable of being displayed:
 - a. Output Frequency

- b. Output Current
- c. Output Voltage
- d. Output Power
- e. Fault Code

C. Evaporator

1. Description: Evaporator shall have ³/₄-inch (19 mm) thick closed-cell polyurethane insulation and an electric resistance immersion heater. This combination shall provide freeze protection down to -20°F (-29°C) ambient air temperature.

D. Unit Casing

1. Description: structural members and rails shall be fabricated of painted steel, and shall be able to pass a 1000-hour salt spray test per ASTM B117. The control enclosure and unit panels shall be corrosion resistant painted before assembly. Unit shall have condenser coil louvers and base frame grilles.

E. Electrical Panel

1. Description: Single-point power connection to high short-circuit current rated panel including a high interrupting capacity disconnect switch with through-the-door handle and circuit breakers for each circuit. A UL-approved weatherproof electrical panel shall contain the unit control system, control interlock terminals and field-power connection points. Box shall be designed in accordance with NEMA 3R rating. Hinged control panel access doors shall be tool lockable. Barrier panels shall be provided to protect against accidental contact with line voltage when accessing the control system. Fan motors shall have inherent overload protection and compressor motors shall have three-phase motor overload protection. Factory-supplied power components shall include:

F. Equipment Protection

1. Description: functions controlled by the microprocessor shall include high discharge pressure, loss of refrigerant, loss of water flow, freeze protection, and low refrigerant pressure. User controls shall include auto/stop switch, chilled water setpoint adjustment, anti-cycle timer, digital display with water temperature and setpoint, and operating temperatures and pressure and diagnostic messages.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine chillers before installation. Reject chillers that are damaged.
- B. Examine roughing-in for equipment support, anchor-bolt sizes and locations, piping, and electrical connections to verify actual locations, sizes, and other conditions affecting chiller performance, maintenance, and operations before equipment installation.
 - 1. Final chiller locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CHILLER INSTALLATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.
- B. Coordinate sizes, locations, and anchoring attachments of structural-steel support structures.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.
- D. Install chillers on support structure indicated.
- E. Equipment Mounting:
 - 1. Install chillers on cast-in-place concrete equipment bases.
- F. Maintain manufacturer's recommended clearances for service and maintenance.
- G. Charge chiller with refrigerant and fill with oil if not factory installed.
- H. Install separate devices furnished by manufacturer and not factory installed.

3.3 CONNECTIONS

- A. Install piping adjacent to chiller to allow service and maintenance.
- B. Evaporator Fluid Connections: Connect to evaporator inlet with shutoff valve, strainer, flexible connector, thermometer, and plugged tee with pressure gage. Connect to evaporator outlet with shutoff valve, balancing valve, flexible connector, flow switch, thermometer, plugged tee with shutoff valve and pressure gage, flow meter, and drain connection with valve. Make connections to chiller with a flange.
- C. Condenser Fluid Connections: Connect to condenser inlet with shutoff valve, strainer, flexible connector, thermometer, and plugged tee with pressure gage. Connect to condenser outlet with shutoff valve, balancing valve, flexible connector, flow switch, thermometer, plugged tee with shutoff valve and pressure gage, flow meter, and drain connection with valve. Make connections to chiller with a flange.
- D. Connect each chiller drain connection with a union and drain pipe, and extend pipe, full size of connection, to floor drain. Provide a shutoff valve at each connection.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

- 2. Verify that refrigerant charge is sufficient and chiller has been leak tested.
- 3. Verify that pumps are installed and functional.
- 4. Verify that thermometers and gages are installed.
- 5. Operate chiller for run-in period.
- 6. Check bearing lubrication and oil levels.
- 7. For chillers installed indoors, verify that refrigerant pressure relief device is vented outdoors.
- 8. Verify proper motor rotation.
- 9. Verify static deflection of vibration isolators, including deflection during chiller startup and shutdown.
- 10. Verify and record performance of fluid flow and low-temperature interlocks for evaporator and condenser.
- 11. Verify and record performance of chiller protection devices.
- 12. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.
- B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assembly, installation, and connection.
- C. Prepare test and inspection startup reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain chillers. Video record the training sessions.

END OF SECTION 236426.13

SECTION 237313.13 - INDOOR, BASIC AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes factory-assembled, indoor air-handling units with limited features, including the following components and accessories:
 - 1. Casings.
 - 2. Fans, drives, and motors.
 - 3. Coils.
 - 4. Air filtration.
 - 5. Dampers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each air-handling unit.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Include unit dimensions and weight.
 - 4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
 - 5. Fans:
 - a. Include certified fan-performance curves with system operating conditions indicated.
 - b. Include certified fan-sound power ratings.
 - c. Include fan construction and accessories.
 - d. Include motor ratings, electrical characteristics, and motor accessories.
 - 6. Include certified coil-performance ratings with system operating conditions indicated.
 - 7. Include filters with performance characteristics.
 - 8. Include dampers, including housings, linkages, and operators.
- B. Shop Drawings: For each type and configuration of indoor, basic, air-handling unit.
 - 1. Include plans, elevations, sections, and mounting details.

- 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Detail fabrication and assembly of indoor, basic air-handling units, as well as procedures and diagrams.
- 4. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For vibration isolation indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. Seismic Qualification Data: Certificates for indoor, basic air-handling units, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Restraint of internal components.
- C. Source quality-control reports.
- D. Startup service reports.
- E. Field quality-control reports.
- F. Sample Warranty: For manufacturer's warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

- 1. Filters: One set(s) for each air-handling unit.
- 2. Gaskets: One set(s) for each access door.
- 3. Fan Belts: One set(s) for each air-handling unit fan.

1.7 WARRANTY

- A. Warranty: Manufacturer agrees to repair or replace components of indoor, basic, air-handling units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Manufacturer's standard, but not less than one year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.
- C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vibration isolation, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- F. Structural Performance: Casing panels shall be self-supporting and capable of withstanding positive/negative 4inch wg of internal static pressure, without exceeding a midpoint deflection of 0.005 inches/inch of panel span.
- G. Seismic Performance: Air-handling units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - 2. Component Importance Factor: 1.5.
- H. CAPACITIES AND CHARACTERISTICS
- I. Supply Fan:

- 1. Refer to Air Handling Unit Handling Schedule from the M600 series.
- J. Preheat Coil:
 - 1. Refer to Air Handling Unit Handling Schedule from the M600 series.
- K. Heating Coil:1. Refer to Air Handling Unit Handling Schedule from the M600 series.
- L. Cooling Coil:
 - 1. Refer to Air Handling Unit Handling Schedule from the M600 series.
 - 2.
- M. Filters:
 - 1. Refer to Air Handling Unit Handling Schedule from the M600 series.

2.2 MANUFACTURERS

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Daikin</u>
 - b. <u>Trane</u>
 - c. <u>Aaon</u>

2.3 UNIT CASINGS

- A. Refer to Air Handling Unit Handling Schedule from the M600 series.
- 2.4 Single-Wall Construction
 - A. Refer to Air Handling Unit Handling Schedule from the M600 series.
- 2.5 Double-Wall Construction:
 - 1. Refer to Air Handling Unit Handling Schedule from the M600 series.
 - B. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.
 - C. Static-Pressure Classifications:
 - D. Refer to Air Handling Unit Handling Schedule from the M600 series.Panels and Doors:
 - 1. Refer to Air Handling Unit Handling Schedule from the M600 series.Locations and Applications:

2.6 COIL SECTION

- A. General Requirements for Coil Section:
 - 1. Comply with AHRI 410.
 - 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 - 3. Coils shall not act as structural component of unit.
- B. Heating Coils:
 - 1. Refer to Air Handling Unit Handling Schedule from the M600 series.
- C. Cooling Coils:

2.7 AIR FILTRATION SECTION

- 2.8 Refer to Air Handling Unit Handling Schedule from the M600 series.DAMPERS
 - A. Refer to Air Handling Unit Handling Schedule from the M600 series.

2.9 AIR BLENDERS

A. Refer to Air Handling Unit Handling Schedule from the M600 series.

2.10 MATERIALS

A. Refer to Air Handling Unit Handling Schedule from the M600 series.

2.11 SOURCE QUALITY CONTROL

- A. AHRI 430 Certification: Air-handling units and their components shall be factory tested according to AHRI 430 and shall be listed and labeled by AHRI.
- B. AMCA 300 and AMCA 301, or AHRI 260 Certification: Air-handling unit fan sound ratings shall comply with AMCA 300, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data" and AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data," or with AHRI 260, "Sound Rating of Ducted Air Moving and Conditioning Equipment."
- C. Water Coils: Factory tested to 300 psig according to AHRI 410 and ASHRAE 33.
- D. Steam Coils: Factory tested to 300 psig, and to 200 psig underwater, according to AHRI 410 and ASHRAE 33.
- E. Refrigerant Coils: Factory tested to minimum 450-psig internal pressure, and to minimum 300-psig internal pressure while underwater, according to AHRI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-handling unit installation. Replace with new insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for steam, hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install air-handling units on cast-in-place concrete equipment bases. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Suspended Units: Suspend and brace units from structural-steel support frame using threaded steel rods and spring hangers. Coordinate sizes and locations of structural-steel support members with actual equipment provided.
- C. Arrange installation of units to provide access space around air-handling units for service and maintenance.
- D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.
- E. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.3 PIPING CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to air-handling unit, allow for service and maintenance.
- C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
- D. Connect condensate drain pans using NPS 1-1/4, ASTM B88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- E. Hot- and Chilled-Water Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- F. Refrigerant Piping: Install shutoff valve and union or flange at each supply and return connection.

3.4 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
- D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.5 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that shipping, blocking, and bracing are removed.
 - 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.

- 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
- 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
- 6. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
- 7. Comb coil fins for parallel orientation.
- 8. Verify that proper thermal-overload protection is installed for electric coils.
- 9. Install new, clean filters.
- 10. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
 - 2. Measure and record motor electrical values for voltage and amperage.
 - 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.7 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.
- C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide onsite assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling unit and airdistribution systems, and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- D. Perform the following tests and inspections:
 - 1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
 - 2. Charge refrigerant coils with refrigerant and test for leaks.
 - 3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- E. Air-handling unit and components will be considered defective if unit or components do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313.13

SECTION 237313.16 - INDOOR, SEMI-CUSTOM AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulated, double-wall-casing, indoor, semi-custom air-handling units that are factory assembled using multiple section components, including the following:
 - 1. Casings.
 - 2. Fans, drives, and motors.
 - 3. Coils.
 - 4. Air filtration.
 - 5. Dampers.
 - 6. Sound attenuators.
 - 7. Humidifiers.
 - 8. Air-to-air energy recovery.
 - 9. Air blender.
 - 10. Diffuser.
 - 11. UV-C lamp systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each air-handling unit.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Include unit dimensions and weight.
 - 4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
 - 5. Fans:
 - a. Include certified fan-performance curves with system operating conditions indicated.
 - b. Include certified fan-sound power ratings.
 - c. Include fan construction and accessories.
 - d. Include motor ratings, electrical characteristics, and motor accessories.
 - 6. Include certified coil-performance ratings with system operating conditions indicated.

- 7. Include filters with performance characteristics.
- 8. Include dampers, including housings, linkages, and operators.
- B. Shop Drawings: For each type and configuration of indoor, semi-custom air handling unit.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of indoor, semi-custom air-handling units, as well as procedures and diagrams.
 - 4. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For vibration isolation indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. Seismic Qualification Data: Certificates for air-handling units, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Restraint of internal components.
- C. Source quality-control reports.
- D. Startup service reports.
- E. Field quality-control reports.
- F. Sample Warranty: For manufacturer's warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) for each air-handling unit.
 - 2. Gaskets: One set(s) for each access door.
 - 3. Fan Belts: One set(s) for each air-handling unit fan.

1.7 WARRANTY

- A. Warranty: Manufacturer agrees to repair or replace components of indoor, semi-custom airhandling units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of airhandling units and components.
- C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. Delegated Design: Engage a qualified professional engineer to design vibration isolation, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- F. Structural Performance: Casing panels shall be self-supporting and capable of withstanding positive/negative 8-inch wg of internal static pressure, without exceeding a midpoint deflection of 0.0042 inch/inch of panel span.
- G. Casing Leakage Performance: ASHRAE 111, Class 6 leakage or better at plus or minus 8 inch wg.
- H. Seismic Performance: Air-handling units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

- 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- 2. Component Importance Factor: 1.5.

2.2 CAPACITIES AND CHARACTERISTICS

- A. Supply Fan:
 - 1. Type: DWDI, airfoil centrifugal fan.
 - 2. Refer to Air Handling Unit Schedule from the M600 series.

B. Heating Coil:

- 1. Refer to Air Handling Unit Schedule from the M600 series.
- C. Cooling Coil:
 - 1. Refer to Air Handling Unit Schedule from the M600 series..

D. Prefilters:

- 1. Refer to Air Handling Unit Schedule from the M600 series.
- E. Final Filters:
 - 1. Refer to Air Handling Unit Schedule from the M600 series.

2.3 MANUFACTURERS

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Daikin</u>
 - b. <u>Trane</u>
 - c. <u>Aaon</u>

2.4 UNIT CASINGS

A. Refer to Air Handling Unit Schedule from the M600 series.

2.5 FAN, DRIVE, AND MOTOR SECTION

A. Refer to Air Handling Unit Schedule from the M600 series.

2.6 COIL SECTION

A. Refer to Air Handling Unit Schedule from the M600 series.

2.7 AIR FILTRATION SECTION

A. Refer to Air Handling Unit Schedule from the M600 series.

2.8 DAMPERS

- A. Refer to Air Handling Unit Schedule from the M600 series.
- 2.9 SOUND ATTENUATORS
- 2.10 Sound power levels (dB) for the unit shall not exceed the specified levels shown on the unit schedule. The manufacturer shall provide the necessary sound treatment to meet these levels if required.

2.11 HUMIDIFIERS

A. Refer to Air Handling Unit Schedule from the M600 series.

2.12 AIR BLENDERS

A. Refer to Air Handling Unit Schedule from the M600 series.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for steam, hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install air-handling units on cast-in-place concrete equipment bases. Coordinate sizes and locations of concrete bases with actual equipment provided.

- B. Suspended Units: Suspend and brace units from structural-steel support frame using threaded steel rods and spring hangers.
- C. Arrange installation of units to provide access space around air-handling units for service and maintenance.
- D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.
- E. Install filter-gauge, static-pressure taps upstream and downstream of filters. Mount filter gauges on outside of filter housing or filter plenum in accessible position. Provide filter gauges on filter banks, installed with separate static-pressure taps upstream and downstream of filters.
- F. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.3 PIPING CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to air-handling unit, allow for service and maintenance.
- C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
- D. Connect condensate drain pans using NPS 1-1/4, ASTM B88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- E. Hot- and Chilled-Water Piping: Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

3.4 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
- D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."

2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.5 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that shipping, blocking, and bracing are removed.
 - 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 - 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
 - 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
 - 6. Verify that zone dampers fully open and close for each zone.
 - 7. Verify that face-and-bypass dampers provide full face flow.
 - 8. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
 - 9. Comb coil fins for parallel orientation.
 - 10. Verify that proper thermal-overload protection is installed for electric coils.
 - 11. Install new, clean filters.
 - 12. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm.
 - 2. Measure and record motor electrical values for voltage and amperage.
 - 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.7 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform the following tests and inspections:
 - 1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
 - 2. Charge refrigerant coils with refrigerant and test for leaks.
 - 3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. HEPA Filters: Pressurize housing to a minimum of 3-inch wg or to designed operating pressure, whichever is higher; test housing joints, door seals, and sealing edges of filter with soapy water to check for air leaks.
 - 5. HEPA Filters: Pressurize housing to a minimum of 3-inch wg or to designed operating pressure, whichever is higher; test housing joints, door seals, and sealing edges of filter for air leaks according to ASME AG-1, pressure-decay method.
 - 6. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313.16

SECTION 237423.13 - PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes outdoor, direct, gas-fired heating-only, makeup air units, including the following components:
 - 1. Casings.
 - 2. Outdoor-air intake hood.
 - 3. Roof curbs.
 - 4. Fans, drives, and motors.
 - 5. Air filtration.
 - 6. Dampers.
 - 7. Direct, gas-fired burners.
 - 8. Unit control panel.
 - 9. Controls.
 - 10. Accessories.

1.3 ACTION SUBMITTALS

- A. Product Data: For each outdoor, direct, gas-fired heating-only, makeup air unit.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Include unit dimensions and weight.
 - 4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
 - 5. Fans:
 - a. Include certified fan-performance curves with system operating conditions indicated.
 - b. Include certified fan-sound power ratings.
 - c. Include fan construction and accessories.
 - d. Include motor ratings, electrical characteristics, and motor accessories.
 - 6. Include filters with performance characteristics.

- 7. Include direct, gas-fired burners with performance characteristics.
- 8. Include dampers, including housings, linkages, and operators.
- B. Shop Drawings: For each outdoor, direct, gas-fired, heating-only, makeup air unit.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of gas-fired heating and ventilating units, as well as procedures and diagrams.
 - 4. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For vibration isolation indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. Sample Warranty: For manufacturer's warranty.
- C. Seismic Qualification Data: Certificates for outdoor, direct, gas-fired, heating-only, makeup air units, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Restraint of internal components.
- D. Product Certificates: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- E. Startup service reports.

F. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For direct, gas-fired, heating-only, makeup air units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) for each unit.
 - 2. Gaskets: One set(s) for each access door.
 - 3. Fan Belts: One set(s) for each unit.

1.7 WARRANTY

- A. Warranty: Manufacturer agrees to repair or replace components of direct-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Entire Unit: Manufacturer's standard, but not less than one year(s) from date of Substantial Completion.
 - 2. Warranty Period for Burners: Manufacturer's standard, but not less than five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of units and components.
- C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. Seismic Performance: Indoor, indirect gas-fired, heating and ventilating units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

- 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- 2. Component Importance Factor: 1.5.

2.2 CAPACITIES AND CHARACTERISTICS

A. Refer Makeup Air Unit Schedule from the M600 series.

2.3 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck</u>
 - 2. <u>Trane</u>
 - 3. <u>Engineered Air</u>
- B. Refer Makeup Air Unit Schedule from the M600 series.

2.4 UNIT CASINGS

A. Refer Makeup Air Unit Schedule from the M600 series.

2.5 OUTDOOR-AIR INTAKE HOOD

A. Refer Makeup Air Unit Schedule from the M600 series.

2.6 ROOF CURBS

A. Refer Makeup Air Unit Schedule from the M600 series.

2.7 FANS, DRIVES, AND MOTORS

A. Refer Makeup Air Unit Schedule from the M600 series.

2.8 AIR FILTRATION

A. Refer Makeup Air Unit Schedule from the M600 series.

2.9 DAMPERS

A. Refer Makeup Air Unit Schedule from the M600 series.

2.10 DIRECT-FIRED GAS BURNER

- A. Refer Makeup Air Unit Schedule from the M600 series.
- 2.11 UNIT CONTROL PANEL
 - A. Refer Makeup Air Unit Schedule from the M600 series.

2.12 CONTROLS

A. Refer Makeup Air Unit Schedule from the M600 series.

2.13 ACCESSORIES

A. Refer Makeup Air Unit Schedule from the M600 series.

2.14 MATERIALS

- A. Steel:
 - 1. ASTM A36/A36M for carbon structural steel.
 - 2. ASTM A568/A568M for steel sheet.
- B. Stainless Steel:
 - 1. Manufacturer's standard grade for casing.
 - 2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.
- C. Galvanized Steel: ASTM A653/A653M.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of piping and electrical connections before equipment installation.
- C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Roof Curb: Install on roof structure or concrete base, level and secure, according to AHRI Guideline B. Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment.
- B. Unit Support: Install unit level on structural steel supports. Coordinate roof penetrations and flashing with roof construction. Secure units to structural support with anchor bolts. Coordinate sizes and locations of steel supports with actual equipment provided.
- C. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."
- D. Install controls and equipment shipped by manufacturer for field installation with direct-fired heating and ventilating units.

3.3 PIPING CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
 - 1. Gas Piping: Comply with requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union, and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.
- B. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.

3.4 DUCT CONNECTIONS

A. Duct Connections: Connect supply ducts to direct-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 233300 "Air Duct Accessories" for flexible duct connectors.

3.5 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

- D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.6 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.7 STARTUP SERVICE

- A. Perform startup service.
- B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Inspect for visible damage to burner combustion chamber.
 - 2. Inspect casing insulation for integrity, moisture content, and adhesion.
 - 3. Verify that clearances have been provided for servicing.
 - 4. Verify that controls are connected and operable.
 - 5. Verify that filters are installed.
 - 6. Purge gas line.
 - 7. Inspect and adjust vibration isolators.
 - 8. Verify bearing lubrication.
 - 9. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 - 10. Adjust fan belts to proper alignment and tension.
- C. Start unit according to manufacturer's written instructions.
 - 1. Complete startup sheets and attach copy with Contractor's startup report.
 - 2. Inspect and record performance of interlocks and protective devices; verify sequences.
 - 3. Operate unit for run-in period recommended by manufacturer.
 - 4. Perform the following operations for both minimum and maximum firing, and adjust burner for peak efficiency:
 - a. Measure gas pressure at manifold.
 - b. Measure combustion-air temperature at inlet to combustion chamber.
 - c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
 - 5. Calibrate thermostats.

- 6. Adjust and inspect high-temperature limits.
- 7. Inspect dampers, if any, for proper stroke and interlock with return-air dampers.
- 8. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
- 9. Measure and record airflow. Plot fan volumes on fan curve.
- 10. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 - a. High-limit heat.
 - b. Alarms.
- 11. After startup and performance testing, change filters, verify bearing lubrication, and adjust belt tension.
- 12. Verify drain-pan performance.
- 13. Verify outdoor-air damper operation.

3.8 ADJUSTING

- A. Adjust initial temperature set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.9 CLEANING

A. After completing system installation and testing, adjusting, and balancing makeup air unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.10 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Units will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.11 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 237423.13

SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Samples for Initial Selection: For units with factory-applied color finishes.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) for each air-handling unit.
 - 2. Gaskets: One set(s) for each access door.
 - 3. Fan Belts: One set(s) for each air-handling unit fan.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 - ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - " Procedures," and Section 7 -"Construction and System Start-up."
- C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

1.8 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.
- B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: One year(s) from date of Substantial Completion.
 - b. For Parts: One year(s) from date of Substantial Completion.
 - c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 <u>Daikin</u>
 - 2. Lennox
 - 3. York

2.2 INDOOR UNITS (5 TONS OR LESS)

A. Refer to Air Conditioning Unit Schedule from the M600 series.

2.3 OUTDOOR UNITS (5 TONS OR LESS)

A. Refer to Air Conditioning Unit Schedule from the M600 series.

2.4 ACCESSORIES

- A. Control equipment and sequence of operation are specified in Section 230923 "Building Automation Systems (BAS)".
- B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
- C. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.
- D. Automatic-reset timer to prevent rapid cycling of compressor.
- E. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
- F. Drain Hose: For condensate.
- G. Monitoring:
 - 1. Monitor constant and variable motor loads.
 - 2. Monitor variable-frequency-drive operation.
 - 3. Monitor economizer cycle.

- 4. Monitor cooling load.
- 5. Monitor air distribution static pressure and ventilation air volumes.

2.5 CAPACITIES AND CHARACTERISTICS

A. Refer to Air Conditioning Unit Schedule from the M600 series.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Equipment Mounting:
 - 1. Install ground-mounted, compressor-condenser components on cast-in-place concrete equipment base(s).
 - 2. Install ground-mounted, compressor-condenser components on polyethylene mounting base.
- D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
 - 1. Water Coil Connections: Connect hydronic piping to supply and return coil connections with shutoff-duty valve and union or flange on the supply connection and with throttling-duty valve and union or flange on the return connection.
 - 2. Remote, Water-Cooled Condenser Connections: Connect hydronic piping to supply and return connections with shutoff-duty valve and union or flange on the supply connection and with throttling-duty valve and union or flange on the return connection.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
- C. Duct Connections: Duct installation requirements are specified in Section 233113 "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply ducts to split-system airconditioning units with flexible duct connectors. Flexible duct connectors are specified in Section 233300 "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.4 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126

SECTION 238219 - FAN COIL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Ductless fan coil units and accessories.
 - 2. Ducted fan coil units and accessories.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
- B. Shop Drawings:
 - 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Include diagrams for power, signal, and control wiring.
- C. Samples for Initial Selection: For units with factory-applied color finishes.
- D. Samples for Verification: For each type of fan coil unit indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural members to which fan coil units will be attached.
 - 3. Method of attaching hangers to building structure.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:

- a. Lighting fixtures.
- b. Air outlets and inlets.
- c. Speakers.
- d. Sprinklers.
- e. Access panels.
- 6. Perimeter moldings.
- B. Seismic Qualification Certificates: For fan coil units, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
- D. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fan coil units to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - a. Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan Coil Unit Filters: Furnish two spare filters for each filter installed.
 - 2. Fan Belts: Furnish one spare fan belts for each unit installed.

1.7 QUALITY ASSURANCE

- A. Comply with NFPA 70.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.8 COORDINATION

- A. Coordinate layout and installation of fan coil units and suspension system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.
- B. Coordinate size and location of wall sleeves for outdoor-air intake.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Factory-packaged and -tested units rated according to AHRI 440, ASHRAE 33, and UL 1995.

2.2 DUCTLESS FAN COIL UNITS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Daikin
 - 2. <u>Carrier</u>
 - 3. <u>Trane</u>
- B. Refer to Fan Coil Unit Schedule from the M600 series.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, with Installer present, to receive fan coil units for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before fan coil unit installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fan coil units level and plumb.
- B. Install fan coil units to comply with NFPA 90A.
- C. Suspend fan coil units from structure with elastomeric hangers.
- D. Verify locations of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above finished floor.
- E. Install new filters in each fan coil unit within two weeks after Substantial Completion.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 - 1. Install piping adjacent to machine to allow service and maintenance.
 - 2. Connect piping to fan coil unit factory hydronic piping package. Install piping package if shipped loose.
 - 3. Connect condensate drain to indirect waste.
 - a. Install condensate trap of adequate depth to seal against fan pressure. Install cleanouts in piping at changes of direction.
- B. Connect supply-air and return-air ducts to fan coil units with flexible duct connectors specified in Section 233300 "Air Duct Accessories." Comply with safety requirements in UL 1995 for duct connections.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

- 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
- 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust initial temperature and humidity set points.
- B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fan coil units.

END OF SECTION 238219

SECTION 250000 – BUILDING AUTOMATION SYSTEMS (BAS)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Section 013000, Submittal Procedures.
 - 2. Section 017700, Closeout Procedures.
 - 3. Section 019113, General Commissioning Requirements.

1.2 SUMMARY

- A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.
- B. The intent of this specification is to establish design and installation criteria for a complete and operating Building Automation System (BAS) utilizing Direct Digital Controls (DDC).
- C. The manufacturer, designer and installer herein referred to as the Division 25 contractor or BAS is to provide all work described in this Specification which consists of all labor, materials, equipment wiring, sensing devices, relays, hardware, software and services necessary to design, install and make operational a fully functional and integrated system. The Division 25 contractor shall furnish and install all interconnecting system components, wiring and conduit. Work and services that may or may not be specifically described herein or shown on drawings but required for proper performance, operation, testing and maintenance shall be furnished.
- D. The temperature controls system, including application hardware and software, shall be of a fully modular architecture permitting expansion. The system design shall provide self-checking, self-healing ring architecture. There shall be no single point of failure. The failure of any component shall impact only the functions associated with that component.
- E. Division 25 contractor shall provide all primary controller(s), damper actuators, duct mounted supply and return air temperature and humidity sensors, control valves, valve operators, etc., as required for the proper operation of mechanical systems.
- F. Division 25 Contractor is responsible for verifying proper operation of their software on owner provided hardware, including compatibility with all Microsoft Windows software patches as they are updated.

G. Related Requirements:

- 1. Communications Cabling:
 - a. Section 260523 "Control-Voltage Electrical Power Cables" for balanced twisted pair communications cable.
- 2. Raceways:
 - a. Section 260533 "Raceways and Boxes for Electrical Systems" for raceways for low-voltage control cable.
- 3. Section 260553 "Identification for Electrical Systems" for identification requirements for electrical components.

1.3 DEFINITIONS

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.
- B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.
- C. BACnet Specific Definitions:
 - 1. BACnet: Building Automation Control Network Protocol, ASHRAE 135. A communications protocol allowing devices to communicate data over and services over a network.
 - 2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
 - 3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
 - 4. BACnet Testing Laboratories (BTL): Organization responsible for testing products for compliance with ASHRAE 135, operated under direction of BACnet International.
 - 5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.
- D. Binary: Two-state signal where a high signal level represents ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.
- E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.
- F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.
- G. COV: Changes of value.

- H. BAS System Provider: Authorized representative of, and trained by, BAS system manufacturer and responsible for execution of BAS system Work indicated.
- I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.
- J. DOCSIS: Data-Over Cable Service Interface Specifications.
- K. E/P: Voltage to pneumatic.
- L. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.
- M. HLC: Heavy load conditions.
- N. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.
- O. I/P: Current to pneumatic.
- P. LAN: Local area network.
- Q. LNS: LonWorks Network Services.
- R. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- S. Mobile Device: A data-enabled phone or tablet computer capable of connecting to a cellular data network and running a native control application or accessing a web interface.
- T. Modbus TCP/IP: An open protocol for exchange of process data.
- U. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.
- V. MTBF: Mean time between failures.
- W. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.
- X. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.

- Y. Peer to Peer: Networking architecture that treats all network stations as equal partners.
- Z. POT: Portable operator's terminal.
- AA. PUE: Performance usage effectiveness.
- BB. RAM: Random access memory.
- CC. RF: Radio frequency.
- DD. Router: Device connecting two or more networks at network layer.
- EE. Server: Computer used to maintain system configuration, historical and programming database.
- FF. TCP/IP: Transport control protocol/Internet protocol.
- GG. UPS: Uninterruptible power supply.
- HH. USB: Universal Serial Bus.
- II. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.
- JJ. VAV: Variable air volume.
- KK. WLED: White light emitting diode.

1.4 ACTION SUBMITTALS

- A. Multiple Submissions:
 - 1. If multiple submissions are required to execute work within schedule, first submit a coordinated schedule clearly defining intent of multiple submissions. Include a proposed date of each submission with a detailed description of submittal content to be included in each submission.
 - 2. Clearly identify each submittal requirement indicated and in which submission the information will be provided.
 - 3. Include an updated schedule in each subsequent submission with changes highlighted to easily track the changes made to previous submitted schedule.
- B. Product Data: For each type of product include the following:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.

- 3. Product description with complete technical data, performance curves, and product specification sheets.
- 4. Installation, operation and maintenance instructions including factors effecting performance.
- 5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 - a. Workstations.
 - b. Servers.
 - c. Gateways.
 - d. Routers.
 - e. DDC controllers.
 - f. Enclosures.
 - g. Electrical power devices.
 - h. UPS units.
 - i. Accessories.
 - j. Instruments.
 - k. Control dampers and actuators.
 - 1. Control valves and actuators.
- 6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
- 7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.
- C. Software Submittal:
 - 1. Cross-referenced listing of software to be loaded on each operator workstation, server, gateway, and DDC controller.
 - 2. Description and technical data of all software provided, and cross-referenced to products in which software will be installed.
 - 3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
 - 4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
 - 5. Listing and description of each engineering equation used with reference source.
 - 6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
 - 7. Description of operator interface to alphanumeric and graphic programming.
 - 8. Description of each network communication protocol.
 - 9. Description of system database, including all data included in database, database capacity and limitations to expand database.
 - 10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.
 - 11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

D. Shop Drawings:

- 1. General Requirements:
 - a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.
 - b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.
 - c. Drawings Size: 11x17.
- 2. Include plans, elevations, sections, and mounting details where applicable.
- 3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 4. Detail means of vibration isolation and show attachments to rotating equipment.
- 5. Plan Drawings indicating the following:
 - a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork, and piping.
 - b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
 - c. Each desktop workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
 - d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
 - e. Network communication cable and raceway routing.
 - f. Proposed routing of wiring, cabling, conduit, and tubing, coordinated with building services for review before installation.
- 6. Schematic drawings for each controlled HVAC system indicating the following:
 - a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 - b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 - c. A graphic showing location of control I/O in proper relationship to HVAC system.
 - d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 - e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
 - f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays, and interface to DDC controllers.
 - g. Narrative sequence of operation.
 - h. Graphic sequence of operation, showing all inputs and output logical blocks.
- 7. Control panel drawings indicating the following:
- a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
- b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates, and allocated spare space.
- c. Front, rear, and side elevations and nameplate legend.
- d. Unique drawing for each panel.
- 8. BAS system network riser diagram indicating the following:
 - a. Each device connected to network with unique identification for each.
 - b. Interconnection of each different network in BAS system.
 - c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
 - d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.
- 9. BAS system electrical power riser diagram indicating the following:
 - a. Each point of connection to field power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
 - c. Each product requiring power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - d. Power wiring type and size, race type, and size for each.
- 10. Monitoring and control signal diagrams indicating the following:
 - a. Control signal cable and wiring between controllers and I/O.
 - b. Point-to-point schematic wiring diagrams for each product.
 - c. Control signal tubing to sensors, switches, and transmitters.
 - d. Process signal tubing to sensors, switches, and transmitters.
- 11. Color graphics indicating the following:
 - a. Itemized list of color graphic displays to be provided.
 - b. For each display screen to be provided, a true color copy showing layout of pictures, graphics, and data displayed.
 - c. Intended operator access between related hierarchical display screens.
- E. System Description:
 - 1. Full description of BAS system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
 - 2. Complete listing and description of each report, log and trend for format and timing, and events which initiate generation.

- 3. System and product operation under each potential failure condition including, but not limited to, the following:
 - a. Loss of power.
 - b. Loss of network communication signal.
 - c. Loss of controller signals to inputs and outpoints.
 - d. Operator workstation failure.
 - e. Server failure.
 - f. Gateway failure.
 - g. Network failure
 - h. Controller failure.
 - i. Instrument failure.
 - j. Control damper and valve actuator failure.
- 4. Complete bibliography of documentation and media to be delivered to Owner.
- 5. Description of testing plans and procedures.
- 6. Description of Owner training.
- F. Delegated-Design Submittal: For BAS system products and installation indicated as being delegated.
 - 1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.
 - 2. Schedule and design calculations for control dampers and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Face velocity at Project design and minimum airflow conditions.
 - c. Pressure drop across damper at Project design and minimum airflow conditions.
 - d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.
 - i. Actuator signal to control damper (on, close, or modulate).
 - j. Actuator position on loss of power.
 - k. Actuator position on loss of control signal.
 - 3. Schedule and design calculations for control valves and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Pressure-differential drop across valve at Project design flow condition.
 - c. Maximum system pressure-differential drop (pump close-off pressure) across valve at Project minimum flow condition.
 - d. Design and minimum control valve coefficient with corresponding valve position.
 - e. Maximum close-off pressure.
 - f. Leakage flow at maximum system pressure differential.
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.

- i. Actuator signal to control damper (on, close or modulate).
- j. Actuator position on loss of power.
- k. Actuator position on loss of control signal.
- 4. Schedule and design calculations for selecting flow instruments.
 - a. Instrument flow range.
 - b. Project design and minimum flow conditions with corresponding accuracy, control signal to transmitter, and output signal for remote control.
 - c. Extreme points of extended flow range with corresponding accuracy, control signal to transmitter, and output signal for remote control.
 - d. Pressure-differential loss across instrument at Project design flow conditions.
 - e. Where flow sensors are mated with pressure transmitters, provide information for each instrument separately and as an operating pair.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings:
 - 1. Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - a. Product installation location shown in relationship to room, duct, pipe and equipment.
 - b. Structural members to which products will be attached.
 - c. Wall-mounted instruments located in finished space showing relationship to light switches, fire-alarm devices and other installed devices.
 - d. Size and location of wall access panels for products installed behind walls and requiring access.
 - 2. Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - a. Ceiling components.
 - b. Size and location of access panels for products installed above inaccessible ceiling assemblies and requiring access.
 - c. Items penetrating finished ceiling including the following:
 - 1) Lighting fixtures.
 - 2) Air outlets and inlets.
 - 3) Speakers.
 - 4) Sprinklers.
 - 5) Access panels.
 - 6) Motion sensors.
 - 7) Pressure sensors.
 - 8) Temperature sensors and other DDC control system instruments.
- B. Product Certificates:

- 1. Data Communications Protocol Certificates: Certifying that each proposed Ba system component complies with ASHRAE 135.
- C. Source quality-control reports.
- D. Field quality-control reports.
- E. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For BAS system to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 - b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 - c. As-built versions of submittal Product Data.
 - d. Names, addresses, e-mail addresses, and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 - e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing set points and variables.
 - f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - g. Engineering, installation, and maintenance manuals that explain how to:
 - 1) Design and install new points, panels, and other hardware.
 - 2) Perform preventive maintenance and calibration.
 - 3) Debug hardware problems.
 - 4) Repair or replace hardware.
 - h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
 - i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
 - j. List of recommended spare parts with part numbers and suppliers.
 - k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
 - 1. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
 - m. Licenses, guarantees, and warranty documents.

- n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
- o. Owner training materials.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- B. Include product manufacturers' recommended parts lists for proper product operation over fiveyear period following warranty period. Parts list shall be indicated for each year.
- C. Furnish parts, as indicated by manufacturer's recommended parts list, for product operation during one-year period following warranty period.

1.8 QUALITY ASSURANCE

- A. BAS System Manufacturer Qualifications:
 - 1. Nationally recognized manufacturer of BAS systems and products.
 - 2. BAS systems with similar requirements to those indicated for a continuous period of five years within time of bid.
 - 3. BAS systems and products that have been successfully tested and in use on at least five past projects.
 - 4. Having complete published catalog literature, installation, operation, and maintenance manuals for all products intended for use.
 - 5. Having full-time in-house employees for the following:
 - a. Product research and development.
 - b. Product and application engineering.
 - c. Product manufacturing, testing, and quality control.
 - d. Technical support for BAS system installation training, commissioning, and troubleshooting of installations.
 - e. Owner operator training.
- B. BAS System Provider Qualifications:
 - 1. Authorized representative of, and trained by, BAS system manufacturer.
 - 2. In-place facility located within 50miles of Project.
 - 3. Demonstrated past experience with installation of BAS system products being installed for period within five consecutive years before time of bid.
 - 4. Demonstrated past experience on five projects of similar complexity, scope, and value.
 - 5. Each person assigned to Project shall have demonstrated past experience.
 - 6. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
 - 7. Service and maintenance staff assigned to support Project during warranty period.

- 8. Product parts inventory to support on-going BAS system operation for a period of not less than five years after Substantial Completion.
- 9. BAS system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.
- C. Material and equipment shall be standard products of the manufacturer regularly engaged in the manufacture of such product, using similar materials, design and workmanship. The standard products shall have been in commercial or industrial use for at least two (2) years prior to being offered on the project. This application shall be for similarly sized equipment and material used under similar conditions in similar application. All system components of a given type in a similar application shall be the product of the same manufacturer.
- D. All products shall be supported by the manufacturer's warranty including replacement, spare parts, repairs, and software updates.
- E. Nameplates and tags bearing device unique identifiers shall be permanently attached to, engraved or stamped on each piece of equipment, as applicable.
- F. The programmer developing the software program shall have the required experience in developing the controller programs for HVAC and other systems specified herein.
- G. The contractor shall have an ability nationally (or in-place support facility locally) to respond to a problem with in reasonable time. This shall include availability of technical staff, spare parts inventory and all necessary test and diagnostic equipment.
- H. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- I. Comply with ASHRAE 135 for DDC system components.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.
- B. All equipment shall be delivered to the job site unless specified otherwise.
- C. System Software: Update to latest version of software at Project completion.
- D. It is the Contractor's responsibility to ensure on-time delivery of all materials and equipment required for the Project. All materials furnished or incorporated in the Work shall be new, unused, of best quality, and especially adapted for the service required; whenever the characteristics of any material are not particularly specified, such material shall be utilized as is customary in first class work of a nature for which the material is employed.

- E. Packaging shall be adequate to prevent contamination, mechanical damage, or deterioration during shipment. The outermost covering shall be marked with complete vendor identification.
- F. Contractor shall provide necessary means to properly stage and store all materials and equipment per equipment manufacturer's instructions until time of use or installation on the Project. Materials shall be protected from the weather, humidity and temperature variations, dirt, dust, and other contaminants.
- G. Contractor shall be solely responsible for materials and equipment stored on the Site; type and extent of security provided to be at Contractor's discretion. Coordinate all requirements with Owner.
- H. Contractor shall be responsible for proper handling, rigging, and installing of all materials and equipment for the Project.
- I. Owner reserves the right to reject any materials or equipment that are not properly stored in accordance with these specifications or the manufacturers' requirements.
- J. Refer to Section 015000, Temporary Facilities and Controls, for additional delivery and storage requirements.

1.10 COORDINATION

- A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.
- B. Coordinate equipment with Fire Alarm Systems, to achieve compatibility with equipment that interfaces with that system.
- C. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.
- D. Coordinate equipment with Section 260900, Instrumentation and Control for Electrical Systems, to achieve compatibility of communication interfaces.
- E. Coordinate equipment with Section 262416, Panelboards, to achieve compatibility with starter coils and annunciation devices.
- F. Coordinate equipment with Division 26 Section "Motor-Control Centers" to achieve compatibility with motor starters and annunciation devices.
- G. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

1.11 COMMISSIONING

A. Timely and accurate documentation is essential for the commissioning process to be effective. Documentation required as part of the commissioning process shall be as specified in Section 019113, General Commissioning Requirements.

1.12 WARRANTY

A. All control components furnished and installed under this contract, shall be guaranteed against defects in design, materials and workmanship for the full warranty period which is standard with the manufacturer, but in no case less than one (1) year from the date of system acceptance. This will commence from the date of acceptance of the system by ower that shall be no later than ninety (90) days of beneficial use of the system. During this period the supplier shall provide all material, services and equipment including repair and replacement of defective products at no cost to owner.

PART 2 - PRODUCTS

2.1 CONTROL SYSTEM

- A. Approved Manufacturers, no substitutions: Subject to compliance with requirements, provide products by named manufacturer(s). Substitution request will not be considered.
 - 1. Schneider C&C Group.
 - a. Contact Brian Sheppers @ (573) 632-4247
- B. Control system shall be microprocessor based and consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

2.2 SYSTEM PROTOCOL AND LISTINGS

A. Provide a BAS specified herein as fully integrated, distributed control system which will not rely on a host computer or a central processing device for its operations. The building automation system shall employ BACnet standard protocol. Nonstandard BACnet protocol shall require an approved substitution request, submit the Protocol-Implementation-Conformance Statement (PICS) for each component using the nonstandard protocol. In addition this substitution request shall include a reference dictionary for each and every nonstandard protocol used. Gateways are not permitted except via and approved substitution request. The control devices that utilize the BACnet protocol shall include, but are not limited to, all various input, output and interface nodes (controllers), communication over the LAN network, and the operator's workstation, all

software, hardware, and peripherals. All control devices within the BAS shall be of one process-control or programming language, that language shall be BACnet.

- B. System components shall have a BACnet Testing Laboratories (BTL) listing. Permitted protocols are native BACnet systems over ARCNet or MSTP. BACnet thru gateways, LonTalk and proprietary protocols shall not be permitted. The system shall be engineered to provide distinct segregation between nodes used for the smoke management systems and those that are not.
- C. The System shall have a BACnet based LAN and thus be capable of direct communicate with third party controllers. A BACnet connection is not limited to, but shall include the following devices:
 - 1. Air Handling Units
 - 2. Chillers
 - 3. Air Terminal Units.

2.3 SYSTEM ARCHITECTURE

- A. The system design is based on the concept of distributed intelligence and control. The system employs a local area network (LAN) type architecture that links a series of nodes (controllers). Each node contains a microcomputer that performs a specific function to operate and monitor mechanical and other systems as defined in the points list and according to a sequence-of-operation, specified herein and as indicated on the drawings. The nodes are connected to a LAN, operating in a multitasking, and multi-user environment emphasizing the integrity to create a highly reliable communications network. The communication shall be transferred using a hybrid system with peer to peer and self-healing, self-checking ring technologies. Employ network error detection, and re-transmission to guarantee data integrity.
- B. Provide an operator programmable system, based on Graphic User Interface (GUI). Connect all nodes (controllers) through the LAN to share data and report to the operator workstation(s). The operator workstation will be capable of being programmed to supervise the nodes. Information pertaining to and control of any point in the network shall be available to the operator using the same database, and shall be based upon the same identification tag as used on the contract drawings for the facility equipment and/or system. The BAS shall be capable of downloading software from the operator workstation to the nodes. The BAS software shall operate on the latest Microsoft Windows Operating System. All software required for use shall be rendered to Owner.
- C. A main interface controller shall be installed. This controller shall have native, direct Ethernet TCP/IP communications back to a central monitoring station, using the customer's existing installed network. A 10bT Ethernet port shall be provided on the controller for this communications interface. All TCP/IP settings, including IP address, default gateway and subnet mask, shall be stored in non-volatile memory. The main interface controller shall provide at least 4 serial communications ports. One port shall be configured as a dial-up modem, for back-up communications to the main interface controller in case the main network connection is unavailable. The remaining ports may be used to connect to third-party subsystems such as fire alarm panels and early warning

smoke systems. The main interface controller shall accept 120VAC power. Its power supply shall include a built-in UPS such that the controller remains fully operational during a power loss. A built-in alarm signals the central monitoring station that the controller is operating on battery power. Provide at least 1-hour battery backup time.

- D. The system shall consist of node (controllers) of modular design providing distributed processing capability, future system expansion of input/output points, processing and control functions with administrative features. The system shall have the capability of field upgrades without the loss of service to existing monitored and controlled equipment. The failure of any single component or network connection shall not interrupt the execution of control strategies at other operating devices, communications of the network, or remote telemetry. Single controllers with multiple inputs and output modules to control many different systems such as air handlers, chiller plants, and pumps, at once are not permitted. BAS controllers shall be powered from an inverter source.
- E. The system control algorithms shall provide automatic reset capability where possible and where this control will not jeopardize human safety or damage building equipment.
- F. Databases shall be backed up monthly or when many changes to the software have been made. All database management, maintenance, and/or full-system restoration shall be as easy as stopping the database-server software and transferring a file under a single directory within a database-server software to and from a DVD, CD, thumbdrive, hard drive, etc. The controller software shall be backed up on the same database.
- G. Operating Temperatures. BAS Controllers shall be capable of proper operation in an ambient temperature environment of -20 degrees F to +150 degrees F and 10% to 90% relative humidity.

2.4 SYSTEM ALARMS

A. The System shall include an alarm history and event tracking.

2.5 BUILDING NETWORK CONTROLLERS

- A. BACnet BIBBS: General Purpose Multiple Application controllers must use BACnet as the native communication protocol between controllers and must, as a minimum, support the following BIBBS:
- B. Communication Speed: Controllers shall communicate at a minimum of 156 Kbps using ARCNET implemented over EIA-485 using a shielded twisted pair at the Data Link Layer.
- C. General Specification: Unless otherwise noted control panel enclosures shall be NEMA 3R. Each General Purpose Multiple Application Controller must be capable of standalone direct digital operation utilizing its own 32 bit processor, non-volatile flash memory, input/output, 12 bit A to D conversion, hardware clock/calendar and voltage transient and lightning protection devices. A separate co-processor shall be used for communications to the controller network. All non-volatile flash memory shall have a

battery backup of at least five years. Firmware revisions to the module shall be made from the BAS server or remotely over the Intranet or Internet. Controllers that require component changes to implement firmware revisions are NOT acceptable.

- D. System Parameters Modification: Provide software to modify system parameters through control program database. System parameter modification shall be accomplished through an operator station computer. Modifications shall be accomplished without having to make changes directly in line-by-line programming. Following parameters shall be modifiable:
 - 1. Set points.
 - 2. Deadband limits and spans.
 - 3. Reset schedules.
 - 4. Switch over points.
 - 5. PID gains and time between control output changes.
 - 6. Time.
 - 7. Timed local override time (temporary schedule override).
 - 8. Occupancy schedules (time of day scheduling).
 - 9. Holidays.
 - 10. Alarm points, alarm limits, and alarm messages.
 - 11. Point definition database.
 - 12. Point enable, disable, and override.
 - 13. Trend points, trend intervals, trend reports.
 - 14. Analog input default values.
 - 15. Passwords.
 - 16. Communications parameters including network and telephone.
 - 17. Communications setups.
 - 18. Mechanical system parameters like chilled water reset, condenser water reset, chiller sequencing, etc.
- E. Differential: Where equipment is started and stopped or opened and closed in response to some analog input such as temperature, pressure or humidity, include a differential for the control loop to prevent short cycling of equipment.
- F. Using a building network controller configured as an occupancy scheduler, each application shall be schedulable and its operation based on time of day, day of week, and day of year. Each application may be associated with a different schedule. Up to 128 schedules can be defined with 25 holidays in each schedule. Provide capability that will allow current schedules to be viewed and modified in a seven-day week format.
- G. The system shall have the capability to trend I/O points. Points may be associated into groups. A trend report may be set up for each group. The time between logging consecutive trend values shall range from one minute to sixty minutes at a minimum. Trend data type shall be selectable as either averages over the logging period or instantaneous values at the time of logging. Trend data shall be capable of being uploaded to a computer. Trend data shall be available on a real time basis. Trend data shall appear either numerically or graphically on a connected computer's screen as the data is being processed from the node system environment. The trend reports shall be capable of being uploaded to a computer disc and archived. Provide capability that will allow points to be trended per the point schedules on the BA7XX series drawings. For

example alarm points shall have a date stamp. At a minimum additional capabilities shall be provided to trend 100 point every 15 minutes for a year. These shall be monitored on a month date format.

2.6 NODES (ADVANCED APPLICATION SPECIFIC CONTROLLERS)

- A. Provide Nodes in quantity and type as required by the network design. Nodes shall have a BACnet Testing Laboratories (BTL) listing. Nodes shall be FCC Class A, Part 15 certified consisting of neuron chip, memory twisted pair transceiver, input/output handling circuitry, input voltage circuitry, surge protection.
- B. BACnet BIBBS: The General Purpose Single Application Controllers must use BACnet as the native communication protocol between controllers and must, as a minimum, support the following BIBBS:
- C. Communication Speed: Controllers shall communicate at a minimum of 156 Kbps using ARCNET implemented over EIA-485 using an unshielded twisted pair at the Data Link Layer.
- D. General Specification: Unless otherwise noted control panel enclosures shall be NEMA 3R. General Purpose Single Application controllers must be capable of stand-alone DDC operation utilizing its own 32 bit processor, nonvolatile flash memory, input/output, 8 bit A to D conversion, hardware clock/calendar and voltage transient protection devices. A separate co-processor shall be used for communications to the controller network. All RAM memory shall have a battery backup of at least five years. Firmware revisions to the module shall be made from the BAS server or remote locations over the Internet. Controllers that require component changes to implement Firmware revisions are NOT acceptable.
- E. Point Programming: All point data, algorithms, and application software within the controllers shall be custom programmable from the Operator Workstation.
- F. Program Execution: Each General Purpose Single Application Controller shall execute application programs, calculations, and commands via a 32-bit microcomputer resident in the controller. All operating parameters for the application program residing in each controller shall be stored in read/writ able nonvolatile flash memory within the controller and will be able to upload/download to/from the Operator Workstation.
- G. Self-Test Diagnostics: Each controller shall include self-test diagnostics, enabling the controller to report malfunctions to the router and BAS Server input.
- H. PID Loops: Each General Purpose Single Application Controller shall contain both software and firmware to perform full DDC PID control loops.
- I. Input-Output Processing:
 - 1. Digital Outputs shall be relays, 24 Volts AC or DC maximum, 3 amp maximum current. Each output shall have a manual Hand-Off-Auto switch for local

override and an LED to indicate the operating mode. Triac outputs are NOT acceptable.

- Universal Inputs shall be Thermistor (BAPI Curve II) 10K Ohm at 77 degrees F, 0-5VDC - 10K Ohm maximum source impedance, 0-20mA - 24 VDC loop power, 250 Ohm input impedance, Dry Contact - 0.5mA maximum current.
- 3. Analog Electronic Outputs shall be voltage mode 0-10VDC or current mode 4-20mA.
- 4. Enhanced Zone Sensor Input shall provide one thermistor input, one local setpoint adjustment, one timed local override switch, and an occupancy LED indicator.
- J. Each node (controller) shall perform self-diagnostic routines or means shall be provided to perform this function such as continuous monitoring of nodes by the BAS and provide messages to an operator when errors are detected.
- K. Hand-Off-Auto Functions: In the event of a power outage, each node (controller) shall assume a disabled status and I/O points shall remain as the last signal received/sent, each digital out put shall have the capability of being manually overridden through the use of a hand-off-auto switch or similar method to make the DO state user definable. Upon restoration of power, the system shall perform an orderly restart, with sequencing of outputs.

2.7 UNITARY CONTROLLERS

- A. BACnet BIBBS: The Unitary Controllers shall use BACnet as the native communications protocol between controllers on the unitary controller network and must, as a minimum support the following BIBBS:
- B. Communication Speed: The communication between unitary controllers shall be 38.4 Kbps minimum over EIA-485 using an MS/TP architecture.
- C. Sensor Support: Each Unitary Controller shall be able to support various types of zone temperature sensors, such as; temperature sensor only, temperature sensor with built-in local override switch and temperature sensor with built-in setpoint adjustment switch.
- D. Airflow Transducer: In order to provide reliable Pressure Independent VAV operation, Unitary Controllers for pressure independent VAV applications shall have a precision built-in Honeywell AWM series airflow transducer for accurate air flow measurement.
- E. Integral Actuator: Each Unitary Controller for VAV applications shall have an integral direct coupled electronic actuator with the following features:
 - 1. The actuator shall provide on-off/floating point control with a minimum of 35 inlb of torque.
- F. The assembly shall mount directly to the damper operating shaft with a universal V-Bolt clamp assembly.

- G. The actuator shall not require any limit switches, and shall be electronically protected against overload.
- H. The actuator shall automatically stop when reaching the damper or actuator end position.
- I. The gears shall be capable of being manually disengaged with a button on the assembly cover.
- J. A visual pointer for the position of the actuator.
- K. The assembly shall have an anti-rotational strap supplied with the assembly that will prevent lateral movement.
- L. 5-year warranty from the manufacturer.
- M. Visual Status: Each Unitary Controller and Unitary Controller Interface shall have LED indication for visual status of communication, power, and all outputs.
- N. Standalone Algorithm: In the event of a loss of communication, each Unitary Controller shall control from a standalone algorithm, which maintains the assigned space temperature until communication with the Unitary Control Router is restored.
- O. Input/Output Processing:
 - 1. Digital outputs shall be relays, 24 Volts AC or DC maximum, having a 1 Amp maximum current. Each relay shall be configured as normally open or normally closed, and provide a dry contact. Triac outputs are NOT acceptable.
 - 2. Universal inputs shall be Thermistor Precon Type II, dry contacts or 0-5VDC with 0-10K Ohm input impedance.
 - 3. Enhanced Zone Sensor Input. The input shall provide one thermistor input, one local setpoint adjustment, one timed local override switch, and an occupancy LED indicator.
 - 4. Analog output electronic, voltage mode 0-10VDC

2.8 ANALOG CONTROLLERS

- A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.
- B. Electric, Outdoor-Reset Controllers: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range, adjustable set point, scale range minus 10 to plus 70 degrees F, and single- or double-pole contacts.
- C. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
 - 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.

- D. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.
- E. Receiver Controllers: Single- or multiple-input models with control-point adjustment, direct or reverse acting with mechanical set-point adjustment with locking device, proportional band adjustment, authority adjustment, and proportional control mode.
 - 1. Remote-control-point adjustment shall be plus or minus 20 percent of sensor span, input signal of 3 to 13 psig.
 - 2. Proportional band shall extend from 2 to 20 percent for 5 psig.
 - 3. Authority shall be 20 to 200 percent.
 - 4. Air-supply pressure of 18 psig, input signal of 3 to 15 psig, and output signal of zero to supply pressure.

2.9 ELECTRONIC SENSORS

- A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required. Sensors shall meet BACnet and UL864 UUKL standards.
- B. All devices shall be mounted in a panel or enclosures suitable for the location. The enclosures shall protect the devices from dust, moisture, and movement and conceal the integral wiring and moving parts.
- C. The devices shall be selected to withstand the ambient conditions in which they will be operating, such as presence of moisture or condensation, vibrations from the ductwork or equipment, transient conditions for temperature, pressure, humidity etc. which may be outside the normal sensing range.
- D. Digital inputs from the various systems in the Points List will be provided by dry contacts. The contacts to be wired normally open or normally closed as required.
- E. Thermistor Temperature Sensors and Transmitters:
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. BEC Controls Corporation.
 - b. Ebtron, Inc.
 - c. Heat-Timer Corporation.
 - d. I.T.M. Instruments Inc.
 - e. MAMAC Systems, Inc.
 - f. RDF Corporation.

- 2. Accuracy: Plus or minus 0.5 degrees F at calibration point.
- 3. Wire: Twisted, shielded-pair cable.
- 4. Insertion Elements in Ducts: Single point, 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
- 5. Averaging Elements in Ducts: Continuous averaging RTDs for ductwork applications to be one (1) foot (probe length) for each 4 square feet of ductwork cross-sectional area.
- 6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
- 7. Room Temperature Sensors and Thermostats: Conceal sensor behind protective cover matched to the room interior. In occupied areas provide with LCD display, keypad/slider for temperature adjustment and override button to place in occupied mode during the unoccupied schedule. Network equipment areas shall be provided with sensors only; provide one sensor per room with LCD display. Combine temperature and humidity sensors where applicable.
- 8. Sensor Wells: Brass or stainless steel materials as indicated. Provide thermal transmission material compatible with the immersion sensor to insure good heat transfer.
- 9. Outside Air Type: Provide watertight inlet fitting shielded from direct sunlight of NEMA 3R construction. Mount element at least 3 inches from building outside wall. Shielding from direct sunlight shall not inhibit ambient airflow across the sensing element.
- F. RTDs and Transmitters:
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. BEC Controls Corporation.
 - b. MAMAC Systems, Inc.
 - c. RDF Corporation.
 - 2. General: RTD sensors to be 1000 ohm or higher, platinum element sensors to be vibration and corrosion resistant, encapsulated in epoxy, series 300 stainless steel, anodized aluminum or copper.
 - 3. Sensing Circuit: 3 wire.
 - 4. Accuracy: Plus or minus 0.1 percent at calibration point.
 - 5. Wire: Twisted, shielded-pair cable. Provide 18 gage twisted pair cable for direct connected RTDs or 10K Negative Temp Coefficients (NTC) Type II or III where using 4 to 20mA transmitters.
 - 6. Insertion Elements in Ducts: Single point, 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
 - 7. Averaging Elements in Ducts: 24 feet long, flexible; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.

- 8. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.
- 9. Room Sensor Cover Construction: Manufacturer's standard locking covers. a. Thermometer: Concealed.
- 10. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- G. Humidity Sensors: Bulk polymer sensor element.
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - 2. Transmitters may be supplied as an integral unit with the field sensor or mounted separately in a panel or part of the controller.
 - 3. Accuracy: 3 percent full range with linear output.
 - 4. Linearity: 1.0 percent of span and repeatability to be within 0.5 percent of the span and repeatability to be within 0.5 percent of span.
 - 5. Room Sensor Range: 20 to 80 percent relative humidity.
 - 6. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - 7. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
 - 8. Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of 32 to 120 degrees F.
 - 9. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.
 - 10. Supply voltage to be 24 volts DC.
- H. Pressure Transmitters/Transducers:
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.

- c. MAMAC Systems, Inc.
- d. ROTRONIC Instrument Corp.
- e. TCS/Basys Controls.
- f. Vaisala.
- 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 1 percent of full scale with repeatability of 0.5 percent.
 - b. Linearity: 1.0 percent of span and repeatability to be within 0.2 percent of the span and repeatability to be within 0.5 percent of span.
 - c. Output: 4 to 20 mA.
 - d. Building Static-Pressure Range: 0- to 0.25-inch wg.
 - e. Duct Static-Pressure Range: 0- to 5-inch wg.
 - f. Supply voltage to be 24 volts DC.
- 3. Transmitters may be supplied as an integral unit with the field sensor or mounted separately in a panel or part of the controller.
- 4. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
- 5. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
- 6. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
- 7. Pressure Transmitters: Direct acting for liquid; range suitable for system; linear output 4 to 20 mA.
- I. Occupancy sensor:
 - 1. Combination passive infrared and ultrasonic 24v sensor, SPDT relay with 30 minute time delay prior to shut down. Legrand model DT-200 or equal.
- J. Liquid Detectors: Conductive liquid detector with alarm relay, weatherproof enclosure, microchip technology, SPDT alarm contracts, 11-27 VAC/VDC operation and adjustable height. Kele model WB-1B-C or equal.

2.10 STATUS SENSORS

- A. General Requirements: Switches shall be provided to monitor equipment status, safety conditions, and generate alarms at the central system operating station when a failure or abnormal condition occurs. Safety switches shall be provided with two sets of contacts and shall be interlock wired to shut down respective equipment.
- B. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.
- C. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump.

- D. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- E. Voltage Transmitter (100- to 600-VAC): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.
- F. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.
- G. Current Switches: The current sensing switch shall be self-powered with solid state circuitry and a dry contact output. It shall consist of a current transformer, a solid state current sensing circuit, adjustable trip point, solid state switch, SPDT relay, and an LED indicating the on or off status. A conductor of the load shall be passed through the window of the device. It shall accept over-current up to twice its trip point range.
 - 1. Current sensing switches shall be used for run status for fans, pumps, and other miscellaneous motor loads.
 - 2. Current sensing switches shall be calibrated to show a positive run status only when the motor is operating under load. A motor running with a broken belt or coupling shall indicate a negative run status.
 - 3. Current sensing switches for VFD operated devices shall have smart VFD rated current switches with memory and memory reset capability.
- H. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
- I. Air Filter Status Switches
 - 1. Differential pressure switches used to monitor air filter status shall be of the automatic reset type with SPDT contacts rated for 2 amps at 120VAC.
 - 2. A complete installation kit shall be provided, including: static pressure tops, tubing, fittings, and air filters.
 - 3. Provide appropriate scale range and differential adjustment for intended service.
- J. Air Pressure Safety Switches:
 - 1. Air pressure safety switches shall be of the manual reset type with SPDT contacts rated for 2 amps at 120VAC.
 - 2. Pressure range shall be adjustable with appropriate scale range and differential adjustment for intended service.
- K. Differential Static Pressure Input Switch: Provide diaphragm type differential static pressure switches for binary (two-position) operation. Devices shall withstand pressure surges up to 150 percent of rated pressure. The diaphragms to actuate single pole double throw snap switch that may be wired for normally open or normally closed operation. Motion of the diaphragm shall be strained by a calibrated non-corroding spring that can

be adjusted to set the exact pressure differential at which the electrical switch will be actuated. Trip set point shall be adjustable.

L. Induced Current Operated Solid State Input Switches: Provide adjustable ranging switches to monitor continuous loads up to 200 amperes. Switches shall indicate whether it is normally open or normally closed. Off-state leakage shall be limited to 2mA or less.

2.11 ACTUATORS

- A. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. Approved Manufacturers or equivalent: Subject to compliance with requirements, provide products by one of the named manufacturers or an approved equivalent product. The Architect / Engineer will be the sole judge of equivalency. Substitution requests are not required in advance of bid, but may be submitted at Contractors option. When substitution requests are not submitted, the Architect / Engineer will evaluate equivalency during submittal review.
 - a. Belimo Aircontrols (USA), Inc.
 - 2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 - 3. Dampers: Size sized to operate the damper against the maximum fan pressure or dynamic closing pressure whichever is greater or as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 - e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 - f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
 - 4. Coupling: V-bolt and V-shaped, toothed cradle.
 - 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 - 6. Power Requirements (Two-Position Spring Return): 24-V ac.
 - 7. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
 - 8. Fail-Safe Operation: Provide electric motor type actuators with spring return or power return, so that, in the event of power failure, actuators shall fail safe in either the normally open or normally closed position as specified in the schedule on the drawings. Actuators shall operate opposite the direction of the spring in no more than 150 seconds, and in the direction of the spring in less than 20 seconds. The actuators to function properly within the range of 85 to 110 percent of motive power. Provide external, manual gear release on nonspring-return actuators.

- 9. Proportional Signal: 2- to 10-VDC or 4 to 20 mA, and 2- to 10-VDC position feedback signal.
- 10. Temperature Rating: Minus 22 to plus 122 degrees F.
- 11. Run Time: 30 seconds.
- 12. Actuator Housing: Molded or die-cast zinc or aluminum.

2.12 DAMPERS

- A. See specification section 23300.OUTPUT SWITCHES
- B. Control Relays: Control relays shall be double pole, double throw (DPDT), 3PDT, or 4PDT as appropriate, UL listed, with contacts rated for the application and enclosed in a dust proof enclosure. Relays shall have an integral indicator light and check button.

2.13 CONTROL VALVES

A. Refer to BA series drawings for control valve schedules and notes.

2.14 ELECTRICAL POWER AND DISTRIBUTION

- A. Sensors/relays associated with the DDC system are to be powered from a 120 Volt inverter circuit. Sensors/relays may derive power from the same dedicated source feeding the controlled element. Loss of power source shall generate an appropriate alarm.
- B. Grounding shall be per Division 26.
- C. Transformers when required shall conform to UL 506. Transformers serving digital controllers shall be powered from dedicated circuit breakers. Provide a fuse cutout on the secondary side of the transformer.
- D. Surge and transient protection shall be external to the equipment and shall be provided on all incoming AC power.
- E. Provide complete wiring for the control apparatus, including wiring to transformer primaries. Conduit per Section 260533, Raceway and Boxes for Electrical Systems.
- F. Control wiring for 24-volt circuits shall be insulated copper 18 awg stranded copper minimum and shall be rated for 300 VAC service.
- G. Analog signal wiring shall be cable with aluminum Mylar shield. Cable jacket shall be 105 Degrees C PVC with voltage rating of 300v minimum. Cable shall include 22 AWG, stranded drain wire. Cable shall carry an equivalent U.L. listing. Communications wiring shall be per published manufacturer's standards.
- H. Wiring for 120 VAC shall be 14 AWG minimum and shall be rated for 600 VAC service.

- I. Discrete alarm wiring shall be either two-wire normally closed or three-wire normally open circuitry as specified in the Alarm Standard Manual.
- J. Flexible metallic conduits shall be used for connections to motors, actuators, controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduits shall be used in exterior locations and interior locations subject to moisture.
- K. Junction boxes shall be provided at all cable splices, equipment terminations, and transitions from EMT to flexible conduit. Boxes shall be galvanized steel, nominal four-inch square with blank cover in dry locations and cast alloy with gasketed covers in damp locations.
- L. Provide conduit, seal-off's and weather proof junction boxes for the fuel oil tank liquid level and leak detection system in accordance with the manufacturer's recommendations. Refer to Section 231113, Facility Fuel-Oil Piping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.

3.2 INSTALLATION

- A. All work described in this specification shall be installed under the supervision of competent engineers, electricians and mechanics regularly employed in the installation of control systems. The system installer shall perform engineering, programming, calibration, check out, and testing.
- B. All system components to be installed per approved shop drawings and following equipment manufacturer's instructions.
- C. Install software in nodes and operator workstation. Implement all program features to meet specified requirements and appropriate to sequence of operation. Connect and configure equipment and software to achieve the sequence of operation specified.
- D. Installation of electrical wiring and associated equipment shall be in compliance with current national and local electrical codes and be per appropriate Sections of Division 26.
- E. The system's equipment/components must be securely attached to the building structure (column, permanent wall), superstructure (anchored to the floor, mounted on building studs or joists) maintaining service access where appropriate. System components are not to be mounted on auxiliary iron unless otherwise noted.
- F. Installation of nodes (Digital Controllers) will use following guidelines:

- 1. Nodes shall be installed in convenient locations directly on or immediately adjacent to the controlled equipment. If locations are not shown on the drawings, verify location with owner's representative prior to installation.
- 2. All monitoring, control functions associated with a single mechanical system such as air handling unit, boiler, and chiller shall be performed by a single dedicated node. More than one node for a single mechanical system is unacceptable.
- 3. Nodes located in building network equipment areas, electrical rooms, mechanical rooms, etc. shall be protected from dust using a NEMA enclosure.
- 4. Nodes located in raised floor areas shall be wall or column mount. Distribute nodes around the area. Second choice in this area shall be column mount under raised floor. Third choice is backboard mounted nodes laid flat on the building floor. Care shall be taken not to interfere with existing under floor wiring.
- 5. Nodes located within fire sprinkler spray range shall be mounted in a NEMA enclosure. These nodes shall be kept away from areas exposed to excessive heat, and not located directly under sprinkler heads. Nodes shall be easily accessible for replacement.
- 6. Nodes located in the network equipment areas shall use superstructure bracket mounts. Do not locate nodes directly above or in a location preventing access to the network equipment.
- 7. Wall/column mount nodes shall be positioned such that the bottom of the mount is at least seven (7) feet above the floor, where installed in network equipment areas.
- G. Actuators: All actuators for dampers furnished with air handling units shall be furnished under this Section. The DDC contractor shall coordinate with the various air handling unit manufacturers as to the size and quantity of actuators required for proper control of the dampers.
- H. Temperature sensors shall be located to sense appropriate conditions and where they are easy, to access for service without special tools.
 - 1. Room temperature sensors shall be located on interior walls suspended from the roof deck, or mounted on the auxiliary iron where noted on the drawings. Install on concealed junction boxes properly supported by the wall framing. Avoid locations, which may be covered by office furniture. Sensors shall be mounted with centerline approximately five (5) feet above finished floor unless otherwise noted. Not all thermostats are shown on the drawings and those shown are preliminary locations only. The contractor shall mark all final thermostat locations on-site for approval by the owner's representative prior to installation. Locations shall be coordinated with light switches where appropriate.
 - 2. Duct temperature sensors shall be located in the ductwork to accurately sense appropriate air temperatures. Do not locate sensors in dead air spaces or positions obstructed by ducts or equipment. Install gaskets between the sensor housing and the duct wall. Duct averaging sensors located between rigid supports shall be thermally isolated from the supports. Freeze protection sensors shall be located to sense lowest temperatures and to avoid potential problems with air stratification.
 - 3. Immersion temperature sensors used to measure liquid temperatures shall have wells located to measure continuous flow conditions. Extension couplings shall

not be used for thermowell installation sensors. Sensors shall be removable without shutting down the system in which they are installed.

- 4. Outside air temperature sensors shall be located away from exhaust hoods, air intakes, and other areas that may affect temperature readings. Provide sunshields to protect sensors from the direct sunlight.
- I. Pressure sensing tips shall be installed in locations to sense appropriate pressure conditions. Duct static pressure sensors shall have high-pressure port connected to a metal static pressure probe inserted into the duct pointing upstream. The low-pressure probe shall be open to the plenum area at the point where the high-pressure probe is tapped into the duct. For building pressure sensors, the high-pressure port shall be inserted into the space via a metal tube and the low-pressure probe shall be piped to the outside of the building.
- J. Wiring:
 - 1. Wiring shall be enclosed in conduit in compliance with Division 26. Wiring mounted on vibrating equipment such as fans and compressors. (Avoid crossing flexible connections or vibration isolation components. Where wiring leaves vibrating equipment, provide ample flexible conduit to permit normal machinery movement). Wiring is to include but is not limited to all wiring routed above ceilings; all wiring associated with smoke control system; all DDC communication wiring.
 - 2. All wiring shall be installed in metallic conduit with a minimum size of 3/4". All conduit shall be concealed, except above 9 ft in network equipment rooms, crawl spaces, tunnels and mechanical or electrical rooms. Conduit shall be fastened securely at regular intervals and shall be run parallel to the building lines.
 - 3. 24VAC control wiring may not share conduit with power wiring.
 - 4. Communication wiring shall not be installed in raceway and enclosures containing Class 1 or other Class 2 wiring.
 - 5. Maximum pulling, tension, and bend radius for cable installation as specified by the cable manufacturer shall not be exceeded during installation.
 - 6. Contractor shall verify the integrity of the entire network following the cable installation. Use appropriate test measures for each particular cable.
 - 7. Communication wiring shall be installed in continuous lengths. Spliced wires are not acceptable.
 - 8. All analog signal and communications wiring between field devices and panel must be "continuous run", no splices will be permitted. If splice is required, connections, (including shield) must be soldered and taped. Signal integrity of spliced cables must be checked with oscilloscope and appropriate signal generator and lines so tagged.
 - 9. All connections with the panels must be made with spade connectors of appropriate size and design for terminals being applied.
 - 10. All cables must be labeled and identified on corresponding termination drawings.
 - 11. Conduit for the thermostats located on the auxiliary iron must be extended from the roof deck to the thermostats individually; conduit installed on auxiliary iron must be kept to a minimum.

- K. At each building entry and exit point, the wire communications trunk wiring shall be protected with a transient surge protection device providing the minimal protection specifications of the General semiconductor, Model #422E device.
- L. Grounding shall be per Division 26.

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Section 260533, Raceway and Boxes for Electrical Systems.
- B. Install building wire and cable according to Section 260519, Low-Voltage Electrical Power Conductors and Cables.
- C. Install signal and communication cable as noted below.
 - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 - 2. Install exposed cable in raceway.
 - 3. Install concealed cable in raceway.
 - 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
- D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspecttest, and adjust field-assembled components and equipment installation, including connections and to assist in field testing. Report results in writing.
- B. The installed DDC and its components shall be free from defects and installed per Contract Documents. The installer shall complete a check of the system and make necessary repairs, replace defective components by wiring the System prior to the inspection and acceptance by Owner.
- C. Furnish personnel, equipment, instrumentation, and supplies necessary to perform calibration and site testing. Ensure that tests are performed by competent employees of

the control system installer or the system manufacturer regularly employed in the testing and calibration of the control systems.

- D. Testing to include field tests and performance verification tests (acceptance tests). Field tests shall demonstrate proper calibration of input and output devices, and operation of the specific equipment. Performance verification tests shall ensure proper execution of the sequence of operation and proper tuning of control loops.
- E. Adjust, calibrate, and fine tune circuits and equipment to achieve sequence of operation specified. Replace damaged or malfunctioning controls and equipment.

3.5 ADJUSTING

- A. Calibrating and Adjusting:
 - 1. Calibrate instruments.
 - 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
 - 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
 - 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milli-ampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
 - 5. Pressure:
 - a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 - b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
 - 6. Temperature:
 - a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 - b. Calibrate temperature switches to make or break contacts.
 - 7. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.

- 8. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 9. Provide diagnostic and test instruments for calibration and adjustment of system.
- 10. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.6 ACCEPTANCE TESTING

- A. Acceptance tests are performed to verify correct operation of the system. Some test routines may be performed off site and as system design progresses. Owner and Owner's Representative shall be notified of all field-testing dates and be invited to witness all tests. All system testing is performed in accordance with the DDC test and acceptance procedures.
- B. Submit for approval Acceptance Testing manual that describes in detail for each proposed test routine:
 - 1. The purpose of the test routine.
 - 2. The detailed procedure for the test routine.
 - 3. The location of the test routine.
 - 4. The forms to be filled in during the test routine.
- C. Obtain approval of the plan for each test routine. Furnish documentation and written certification that the system to be tested is designed, fabricated, and installed per the requirements of the specifications, calibrated and ready for testing.
- D. Test Routines:
 - 1. Engineering review is performed to verify that the appropriate hardware programs, parameters, and graphics have been chosen to comply with plans and specifications. Compare the proposed equipment and programs with the project plans and specifications to ensure that all required sequence of operation will be provided. Documentation for this review will include detailed program and graphic names and parameters for each program.
 - 2. Software simulation is done to verify that all sections of program code have been successfully debugged and shall operate according to the ASHRAE design standards. This shall be performed by simulating inputs such as temperatures, pressures, binary inputs to each section of code and/or function blocks and observe the actions of the programmed outputs. Documentation for this simulation shall include test description, simulated inputs, a record of outputs,

and a certification that the section of the program code performs the required tasks.

- 3. Database is downloaded to verify that the software has been correctly downloaded to the hardware modules. This shall be performed by observing that communication has been established with each module and the download is proceeding and after the completion of downloading observing that no errors have been reported. A report shall be provided indicating the date the software, was loaded and initials of the person performing loading.
- 4. Module communications routine test is performed to verify that the wires from each input device are correctly terminated at the local direct digital control units (LDDC) and supervisory direct digital control unit (SDDC) modules. This is performed by either opening or shorting the wires at each input device and observing the resultant change of state. The test form shall include the device name, device hardware address, the date of the test and initials of the individual performing the continuity test.
- 5. Input accuracy test is performed to calibrate the DDC reading to the actual value of the measured analog input. The test is performed by measuring the actual analog input with an agreed standard test equipment, such as digital thermometer, and calibrating the DDC reading to agree with this value. The test form shall include name of the point, the hardware address of the point, the actual value of the parameter read, the calibration of the BAS span and offset, and date and person performing the test.
- 6. Output continuity test routine performed to verify that the WI output devices are correctly terminated at the DDC module. The test is performed by activating each output at the DDC module and observing the resultant operation of the required field device. The test form shall include the device name, the device hardware address, date of the test and the initials of the individual performing the test.
- 7. Output accuracy test is performed to calibrate the DDC software to the actual analog operating ranges of the modulating control devices. The test is performed by adjusting each DDC analog output through its entire output range and observing the points at which the controlled device begins its stroke and at which controlled device ends its stroke. The test report shall include the name of the point, the hardware address of the point, the beginning and ending points of the controlled device stroke (actual spring ranges and normal positions for modulating valves and dampers), the date of the test and initials of the person performing the test.
- 8. Alarm/ Report test is performed to verify that all required alarm and report functions are operational and will report to the chosen devices.
 - a. The binary report test is performed by simulating the required alarm contact conditions at the DDC module digital input and observing that the corresponding alarm is annunciated at the correct devices.
- 9. The analog alarm test is performed by adjusting the alarm limits such that the actual sensor value is outside of the limits and observing that the corresponding alarm is annunciated at the correct devices.
- 10. The operator requested report test is performed by having the host operator request each report and observing that the correct report is displayed and/or printed.

- 11. Documentation for the tests shall include point name, report name, hardware address, hard copy of the alarm and report print out, the date of the test and initials of the individual performing the test.
- 12. The control loop tuning test is to verify that the software for the closed loop control functions operate correctly and the control loop is stable and maintain the set point. The test is performed by upsetting the loop (usually changing the set point) and observing that the controlled variable moves to the new set point without excessive cycling or delay. Documentation shall include point name, report name, hardware addresses, calibration parameters, i.e., proportional band, switching differential, etc., trend and graphic logs when printed, the date of test and the initials of the individual performing the test.
- 13. The sequence of operation routine is performed to verify that the controllers are programmed correctly and the sequence of operation is executed correctly. The test is performed by demonstrating all HVAC system operations properly through the complete sequence of operation like seasonal, occupied/ unoccupied, warm up, lead/ lag equipment operation. Demonstrate proper control system response to abnormal conditions by simulating these conditions. Demonstrate hardware interlocks and safeties work. Documentation shall include name of the HVAC system, description of the sequence of operation and certification that the system operates correctly.
- 14. Any deviation from the control system design parameters, nature of each failure and corrective action taken during testing shall be documented in detail with the test results.

3.7 DEMONSTRATION AND TRAINING

- A. Provide up to 24 hours of training instruction for a group of up to 8 owner employees over a period of at least 4 days. Training to take place at the jobsite.
- B. Submit a training course schedule, syllabus and training materials 45 days prior to the start of the training. The training will be provided by qualified instructors to designated personnel in the adjustment, operation and maintenance of the installed system. Operation and Maintenance manual shall be used as primary instructional aid in the training. Training manuals shall be provided to each trainee. Two additional sets shall be delivered for archiving at the project site. Training manuals shall include an agenda, defined objective and a detailed description of the subject matter for each lesson. A training day shall be of a maximum 8 hours and shall be normal working hours Monday through Friday. The training may be divided into various courses.
- C. The first course shall be taught at least one month prior to performance verification tests. Training shall be classroom, but have hands-on operation of similar controllers. The course to include as a minimum, following topics:
 - 1. Theory of operation.
 - 2. Hardware architecture.
 - 3. Operation of the system.
 - 4. Operator commands.
 - 5. Control sequence programming.
 - 6. Database entry.

- 7. Reports and logs.
- 8. Alarm reports.
- 9. Diagnostics.
- D. The second course shall be taught in the field, using the operating equipment. The course shall consist of hands-on training under the constant monitoring of the instructor. The course content shall be duplication of first course as applied to the installed system.
- E. The third course shall be taught in the field, approximately 6 months after the completion of all testing. The course shall be structured to discuss and answer questions concerning operation of the system.
- F. Maintenance Personnel Training: The maintenance course shall be taught at the project site, and shall include but not be limited to:
 - 1. Physical layout of each piece of hardware.
 - 2. Troubleshooting and diagnostics procedures.
 - 3. Repair Instructions.
 - 4. Preventive maintenance procedures and schedules e. calibration procedures.
- G. Refer to Section 017900, Demonstration and Training, for additional requirements.

END OF SECTION 250000

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper building wire.
 - 2. Connectors and splices.
- B. Related Requirements:
 - 1. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.

1.3 DEFINITIONS

- A. PV: Photovoltaic.
- B. RoHS: Restriction of Hazardous Substances.
- C. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Field quality-control reports.
- 1.6 QUALITY ASSURANCE
 - A. Testing Agency Qualifications: Member company of NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

- A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
- B. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- C. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.
- D. Conductor Insulation:
 - 1. Type THHN and Type THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.
- E. Shield:
 - 1. Type TC-ER: Cable designed for use with VFCs, with oversized crosslinked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire, and sunlight- and oil-resistant outer PVC jacket.

2.2 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>3M Electrical Products</u>.
 - 2. <u>Hubbell Power Systems, Inc</u>.
 - 3. <u>Ideal Industries, Inc</u>.
 - 4. <u>Thomas & Betts Corporation; A Member of the ABB Group.</u>
- C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

- D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper.
 - 2. Type: Two hole with long barrels.
 - 3. Termination: Crimp.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders:

- 1. Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- 2. Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits:

- 1. Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- 2. Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.
- C. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.
- D. Power-Limited Fire Alarm and Control: Solid for No. 12 AWG and smaller.
- E. PV Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
- B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
- D. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

- F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- G. VFC Output Circuits: Type XHHW-2 in metal conduit.
- 3.3 INSTALLATION, GENERAL
 - A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
 - B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
 - C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
 - D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
 - E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
 - F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
- 3.4 INSTALLATION OF FIRE-ALARM WIRE AND CABLE
 - A. Comply with NECA 1 and NFPA 72.
 - B. Wiring Method: Install wiring in metal pathway.
 - 1. Install plenum cable in environmental airspaces, including plenum ceilings.
 - 2. Fire-alarm circuits and equipment control wiring associated with fire-alarm system shall be installed in a dedicated pathway system.
 - a. Cables and pathways used for fire-alarm circuits, and equipment control wiring associated with fire-alarm system, may not contain any other wire or cable.
 - C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with fire-alarm system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

- D. Color-Coding: Color-code fire-alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire-alarm system junction boxes and covers red.
- E. Risers: Install at least two vertical cable risers to serve the fire-alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent receipt or transmission of signals from other floors or zones.
- F. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire-alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.5 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.6 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.7 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.8 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.9 FIELD QUALITY CONTROL

- A. Administrant for Tests and Inspections:
 - 1. Owner will engage qualified testing agency to administer and perform tests and inspections.
 - 2. Engage qualified testing agency to administer and perform tests and inspections.
 - 3. Engage factory-authorized service representative to administer and perform tests and inspections on components, assemblies, and equipment installations, including connections.
 - 4. Administer and perform tests and inspections with assistance of factory-authorized service representative.
- B. Tests and Inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. After installing conductors and cables and before electrical circuitry has been energized, test conductors feeding the following critical equipment and services for compliance with requirements:
 - 3. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - 2) Calibrated torque wrench.
 - 3) Thermographic survey.
 - c. Inspect compression-applied connectors for correct cable match and indentation.
 - d. Inspect for correct identification.
 - e. Inspect cable jacket and condition.
 - f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 - g. Continuity test on each conductor and cable.
 - h. Uniform resistance of parallel conductors.
 - 4. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- 5. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.
- C. Cables will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519

SECTION 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backboards.
 - 2. Category 5e balanced twisted pair cable.
 - 3. Category 6 balanced twisted pair cable.
 - 4. Category 6a balanced twisted pair cable.
 - 5. Balanced twisted pair cabling hardware.
 - 6. RS-485 cabling.
 - 7. Low-voltage control cabling.
 - 8. Control-circuit conductors.
 - 9. Identification products.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remotecontrol and signaling power-limited circuits.
- C. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.
- D. RCDD: Registered Communications Distribution Designer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency, RCDD, layout technician, installation supervisor, and field inspector.

- B. Source quality-control reports.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262, by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.
 - 1. Flame Travel Distance: 60 inches or less.
 - 2. Peak Optical Smoke Density: 0.5 or less.
 - 3. Average Optical Smoke Density: 0.15 or less.
- C. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.
- D. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.
- E. RoHS compliant.

2.2 CATEGORY 5e BALANCED TWISTED PAIR CABLE

- A. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 5e cable at frequencies up to 100 MHz.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>AMP NETCONNECT; a TE Connectivity Ltd. company</u>.
 - 2. <u>Belden Inc</u>.
 - 3. <u>Berk-Tek Leviton; a Nexans/Leviton alliance</u>.
 - 4. <u>General Cable; General Cable Corporation</u>.
 - 5. <u>Mohawk; a division of Belden Networking, Inc</u>.

- 6. <u>SYSTIMAX Solutions; a CommScope Inc. brand</u>.
- C. Standard: Comply with ICEA S-90-661, NEMA WC 63.1, and TIA-568-C.2 for Category 5e cables.
- D. Conductors: 100-ohm, 24 AWG solid copper.
- E. Shielding/Screening: Unshielded twisted pairs (UTP).
- F. Cable Rating: Plenum.
- G. Jacket: thermoplastic.

2.3 CATEGORY 6 BALANCED TWISTED PAIR CABLE

- A. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 6 cable at frequencies up to 250MHz.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following: 1. 3M.
 - 2. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 3. <u>Belden CDT Networking Division/NORDX</u>.
 - 4. <u>General Cable; General Cable Corporation</u>.
 - 5. <u>SYSTIMAX Solutions; a CommScope Inc. brand</u>.
- C. Standard: Comply with NEMA WC 66/ICEA S-116-732 and TIA-568-C.2 for Category 6 cables.
- D. Conductors: 100-ohm, 23 AWG solid copper.
- E. Shielding/Screening: Unshielded twisted pairs (UTP).
- F. Cable Rating: Plenum.
- G. Jacket: thermoplastic.

2.4 CATEGORY 6a BALANCED TWISTED PAIR CABLE

- A. Description: Hardware designed to connect, splice, and terminate balanced twisted pair copper communications cable.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>3M</u>.
 - 2. <u>AMP NETCONNECT; a TE Connectivity Ltd. company</u>.
 - 3. <u>Belden CDT Networking Division/NORDX</u>.
 - 4. <u>General Cable; General Cable Corporation</u>.

- 5. Leviton Manufacturing Co., Inc.
- 6. Mohawk; a division of Belden Networking, Inc.
- 7. <u>SYSTIMAX Solutions; a CommScope Inc. brand</u>.
- C. General Requirements for Balanced Twisted Pair Cable Hardware:
 - 1. Comply with the performance requirements of Category 6.
 - 2. Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
 - 3. Cables shall be terminated with connecting hardware of same category or higher.
- D. Source Limitations: Obtain balanced twisted pair cable hardware from single source from single manufacturer.
- E. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare, integral with connector bodies, including plugs and jacks where indicated.
- F. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- G. Patch Panel: Modular panels housing numbered jack units with IDC-type connectors at each jack location for permanent termination of pair groups of installed cables.
 - 1. Features:
 - a. Universal T568A and T568B wiring labels.
 - b. Labeling areas adjacent to conductors.
 - c. Replaceable connectors.
 - d. 24 or 48 ports.
 - 2. Construction: 16-gauge steel and mountable on 19-inch equipment racks.
- H. Plugs and Plug Assemblies:
 - 1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded balanced twisted pair cable.
 - 2. Comply with IEC 60603-7-1, IEC 60603-7-2, IEC 60603-7-3, IEC 60603-7-4, and IEC 60603-7.5.
 - 3. Marked to indicate transmission performance.
- I. Jacks and Jack Assemblies:
 - 1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded balanced twisted pair cable.
 - 2. Designed to snap-in to a patch panel or faceplate.

3. Standards:

- a. Category 5e, unshielded balanced twisted pair cable shall comply with IEC 60603-7-2.
- b. Category 5e, shielded balanced twisted pair cable shall comply with IEC 60603-7-3.
- c. Category 6, unshielded balanced twisted pair cable shall comply with IEC 60603-7-4.
- d. Category 6, shielded balanced twisted pair cable shall comply with IEC 60603-7.5.
- 4. Marked to indicate transmission performance.

J. Legend:

- 1. Machine printed, in the field, using adhesive-tape label.
- 2. Snap-in, clear-label covers and machine-printed paper inserts.

2.5 CONTROL-CIRCUIT CONDUCTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Encore Wire Corporation.
 - 2. <u>General Cable; General Cable Corporation</u>.
 - 3. <u>Service Wire Co</u>.
 - 4. <u>Southwire Company</u>.
- B. Class 1 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.
- C. Class 2 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.
- D. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

2.6 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test twisted pair cables according to TIA-568-C.2.
- C. Cable will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Test cables on receipt at Project site.
 - 1. Test each pair of twisted pair cable for open and short circuits.

3.2 INSTALLATION OF RACEWAYS AND BOXES

- A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.
 - 1. Outlet boxes for cables shall be no smaller than 4 inches square by 2-1/8 inches deep with extension ring sized to bring edge of ring to within 1/8 inch of the finished wall surface.
 - 2. Flexible metal conduit shall not be used.
- B. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.
- C. Install manufactured conduit sweeps and long-radius elbows if possible.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA-568-C Series of standards.
 - 2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
 - 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable between termination, tap, or junction points.
 - 5. Cables serving a common system may be grouped in a common raceway. Install network cabling and control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
 - 6. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
 - 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
 - 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Do not use heat lamps for heating.

- 10. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Monitor cable pull tensions.
- 11. Support: Do not allow cables to lie on removable ceiling tiles.
- 12. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
- 13. Provide strain relief.
- 14. Keep runs short. Allow extra length for connecting to terminals. Do not bend cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
- 15. Ground wire shall be copper, and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.
- C. Balanced Twisted Pair Cable Installation:
 - 1. Comply with TIA-568-C.2.
 - 2. Do not untwist balanced twisted pair cables more than 1/2 inch at the point of termination to maintain cable geometry.
- D. Installation of Control-Circuit Conductors:
 - 1. Install wiring in raceways.
 - 2. Use insulated spade lugs for wire and cable connection to screw terminals.
 - 3. Comply with requirements specified in Section 260533 "Raceways and Boxes for Electrical Systems."

3.4 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables. Abandoned conductors and cables are those installed that are not terminated at equipment and are not identified with a tag for future use.

3.5 CONTROL-CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits; No 14 AWG.
 - 2. Class 2 low-energy, remote-control, and signal circuits; No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm, and signal circuits; No 12 AWG.

3.6 FIRESTOPPING

- A. Comply with TIA-569-D, Annex A, "Firestopping."
- B. Comply with BICSI TDMM, "Firestopping" Chapter.

3.7 GROUNDING

- A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.
- B. For low-voltage control wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 IDENTIFICATION

- A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Identify data and communications system components, wiring, and cabling according to TIA-606-B; label printers shall use label stocks, laminating adhesives, and inks complying with UL 969.
- C. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Tests and Inspections:
 - 1. Visually inspect cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test cabling for direct-current loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination, but not after cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in its "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in its "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

- F. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- G. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- H. Prepare test and inspection reports.

END OF SECTION 260523

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Ground rings.
 - 4. Grounding arrangements and connections for separately derived systems.
- B. Qualification Data: For testing agency and testing agency's field supervisor.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - a. Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including the following:
 - 1) Test wells.
 - 2) Ground rods.
 - 3) Ground rings.

- 4) Grounding arrangements and connections for separately derived systems.
- 1.6 QUALITY ASSURANCE
 - A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

- A. The following materials and products shall be domestically produced and manufactured in the United States:
 - 1. Copper lugs and connections.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B3.
 - 2. Stranded Conductors: ASTM B8.
 - 3. Tinned Conductors: ASTM B33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- G. Conduit Hubs: Mechanical type, terminal with threaded hub.
- H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- J. Straps: Solid copper, cast-bronze clamp. Rated for 600 A.
- K. Water Pipe Clamps:
 - 1. U-bolt type with malleable-iron clamp and copper ground connector.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

3.5 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. Use exothermic welds for all below-grade connections.
 - 3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Hangers and supports for electrical equipment and systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Slotted support systems, hardware, and accessories.
 - b. Clamps.
 - c. Hangers.
 - d. Sockets.
 - e. Eye nuts.
 - f. Fasteners.
 - g. Anchors.
 - h. Saddles.
 - i. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 - 1. Hangers. Include product data for components.
 - 2. Slotted support systems.
 - 3. Equipment supports.
 - 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For hangers and supports for electrical systems.

- 1. Include design calculations and details of hangers.
- 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Ductwork, piping, fittings, and supports.
 - 3. Structural members to which hangers and supports will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Projectors.
- B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the supported equipment and systems will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.
- C. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inchdiameter holes at a maximum of 8 inches o.c. in at least one surface.

2.3 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. B-line, an Eaton business.
 - b. ERICO International Corporation.
 - c. Thomas & Betts Corporation; A Member of the ABB Group.
 - d. Unistrut; Part of Atkore International.
 - 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 3. Material for Channel, Fittings, and Accessories: Galvanized steel.
 - 4. Channel Width: 1-5/8 inches.
 - 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 7. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

- 8. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) B-line, an Eaton business.
 - 2) Hilti, Inc.
 - 3) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 2. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 - 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 - 4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M, Grade A325.
 - 5. Toggle Bolts: Stainless-steel springhead type.
 - 6. Hanger Rods: Threaded steel.

2.4 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 100 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 2. To Existing Concrete: Expansion anchor fasteners.
 - 3. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 - 4. To Light Steel: Sheet metal screws.

- 5. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 PAINTING

A. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizingrepair paint to comply with ASTM A780.

END OF SECTION 260529

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Nonmetallic conduits and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Nonmetal wireways and auxiliary gutters.
 - 5. Surface raceways.
 - 6. Boxes, enclosures, and cabinets.
 - 7. Handholes and boxes for exterior underground cabling.
- B. Related Requirements:
 - 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid steel conduit.
- C. IMC: Intermediate metal conduit.
- 1.4 ACTION SUBMITTALS
 - A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of conduit groups with common supports.

- 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
- B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit; a part of Atkore International.
 - b. Southwire Company.
 - c. Thomas & Betts Corporation; A Member of the ABB Group.
 - d. Western Tube and Conduit Corporation.
 - e. Wheatland Tube Company.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. GRC: Comply with ANSI C80.1 and UL 6.
 - 4. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. Comply with NEMA FB 1 and UL 514B.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 4. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
- C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. B-line, an Eaton business.
 - 2. Hoffman; a brand of Pentair Equipment Protection.
 - 3. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 or Type 3R unless otherwise indicated, and sized according to NFPA 70.

- 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Crouse-Hinds, an Eaton business.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman; a brand of Pentair Equipment Protection.
 - 5. Hubbell Incorporated.
 - 6. Milbank Manufacturing Co.
 - 7. RACO; Hubbell.
 - 8. Thomas & Betts Corporation; A Member of the ABB Group.
 - 9. Wiremold / Legrand.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.
- H. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- I. Device Box Dimensions: 4 inches by 2-1/8 inches by 2-1/8 inches deep.

- J. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 or Type 3R with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Fiberglass.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

K. Cabinets:

- 1. NEMA 250, Type 1 or Type 3R galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.
- 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: GRC.
 - 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
- C. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Feeders: GRC.
 - 2. Branch Circuits: GRC.
 - 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 4. Damp or Wet Locations: GRC.
 - 5. Boxes and Enclosures: NEMA 250, Type 3R.
- D. Minimum Raceway Size: 3/4-inch trade size.
- E. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.

2. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.2 INSTALLATION

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- C. Do not fasten conduits onto the bottom side of a metal deck roof.
- D. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- E. Complete raceway installation before starting conductor installation.
- F. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- G. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- H. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- I. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- J. Support conduit within 12 inches of enclosures to which attached.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- N. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

- O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- P. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- S. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- T. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- U. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - b. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

- V. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- W. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- X. Locate boxes so that cover or plate will not span different building finishes.
- Y. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- Z. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install 0sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.5 **PROTECTION**

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 - 2. Flexible nonmetallic duct.
 - 3. Duct accessories.

1.3 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.
- D. GRC: Galvanized rigid (steel) conduit.
- E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include duct-bank materials, including spacers and miscellaneous components.
 - 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 - 3. Include accessories for manholes, handholes, boxes, and other utility structures.
 - 4. Include underground-line warning tape.
 - 5. Include warning planks.

B. Shop Drawings:

- 1. Precast or Factory-Fabricated Underground Utility Structures:
 - a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include reinforcement details.
 - d. Include frame and cover design and manhole chimneys.
 - e. Include ladder details.
 - f. Include grounding details.
 - g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 - h. Include joint details.
- 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For duct and duct bank. Show duct profiles and coordination with other utilities and underground structures.
 - 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 - 2. Drawings shall be signed and sealed by a qualified professional engineer.
- B. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
- C. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C858.
- D. Source quality-control reports.
- E. Field quality-control reports.

1.6 MAINTENANCE MATERIALS SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

1.8 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Owner's written permission.
- B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.
- C. Ground Water: Assume ground-water level is 36 inches below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

- A. GRC: Comply with ANSI C80.1 and UL 6.
- B. Coated Steel Conduit: PVC-coated GRC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch, minimum.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 DUCT ACCESSORIES

A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."
- C. Concrete Warning Planks: Nominal 12 by 24 by 3 inches in size, manufactured from 6000-psi concrete.
 - 1. Color: Red dye added to concrete during batching.
 - 2. Mark each plank with "ELECTRIC" in 2-inch-high, 3/8-inch-deep letters.

2.3 PRECAST CONCRETE HANDHOLES AND BOXES

- A. Cover shall include insert or other device to facilitate lifting.
- B. Cover shall contain locking device similar to REA or FARGO.
- C. Drainhole in base, at least two inches diameter.
- D. Knockouts in sides of adequate number and spacing to accommodate duct bank shown.
- E. Underground enclosures shall be "Carlon Composolite" nonconcrete or approved equal. Enclosures shall be composed of reinforced plastic mortar and be designed and tested to temperatures of -50 degrees F and meet ASTM D-635 flammability test.
- F. Provide 17" x 30" x 36" (min.) deep hand holes where hand holes are indicated for all Telco conduits, unless otherwise noted. Depth shall be coordinated with conduit depth. See Section 260519, Low-Voltage Electrical Power Conductors and Cables.
- G. Provide 12" x 12" x 36" (min.) deep hand holes where hand holes are indicated for AC power and grounding conduits unless otherwise noted. Depth shall be coordinated with conduit depth. See Section 260519, Low-Voltage Electrical Power Conductors and Cables.

2.4 PRECAST MANHOLES

- A. Cover shall include inserts to facilitate lifting, and hinged galvanized steel access door, not less than 24" square, with provision for lifting and locking.
- B. Where located in a roadway, covers shall support H20 loading. All others shall be for H10 loading.
- C. For manholes greater than five feet in depth, provide steel ladder.
- D. Horizontal inserts in walls, approximately midway between floor and ceiling, to provide a means of attachment for cable support brackets. (Unistrut P-1000 or equal.)
- E. Drain holes in floor, at least two, minimum two inch diameter except where drawings show an internal sump and pump.
- F. Knockouts in sides of adequate number and spacing to accommodate duct banks shown.

2.5 CAST-IN-PLACE MANHOLES

- A. Covers shall include a hinged galvanized steel access hatch at least 24" square, with provisions for lifting and locking.
- B. Horizontal inserts shall be Unistrut P-1000 or equal, galvanized or zinc-chromated steel.

2.6 UTILITY STRUCTURE ACCESSORIES

A. All manhole hardware, including covers, ladders, steps, pulling hardware, and insets for conduit or raceway supports, shall be prefabricated for the intended purpose and use.

2.7 SOURCE QUALITY CONTROL

- A. Test and inspect precast concrete utility structures according to ASTM C1037.
- B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.
- C. Clear and grub vegetation to be removed and protect vegetation to remain. Remove and stockpile topsoil for reapplication.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Cables More Than 600 V: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.
- B. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.
- C. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- D. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- E. Bored Underground Duct: Type EPEC-40-HDPE unless otherwise indicated.
- F. Underground Ducts Crossing Paved Paths Walks: Type EPC-40 PVC RNC, encased in reinforced concrete.
- G. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

- A. Handholes and Boxes for 600 V and Less:
 - 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-10 structural load rating.
 - 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 structural load rating.
 - 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
 - 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf vertical loading.
 - 5. Cover design load shall not exceed the design load of the handhole or box.

3.4 EARTHWORK

- A. Excavation and Backfill: Do not use heavy-duty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area immediately after backfilling is completed.
- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures.

3.5 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
- G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell, without reducing duct slope and without forming a trap in the line.
 - 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct with calculated expansion of more than 3/4 inch.
 - 3. Grout end bells into structure walls from both sides to provide watertight entrances.

- H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches o.c. for 4-inch duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to terminator spacing 10 feet from the terminator, without reducing duct line slope and without forming a trap in the line.
 - 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch.
- I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.
- K. Pulling Cord: Install 200-lbf-test nylon cord in empty ducts.
- L. Concrete-Encased Ducts and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct.
 - 2. Width: Excavate trench 12 inches wider than duct on each side.
 - 3. Depth: Install so top of duct envelope is at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
 - 4. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 5. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 6. Minimum Space between Duct: 3 inches between edge of duct and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and communications ducts.
 - 7. Elbows: Use manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct unless otherwise indicated. Extend encasement throughout length of elbow.
 - 8. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

- b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inchesabovefinished floor and minimum 3 inchesfrom conduit side to edge of slab.
- c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be flush withfinished floor and no less than 3 inchesfrom conduit side to edge of slab.
- 9. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
- 10. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
- 11. Concrete Cover: Install a minimum of 3 inches of concrete cover between edge of duct to exterior envelope wall, 2 inches between duct of like services, and 4 inches between power and communications ducts.
- 12. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 - a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written instructions, or use other specific measures to prevent expansion-contraction damage.
 - b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing-rod dowels extending a minimum of 18 inches into concrete on both sides of joint near corners of envelope.
- 13. Pouring Concrete: Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.
- M. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct.
 - 2. Width: Excavate trench 12 inches wider than duct on each side.
 - 3. Width: Excavate trench 3 inches wider than duct on each side.
 - 4. Depth: Install top of duct at least 36 inches below finished grade unless otherwise indicated.
 - 5. Set elevation of bottom of duct bank below frost line.
 - 6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
- 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
- 8. Install duct with a minimum of 3 inches between ducts for like services and 6 inches between power and communications duct.
- 9. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 - b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inchesabovefinished floor and minimum 3 inchesfrom conduit side to edge of slab.
 - c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be flush withfinished floor and no less than 3 inchesfrom conduit side to edge of slab.
- 11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction.
 - a. Place minimum 3 inches of sand as a bed for duct. Place sand to a minimum of 6 inches above top level of duct.
 - b. Place minimum 6 inches of engineered fill above concrete encasement of duct.
- N. Warning Planks: Bury warning planks approximately 12 inches above direct-buried duct, placing them 24 inches o.c. Align planks along the width and along the centerline of duct or duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.
- O. Underground-Line Warning Tape: Bury nonconducting underground line no less than 12 inches above all concrete-encased duct and duct banks. Align tape parallel to and within 3 inches of

centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

- A. Cast-in-Place Manhole Installation:
 - 1. Finish interior surfaces with a smooth-troweled finish.
 - 2. Knockouts for Future Duct Connections: Form and pour concrete knockout panels 1-1/2 to 2 inches thick, arranged as indicated.
- B. Precast Concrete Handhole and Manhole Installation:
 - 1. Comply with ASTM C891 unless otherwise indicated.
 - 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 - 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevations:
 - 1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
 - 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch above finished grade.
 - 3. Install handholes with bottom below frost line.
 - 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
 - 5. Where indicated, cast handhole cover frame integrally with handhole structure.
- D. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.
- E. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 - 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 - 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.
- F. Waterproofing: Apply waterproofing to exterior surfaces of manholes after concrete has cured at least three days. Waterproofing materials and installation are specified in After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

- G. Dampproofing: Apply dampproofing to exterior surfaces of manholes after concrete has cured at least three days. After ducts are connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.
- H. Hardware: Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.
- I. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.
- J. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch above finished grade.
- D. Install handholes and boxes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.
- F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
- G. For enclosures installed in asphalt paving and concrete and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 - 1. Concrete: 3000 psi, 28-day strength with a troweled finish.
 - 2. Dimensions: 10 inches wide by 12 inches deep.

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch-long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.
 - 3. Test manhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.10 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Clean internal surfaces of manholes, including sump.
 - 1. Sweep floor, removing dirt and debris.
 - 2. Remove foreign material.

END OF SECTION 260543

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Round sleeves.
 - 2. Rectangular sleeves.
 - 3. Sleeve seal systems.
 - 4. Grout.
 - 5. Pourable sealants.
 - 6. Foam sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

- 2.1 ROUND SLEEVES
 - A. Wall Sleeves, Steel:
 - 1. Description: ASTM A53/A53M, Type E, Grade B, Schedule 40, zinc coated, plain ends and integral waterstop.
 - B. Wall Sleeves, Cast Iron:
 - 1. Description: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop.
 - C. Pipe Sleeves, PVC:
 - 1. Description: ASTM D1785, Schedule 40.
 - D. Molded Sleeves, PVC:

- 1. Description: With nailing flange for attaching to wooden forms.
- E. Molded Sleeves, PE or PP:
 - 1. Description: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- F. Sheet Metal Sleeves, Galvanized Steel, Round:
 - 1. Description: Galvanized-steel sheet; thickness not less than 0.0239-inch; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

2.2 RECTANGULAR SLEEVES

- A. Sheet Metal Sleeves, Galvanized Steel, Rectangular:
 - 1. Description:
 - a. Material: Galvanized sheet steel.
 - b. Minimum Metal Thickness:
 - 1) For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness must be 0.052 inch.
 - 2) For sleeve cross-section rectangle perimeter not less than 50 inches or with one or more sides larger than 16 inches, thickness must be 0.138 inch.

2.3 SLEEVE SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable or between raceway and cable.
 - 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
 - 1. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.5 POURABLE SEALANTS

- A. Description: Single-component, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Sustainability Criteria:

2.6 FOAM SEALANTS

- A. Description: Multicomponent, liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam. Foam expansion must not damage cables or crack penetrated structure.
- B. Sustainability Criteria:

PART 3 - EXECUTION

3.1 INSTALLATION OF SLEEVES FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Sleeves for Conduits Penetrating Above-Grade, Non-Fire-Rated, Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall or floor so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - b. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless sleeve seal system is to be installed.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.
- C. Sleeves for Conduits Penetrating Non-Fire-Rated Wall Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

- 2. Seal space outside of sleeves with approved joint compound for wall assemblies.
- D. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- E. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seal systems. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- F. Underground, Exterior-Wall and Floor Penetrations:
 - 1. Install steel pipe sleeves with integral waterstops. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve seal system. Install sleeve during construction of floor or wall.
 - 2. Install steel pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve seal system. Grout sleeve into wall or floor opening.

3.2 INSTALLATION OF RECTANGULAR SLEEVES AND SLEEVE SEALS

- A. Install sleeves in existing walls without compromising structural integrity of walls. Do not cut structural elements without reinforcing the wall to maintain the designed weight bearing and wall stiffness.
- B. Install conduits and cable with no crossings within the sleeve.
- C. Fill opening around conduits and cables with expanding foam without leaving voids.
- D. Provide metal sheet covering at both wall surfaces and finish to match surrounding surfaces. Metal sheet must be same material as sleeve.

3.3 INSTALLATION OF SLEEVE SEAL SYSTEMS

- A. Install sleeve seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

END OF SECTION 260544

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Labels.
 - 2. Bands and tubes.
 - 3. Tapes and stencils.
 - 4. Tags.
 - 5. Signs.
 - 6. Cable ties.
 - 7. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1.
- B. Comply with NFPA 70.

- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 240-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - 4. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 5. Color for Neutral: White.
 - 6. Color for Equipment Grounds: Green.
 - 7. Colors for Isolated Grounds: Green with two or more yellow stripes.
- C. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
- D. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.

- E. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
- F. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

- A. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. Brother International Corporation.
 - c. <u>Marking Services, Inc</u>.
 - d. <u>Panduit Corp</u>.
 - e. <u>Seton Identification Products; a Brady Corporation company</u>.
 - 2. Minimum Nominal Size:
 - a. 1-1/2 by 6 inches for raceway and conductors.
 - b. 3-1/2 by 5 inches for equipment.
 - c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

- A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Marking Services, Inc</u>.
 - c. <u>Panduit Corp</u>.

2.5 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Carlton Industries, LP</u>.
 - b. <u>Ideal Industries, Inc</u>.
 - c. <u>Marking Services, Inc</u>.
 - d. <u>Panduit Corp</u>.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Carlton Industries, LP</u>.
 - c. <u>emedco</u>.
 - d. <u>Marking Services, Inc</u>.
- C. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

2.6 TAGS

- A. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Carlton Industries, LP</u>.
 - c. <u>Marking Services, Inc</u>.
 - d. <u>Panduit Corp</u>.
 - e. <u>Seton Identification Products; a Brady Corporation company</u>.

2.7 SIGNS

- A. Laminated Acrylic or Melamine Plastic Signs:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. <u>Carlton Industries, LP</u>.
 - c. <u>emedco</u>.
 - d. <u>Marking Services, Inc</u>.

- 2. Engraved legend.
- 3. Thickness:
 - a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 - b. For signs larger than 20 sq. in., 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>HellermannTyton</u>.
 - 2. <u>Ideal Industries, Inc</u>.
 - 3. <u>Marking Services, Inc</u>.
 - 4. <u>Panduit Corp</u>.
- B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- I. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- J. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- K. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:

- 1. "EMERGENCY POWER."
- 2. "POWER."
- 3. "UPS."
- L. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.
- M. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
- N. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- O. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
- P. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.
- Q. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- R. Nonmetallic Preprinted Tags:
 - 1. Place in a location with high visibility and accessibility.
 - 2. Secure using UV-stabilized cable ties.
- S. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

- C. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil. Stencil legend "DANGER - CONCEALED HIGH-VOLTAGE WIRING" with 3-inch-high, black letters on 20-inch centers.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot maximum intervals.
- D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: .
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- H. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.
- I. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.
- J. Control-Circuit Conductor Termination Identification: For identification at terminations, provide selfadhesive labels with the conductor designation.
- K. Auxiliary Electrical Systems Conductor Identification: Self-adhesive vinyl tape that is uniform and consistent with system used by manufacturer for factory-installed connections.

- 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
- L. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- M. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- N. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- O. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive labels.
 - 1. Apply to exterior of door, cover, or other access.
 - 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- P. Arc Flash Warning Labeling: Self-adhesive labels.
- Q. Equipment Identification Labels:
 - 1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 - 3. Equipment to Be Labeled:
 - a. Enclosures and electrical cabinets.
 - b. Access doors and panels for concealed electrical items.
 - c. Switchgear.
 - d. Switchboards.
 - e. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - f. Substations.
 - g. Emergency system boxes and enclosures.
 - h. Motor-control centers.
 - i. Enclosed switches.
 - j. Enclosed circuit breakers.
 - k. Enclosed controllers.
 - l. Variable-speed controllers.
 - m. Push-button stations.
 - n. Power-transfer equipment.
 - o. Contactors.
 - p. Remote-controlled switches, dimmer modules, and control devices.
 - q. Battery-inverter units.

- Battery racks. r.
- s.
- Power-generating units. Monitoring and control equipment. UPS equipment. t.
- u.

END OF SECTION 260553

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Fuses
 - 3. Nonfusible switches.
 - 4. Molded-case circuit breakers (MCCBs).
 - 5. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Data: Certificates, for enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 - b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.

- 3. Siemens Energy & Automation, Inc.
- 4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty:

- 1. Single throw.
- 2. Three pole.
- 3. 240 or 600-V ac.
- 4. 1200 A and smaller.
- 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
- 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
- 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
- 7. Lugs: Compression type, suitable for number, size, and conductor material.
- 8. Service-Rated Switches: Labeled for use as service equipment.

2.4 FUSES

- A. Fuses 600 Amperes and Less: Dual element, time delay, 600 volt, UL Class RK1. Interrupting Rating: 200,000 rms amperes.
- B. Fuses 600 Amperes or Less: Dual element, time delay, 250 volt, UL Class RK 1. Interrupting Rating: 200,000 rms amperes.
- C. Provide three (3) spares of each size and type fuse.
- D. Provide enclosure for spare fuses.

2.5 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.

- 3. Siemens Energy & Automation, Inc.
- 4. Square D; a brand of Schneider Electric.
- B. Type HD, Heavy Duty, Three Pole, Double Throw, 240 or 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 4. Lugs: Compression type, suitable for number, size, and conductor material.

2.6 MOLDED-CASE CIRCUIT BREAKERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Thermal-Magnetic Circuit Breakers: Inverse time-current thermal element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- C. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- D. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I-squared t response.
- E. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
- F. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

- G. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- H. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- I. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 - 5. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - 6. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
 - 7. Zone-Selective Interlocking: Integral with ground-fault trip unit; for interlocking ground-fault protection function.

2.7 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

- 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
- 2. Indicate method of providing temporary electric service.
- 3. Do not proceed with interruption of electric service without Owner's written permission.
- 4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.4 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in fusible devices.
- F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 - i. Verify correct phase barrier installation.
 - j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
 - 2. Electrical Tests:
 - a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

- b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
- c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
- d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
- e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."
- F. Tests and Inspections for Molded Case Circuit Breakers:
 - 1. Visual and Mechanical Inspection:
 - a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and clearances.
 - d. Verify that the unit is clean.
 - e. Operate the circuit breaker to ensure smooth operation.
 - f. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - g. Inspect operating mechanism, contacts, and chutes in unsealed units.
 - h. Perform adjustments for final protective device settings in accordance with the coordination study.
 - 2. Electrical Tests:
 - a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar

connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

- b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
- c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
- d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.
- e. Determine the following by primary current injection:
 - 1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.
- f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.
- g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.
- h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.
- i. Verify operation of charging mechanism. Investigate units that do not function as designed.
- 3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 4. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and

circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.

- b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
- c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- G. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- H. Prepare test and inspection reports.
 - 1. Test procedures used.
 - 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
 - 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges in accordance the Overcurrent Protective Device Coordination Study.

END OF SECTION 262816

SECTION 284621 - ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Fire-alarm control unit.
- 2. Manual fire-alarm boxes.
- 3. System smoke detectors.
- 4. Nonsystem smoke detectors.
- 5. Heat detectors.
- 6. Notification appliances.
- 7. Device guards.
- 8. Magnetic door holders.
- 9. Remote annunciator.Graphic annunciator.
- 10. Addressable interface device.
- 11. Digital alarm communicator transmitter.
- 12. Network communications.
- 13. System printer.
- B. Related Requirements:

1.3 DEFINITIONS

- A. EMT: Electrical Metallic Tubing.
- B. FACP: Fire Alarm Control Panel.
- C. HLI: High Level Interface.
- D. NICET: National Institute for Certification in Engineering Technologies.
- E. PC: Personal computer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.

ADDRESSABLE FIRE-ALARM SYSTEMS

- 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
- 2. Include rated capacities, operating characteristics, and electrical characteristics.
- B. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, details, and attachments to other work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 - 4. Detail assembly and support requirements.
 - 5. Include voltage drop calculations for notification-appliance circuits.
 - 6. Include battery-size calculations.
 - 7. Include input/output matrix.
 - 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 - 9. Include performance parameters and installation details for each detector.
 - 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 - 11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.
 - 12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 - a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 - b. Show field wiring required for HVAC unit shutdown on alarm.
 - c. Locate detectors according to manufacturer's written recommendations.
 - d. Show air-sampling detector pipe routing.
 - 13. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
- C. General Submittal Requirements:
 - 1. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified, fire-alarm technician; Level IV minimum.
 - c. Licensed or certified by authorities having jurisdiction.
- D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.

- 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
- 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 - d. Riser diagram.
 - e. Device addresses.
 - f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
 - g. Record copy of site-specific software.
 - h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.
 - 3) Frequency of inspection of installed components.
 - 4) Requirements and recommendations related to results of maintenance.
 - 5) Manufacturer's user training manuals.
 - i. Manufacturer's required maintenance related to system warranty requirements.
 - j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.

- 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
- 3. Device address list.
- 4. Printout of software application and graphic screens.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than one unit of each type.
 - 4. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
 - 5. Keys and Tools: One extra set for access to locked or tamper-proofed components.
 - 6. Audible and Visual Notification Appliances: One of each type installed.
 - 7. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.

1.9 PROJECT CONDITIONS

- A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of fire-alarm service.
 - 2. Do not proceed with interruption of fire-alarm service without Owner's written permission.

1.10 SEQUENCING AND SCHEDULING

A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN

SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.

B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

PART 2 - PRODUCTS

2.1 EXISTING FIRE-ALARM SYSTEM TO BE MODIFIED

- A. Basis for Pricing: Siemens MXL
 - 1. Contact Chris Foster @ (913) 915-7216.
- B. Source Limitations for Fire-Alarm System and Components: Components must be compatible with, and operate as extension of, existing system. Provide system manufacturer's certification that components provided have been tested as, and will operate as, a system.

2.2 SYSTEM DESCRIPTION

- A. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
- B. Noncoded, addressable system, with multiplexed signal transmission and voice/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.
- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Manual stations.
 - 2. Heat detectors.
 - 3. Smoke detectors.
 - 4. Duct smoke detectors.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances, including voice evacuation notices.
 - 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.

ADDRESSABLE FIRE-ALARM SYSTEMS

- 3. Transmit an alarm signal to the remote alarm receiving station.
- 4. Unlock electric door locks in designated egress paths.
- 5. Release fire and smoke doors held open by magnetic door holders.
- 6. Activate voice/alarm communication system.
- 7. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
- 8. Close smoke dampers in air ducts of designated air-conditioning duct systems.
- 9. Recall elevators to primary or alternate recall floors.
- 10. Record events in the system memory.
- 11. Record events by the system printer.
- 12. Indicate device in alarm on the graphic annunciator.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 - 1. Valve supervisory switch.
 - 2. User disabling of zones or individual devices.
 - 3. Loss of communication with any panel on the network.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 - 4. Loss of primary power at fire-alarm control unit.
 - 5. Ground or a single break in internal circuits of fire-alarm control unit.
 - 6. Abnormal ac voltage at fire-alarm control unit.
 - 7. Break in standby battery circuitry.
 - 8. Failure of battery charging.
 - 9. Abnormal position of any switch at fire-alarm control unit or annunciator.
 - 10. Voice signal amplifier failure.
- E. System Supervisory Signal Actions:
 - 1. Initiate notification appliances.
 - 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
 - 3. Record the event on system printer.
 - 4. After a time delay of 200 seconds <Insert time delay>, transmit a trouble or supervisory signal to the remote alarm receiving station.
 - 5. Transmit system status to building management system.
 - 6. Display system status on graphic annunciator.

2.4 FIRE-ALARM CONTROL UNIT

- A. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.

- a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
- b. Include a real-time clock for time annotation of events on the event recorder and printer.
- c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
- d. The FACP shall be listed for connection to a central-station signaling system service.
- e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.
- 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
- 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
- B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.
- C. Signaling-Line Circuits:
 - 1. Pathway Class Designations: NFPA 72, Class A or Class B.
 - 2. Pathway Survivability: Level 0.
 - 3. Install no more than 50 addressable devices on each Class B signaling-line circuit and no more than 100 addressable devices on each Class A signaling-line circuit.
 - 4. Serial Interfaces:
 - a. One dedicated RS 485 port for central-station operation using point ID DACT.
 - b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 - c. One USB port for PC configuration.
 - d. One RS 232 port for VESDA HLI connection.
 - e. One RS 232 port for voice evacuation interface.
- D. Retain "Smoke-Alarm Verification" Paragraph below for systems with smoke-alarm verification. Alarm verification is generally not recommended for duct smoke detectors.
- E. Smoke-Alarm Verification:
- 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
- 2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
- 3. Record events by the system printer.
- 4. Sound general alarm if the alarm is verified.
- 5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.
- F. Notification-Appliance Circuit:
 - 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 - 2. The alarm signal shall have an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at 5 foot above floor.
 - 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.
- G. Elevator Recall:
 - 1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 - a. Elevator lobby detectors except the lobby detector on the designated floor.
 - b. Smoke detector in elevator machine room.
 - c. Smoke detectors in elevator hoistway.
 - 2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.
 - 3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 - a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.
- H. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke-barrier walls shall be connected to fire-alarm system.
- I. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.
- J. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- K. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators provided in a separate cabinet located in the fire command center

- 1. Indicate number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711.
 - a. Allow the application of, and evacuation signal to, indicated number of zones and, at the same time, allow voice paging to the other zones selectively or in any combination.
 - b. Programmable tone and message sequence selection.
 - c. Standard digitally recorded messages for "Evacuation" and "All Clear."
 - d. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification-appliance circuits of fire-alarm control unit.
- 2. Status Annunciator: Indicate the status of various voice/alarm speaker zones and the status of firefighters' two-way telephone communication zones.
- 3. Preamplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.
- L. "Primary Power" Paragraph below is for two-wire supply; revise if three-wire supply or an external dc supply is provided.
- M. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
 - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the powersupply module rating.
- N. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.
 - 1. Batteries: Sealed, valve-regulated, recombinant lead acid.
- O. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.5 MANUAL FIRE-ALARM BOXES

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 - 1. Double-action mechanism requiring two actions to initiate an alarm, breaking-glass, plastic-rod or pull-lever type; with addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.

ADDRESSABLE FIRE-ALARM SYSTEMS

3. Weatherproof Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.6 SYSTEM SMOKE DETECTORS

- A. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268; operating at 24-V dc, nominal.
 - 2. Detectors shall be four-wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 - 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 - 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 6. Integral Visual-Indicating Light: LED type, indicating detector has operated and poweron status.
 - 7. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 - a. Rate-of-rise temperature characteristic of combination smoke- and heat-detection units shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.
 - b. Fixed-temperature sensing characteristic of combination smoke- and heat-detection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F.
 - c. Multiple levels of detection sensitivity for each sensor.
 - d. Sensitivity levels based on time of day.
- B. Photoelectric Smoke Detectors:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

- a. Primary status.
- b. Device type.
- c. Present average value.
- d. Present sensitivity selected.
- e. Sensor range (normal, dirty, etc.).
- 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
- 4. Each sensor shall have multiple levels of detection sensitivity.
- 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
- 6. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

2.7 HEAT DETECTORS

- A. General Requirements for Heat Detectors: Comply with UL 521.
 - 1. Temperature sensors shall test for and communicate the sensitivity range of the device.
- B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 - 1. Mounting: Adapter plate for outlet box mounting for explosion-proof, otherwise Twistlock base interchangeable with smoke-detector bases.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 - 1. Mounting: Adapter plate for outlet box mounting for explosion-proof, otherwise Twistlock base interchangeable with smoke-detector bases.
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.8 NOTIFICATION APPLIANCES

- A. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

- B. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.
 - 1. Rated Light Output:
 - a. Wall mounted: 15/30/75/110/135/185 cd, selectable in the field. The full range may be achieved with several models.
 - b. Ceiling mounted: 15/30/75//95/115/177 cd, selectable in the field. The full range may be achieved with several models.
 - 2. Mounting: As indicated.
 - 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 - 4. Flashing shall be in a temporal pattern, synchronized with other units.
 - 5. Strobe Leads: Factory connected to screw terminals.
 - 6. Mounting Faceplate: Factory finished, red for wall mount and white for ceiling mount.
- C. Voice/Tone Notification Appliances:
 - 1. Comply with UL 1480.
 - 2. Speakers for Voice Notification: Locate speakers for voice notification to provide the intelligibility requirements of the "Notification Appliances" and "Emergency Communications Systems" chapters in NFPA 72.
 - 3. High-Range Units: Rated 2 to 15 W.
 - 4. Low-Range Units: Rated 1/8 to 2 W.
 - 5. Mounting: Flush or semirecessed for low-range units and surface mounted for high-range units.
 - 6. Matching Transformers: Tap range matched to acoustical environment of speaker location.
- D. Exit Marking Audible Notification Appliance:
 - 1. Exit marking audible notification appliances shall meet the audibility requirements in NFPA 72.
 - 2. Provide an exit marking audible voice zone for notification appliances at the entrance to all building exits.

2.9 MAGNETIC DOOR HOLDERS

- A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
 - 1. Electromagnets: Require no more than 3 W to develop 25-lbf holding force.
 - 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
 - 3. Rating: 24-V ac or dc.
 - 4. Rating: 120-V ac.
- B. Material and Finish: Match door hardware.

2.10 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: Surface cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE

- A. General:
 - 1. Include address-setting means on the module.
 - 2. Store an internal identifying code for control panel use to identify the module type.
 - 3. Listed for controlling HVAC fan motor controllers.
- B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.
 - 1. Allow the control panel to switch the relay contacts on command.
 - 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.
- D. Control Module:
 - 1. Operate notification devices.
 - 2. Operate solenoids for use in sprinkler service.
 - 3. Retain one of two transmitter articles below if Project requires alarm and transmission of alarm, supervisory, and trouble signals to a remote alarm receiving station or another remote location.

2.12 NETWORK COMMUNICATIONS

- A. Provide network communications for fire-alarm system according to fire-alarm manufacturer's written requirements.
- B. Provide network communications pathway per manufacturer's written requirements and requirements in NFPA 72 and NFPA 70.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 - 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
- B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 - 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 - 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.
 - 3. Retain one of two "Equipment Mounting" paragraphs below. Coordinate with Drawings and Sections specifying vibration and seismic controls. Retain or insert amount of required deflection.
- B. Equipment Mounting: Install fire-alarm control unit on finished floor.
- C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
- D. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 - 2. Mount manual fire-alarm box on a background of a contrasting color.
 - 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- E. Smoke- or Heat-Detector Spacing:

- 1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
- 2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
- 3. Smooth ceiling spacing shall not exceed 30 feet.
- 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A or Annex B in NFPA 72.
- 5. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
- 6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.
- F. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.
- G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 - 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.
- H. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location. Do not install smoke detectors in sprinklered elevator shafts.
- I. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- J. Audible Alarm-Indicating Devices: Install wall-mounted devices not less than 6 inches below the ceiling. In finished spaces, install horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
- K. Visible Alarm-Indicating Devices: Install devices adjacent to each alarm speaker or speaker horn and install wall-mounted devices at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

3.3 PATHWAYS

A. Pathways shall be installed in EMT painted red enamel.

3.4 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.

- 1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.
- B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Smoke dampers in air ducts of designated HVAC duct systems.
 - 2. Magnetically held-open doors.
 - 3. Electronically locked doors and access gates.
 - 4. Alarm-initiating connection to elevator recall system and components.
 - 5. Supervisory connections at valve supervisory switches.
 - 6. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
 - 7. Data communication circuits for connection to building management system.
 - 8. Data communication circuits for connection to mass notification system.

3.5 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 270553 "Identification for Communications Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.6 GROUNDING

- A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
- B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.7 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by authorities having jurisdiction.
- B. Perform tests and inspections.
- C. Perform the following tests and inspections:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

- 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
- 4. Test visible appliances for the public operating mode according to manufacturer's written instructions.
- D. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

3.8 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Upgrading software shall include operating system and new or revised licenses for using software.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 284621