PROJECT MANUAL
Volume 2 of 2
Rebuild Kitchen & Stabilize Structure Tavern,
Arrow Rock State Historic Site
Arrow Rock, MO

DESIGNED BY: Strata Architecture, Inc.
1701 Oak St. Ste. 100
Kansas City, MO

DATE ISSUED: 5/12/20

PROJECT NO.: X2001-01

FOR: State of Missouri
Office of Administration
Division of Facilities Management,
Design and Construction
<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 00 – PROCUREMENT AND CONTRACTING INFORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000000</td>
<td>INTRODUCTORY INFORMATION</td>
<td></td>
</tr>
<tr>
<td>000101</td>
<td>Project Manual Cover</td>
<td>1</td>
</tr>
<tr>
<td>000107</td>
<td>Professional Seals and Certifications</td>
<td>6</td>
</tr>
<tr>
<td>000110</td>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>000115</td>
<td>List of Drawings</td>
<td>1</td>
</tr>
<tr>
<td>001116</td>
<td>INVITATION FOR BID (IFB) plus Missouri Buys instructions and special notice</td>
<td>3</td>
</tr>
<tr>
<td>002113</td>
<td>INSTRUCTIONS TO BIDDERS (Includes MBE/WBE/SDVE Information)</td>
<td>8</td>
</tr>
<tr>
<td>003144</td>
<td>MBE/WBE/SDVE Directory</td>
<td>1</td>
</tr>
<tr>
<td>The following documents may be found on MissouriBUYS at https://missouribuys.mo.gov/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004000</td>
<td>PROCUREMENT FORMS & SUPPLEMENTS</td>
<td></td>
</tr>
<tr>
<td>004113</td>
<td>Bid Form</td>
<td>*</td>
</tr>
<tr>
<td>004322</td>
<td>Unit Prices Form</td>
<td>*</td>
</tr>
<tr>
<td>004336</td>
<td>Proposed Subcontractors Form</td>
<td>*</td>
</tr>
<tr>
<td>004337</td>
<td>MBE/WBE/SDVE Compliance Evaluation Form</td>
<td>*</td>
</tr>
<tr>
<td>004338</td>
<td>MBE/WBE/SDVE Eligibility Determination</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Form for Joint Ventures</td>
<td></td>
</tr>
<tr>
<td>004339</td>
<td>MBE/WBE/SDVE Good Faith Effort (GFE) Determination Forms</td>
<td>*</td>
</tr>
<tr>
<td>004340</td>
<td>SDVE Business Form</td>
<td>*</td>
</tr>
<tr>
<td>004541</td>
<td>Affidavit of Work Authorization</td>
<td>*</td>
</tr>
<tr>
<td>005000</td>
<td>CONTRACTING FORMS AND SUPPLEMENTS</td>
<td></td>
</tr>
<tr>
<td>005213</td>
<td>Construction Contract</td>
<td>3</td>
</tr>
<tr>
<td>005414</td>
<td>Affidavit for Affirmative Action</td>
<td>1</td>
</tr>
<tr>
<td>006113</td>
<td>Performance and Payment Bond</td>
<td>2</td>
</tr>
<tr>
<td>006325</td>
<td>Product Substitution Request</td>
<td>2</td>
</tr>
<tr>
<td>006519.16</td>
<td>Final Receipt of Payment and Release Form</td>
<td>1</td>
</tr>
<tr>
<td>006519.18</td>
<td>MBE/WBE/SDVE Progress Report</td>
<td>1</td>
</tr>
<tr>
<td>006519.21</td>
<td>Affidavit of Compliance with Prevailing Wage Law</td>
<td>1</td>
</tr>
<tr>
<td>007000</td>
<td>CONDITIONS OF THE CONTRACT</td>
<td></td>
</tr>
<tr>
<td>007213</td>
<td>General Conditions</td>
<td>20</td>
</tr>
<tr>
<td>007300</td>
<td>Supplementary Conditions</td>
<td>1</td>
</tr>
<tr>
<td>007346</td>
<td>Wage Rate</td>
<td>4</td>
</tr>
<tr>
<td>DIVISION 1 – GENERAL REQUIREMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011000</td>
<td>Summary of Work</td>
<td>3</td>
</tr>
<tr>
<td>012100</td>
<td>Allowances</td>
<td>2</td>
</tr>
<tr>
<td>012300</td>
<td>Alternates</td>
<td>2</td>
</tr>
<tr>
<td>012600</td>
<td>Contract Modification Procedures</td>
<td>2</td>
</tr>
<tr>
<td>013100</td>
<td>Coordination</td>
<td>4</td>
</tr>
<tr>
<td>013200</td>
<td>Schedules – Bar Chart</td>
<td>4</td>
</tr>
<tr>
<td>013300</td>
<td>Submittals</td>
<td>13</td>
</tr>
<tr>
<td>013513.31</td>
<td>Site Security and Health Requirements (DNR)</td>
<td>2</td>
</tr>
<tr>
<td>013591</td>
<td>Historic Treatment Procedures</td>
<td>9</td>
</tr>
<tr>
<td>015000</td>
<td>Construction Facilities and Temporary Controls</td>
<td>8</td>
</tr>
<tr>
<td>017400</td>
<td>Cleaning</td>
<td>3</td>
</tr>
<tr>
<td>DIVISION 2 - TECHNICAL SPECIFICATIONS INDEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>024100</td>
<td>Site Demolition</td>
<td>3</td>
</tr>
<tr>
<td>024296</td>
<td>Historic Removal and Dismantling</td>
<td>5</td>
</tr>
<tr>
<td>028213</td>
<td>Asbestos Abatement</td>
<td>19</td>
</tr>
</tbody>
</table>
DIVISION 3 - CONCRETE
031000 Concrete Forms and Accessories 3
032000 Concrete Reinforcement 3
033000 Cast In Place Concrete 11
035413 Gypsum Cement Underlayment 3

DIVISION 5 METALS
051200 Structural Steel Framing 3
055119 Metal Grating Stairs 8
055200 Exterior Handrails 2

DIVISION 6 WOOD, PLASTICS, AND COMPOSITES
061053 Miscellaneous Rough Carpentry 5
062023 Interior Finish Carpentry 4
064116 Plastic-laminate-clad Architectural Cabinets 4

DIVISION 7 THERMAL AND MOISTURE PROTECTION
070150.19 Preparation for Reroofing 5
071326 Self-Adhering Sheet Waterproofing 5
072100 Thermal Insulation 3
072500 Weather Barriers 3
072600 Vapor Retarders 2
073113 Asphalt Shingles 10
074646 Fiber-Cement Siding 3
075213 Atactic-Polypropylene (APP) Modified Bituminous Membrane Roofing 14
076200 Sheet Metal Flashing and Trim 9
077100 Roof Specialties 7
078413 Penetration Firestopping 4
078443 Joint Firestopping 3
079200 Joint Sealants 8
079219 Acoustical Joint Sealants 2

DIVISION 8 DOORS AND HARDWARE
081113 Hollow Metal Doors and Frames 7
081433 Paneled Wood Doors 5
083080 Traffic Doors 2
083113 Access Doors and Frames 4
085200 Aluminum-Clad Wood Windows 6
087100 Door Hardware 18

DIVISION 9 FINISHES
092116.23 Gypsum Board Shaft Wall Assemblies 4
092900 Gypsum Board 5
093013 Porcelain Tile 6
095113 Acoustical Panel Ceilings 5
096400 Wood Flooring 3
096720 Seamless Epoxy Quartz and Marble-Chip Flooring 5
097720 Fiberglass Reinforced Wall Panels 4
099113 Exterior Painting 4
099123 Interior Painting 3
DIVISION 10 SPECIALTIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>102600</td>
<td>Wall and Door Protection</td>
<td>2</td>
</tr>
<tr>
<td>102800</td>
<td>Toilet, Bath, and Laundry Accessories</td>
<td>5</td>
</tr>
<tr>
<td>104413</td>
<td>Fire Protection Cabinets</td>
<td>4</td>
</tr>
<tr>
<td>104416</td>
<td>Fire Extinguishers</td>
<td>2</td>
</tr>
</tbody>
</table>

DIVISION 11 EQUIPMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>114000</td>
<td>Foodservice Equipment</td>
<td>20</td>
</tr>
</tbody>
</table>

DIVISION 22 PLUMBING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>220500</td>
<td>Common Work Results for Plumbing</td>
<td>12</td>
</tr>
<tr>
<td>220513</td>
<td>Common Motor Requirements for Plumbing Equipment</td>
<td>3</td>
</tr>
<tr>
<td>220519</td>
<td>Meters and Gages for Plumbing Piping</td>
<td>4</td>
</tr>
<tr>
<td>220523</td>
<td>General-Duty Valves for Plumbing Piping</td>
<td>7</td>
</tr>
<tr>
<td>220529</td>
<td>Hangers and Supports for Plumbing Piping and Equipment</td>
<td>9</td>
</tr>
<tr>
<td>220548</td>
<td>Vibration and Seismic Controls for Plumbing Piping and Equipment</td>
<td>6</td>
</tr>
<tr>
<td>220553</td>
<td>Identification for Plumbing Piping and Equipment</td>
<td>5</td>
</tr>
<tr>
<td>220700</td>
<td>Plumbing Insulation</td>
<td>20</td>
</tr>
<tr>
<td>221116</td>
<td>Domestic Water Piping</td>
<td>12</td>
</tr>
<tr>
<td>221119</td>
<td>Domestic Water Piping Specialties</td>
<td>7</td>
</tr>
<tr>
<td>221123</td>
<td>Domestic Water Pumps</td>
<td>5</td>
</tr>
<tr>
<td>221123.13</td>
<td>Domestic-Water Packaged Booster Pumps</td>
<td>9</td>
</tr>
<tr>
<td>221126</td>
<td>Facility Liquified-Petroleum Gas Piping</td>
<td>17</td>
</tr>
<tr>
<td>221316</td>
<td>Sanitary Waste and Vent Piping</td>
<td>7</td>
</tr>
<tr>
<td>221319</td>
<td>Sanitary Waste Piping Specialties</td>
<td>9</td>
</tr>
<tr>
<td>221323</td>
<td>Sanitary Waste Interceptors</td>
<td>4</td>
</tr>
<tr>
<td>221329</td>
<td>Sanitary Sewerage Pumps</td>
<td>5</td>
</tr>
<tr>
<td>221429</td>
<td>Sump Pumps</td>
<td>5</td>
</tr>
<tr>
<td>223400</td>
<td>Fuel-fired Domestic Water Heaters</td>
<td>7</td>
</tr>
<tr>
<td>224000</td>
<td>Plumbing Fixtures</td>
<td>9</td>
</tr>
</tbody>
</table>

DIVISION 23 HEATING VENTILATING AND AIR CONDITIONING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>230500</td>
<td>Common Work Results for HVAC</td>
<td>12</td>
</tr>
<tr>
<td>230513</td>
<td>Common Motor Requirements for HVAC Equipment</td>
<td>3</td>
</tr>
<tr>
<td>230519</td>
<td>Meters and Gages for HVAC Piping</td>
<td>3</td>
</tr>
<tr>
<td>230529</td>
<td>Hangers and Supports for HVAC Piping and Equipment</td>
<td>10</td>
</tr>
<tr>
<td>230548</td>
<td>Vibration and Seismic Controls for HVAC Piping and Equipment</td>
<td>6</td>
</tr>
<tr>
<td>230553</td>
<td>Identification for HVAC Piping and Equipment</td>
<td>6</td>
</tr>
<tr>
<td>230593</td>
<td>Testing, Adjusting, and Balancing for HVAC</td>
<td>13</td>
</tr>
<tr>
<td>230700</td>
<td>HVAC Insulation</td>
<td>23</td>
</tr>
<tr>
<td>232300</td>
<td>Refrigerant Piping</td>
<td>9</td>
</tr>
<tr>
<td>233113</td>
<td>Metal Ducts</td>
<td>14</td>
</tr>
<tr>
<td>233300</td>
<td>Air Duct Accessories</td>
<td>9</td>
</tr>
<tr>
<td>233423</td>
<td>HVAC Power Ventilators</td>
<td>6</td>
</tr>
<tr>
<td>233713</td>
<td>Diffusers, Registers, and Grilles</td>
<td>4</td>
</tr>
<tr>
<td>233723</td>
<td>HVAC Gravity Ventilators, Louvers and Vents</td>
<td>8</td>
</tr>
<tr>
<td>234100</td>
<td>Particulate Air Filtration</td>
<td>5</td>
</tr>
<tr>
<td>235100</td>
<td>Breechings, Chimneys, and Stacks</td>
<td>4</td>
</tr>
<tr>
<td>235400</td>
<td>Direct Expansion Fan Coil Units</td>
<td>7</td>
</tr>
<tr>
<td>236200</td>
<td>Packaged Condensing Units</td>
<td>6</td>
</tr>
<tr>
<td>237413</td>
<td>Packaged Outdoor Central Station Air Handling Units</td>
<td>7</td>
</tr>
<tr>
<td>238239</td>
<td>Unit Heaters</td>
<td>5</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>DIVISION 26 ELECTRICAL</td>
<td>Common Work Results for Electrical</td>
<td>12</td>
</tr>
<tr>
<td>260500</td>
<td>Provisions for Electric Utility Service</td>
<td>3</td>
</tr>
<tr>
<td>260504</td>
<td>Electrical Testing</td>
<td>4</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
<td>6</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
<td>5</td>
</tr>
<tr>
<td>260533</td>
<td>Raceway and Boxes for Electrical Systems</td>
<td>10</td>
</tr>
<tr>
<td>260543</td>
<td>Underground Ducts and Raceways for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260548</td>
<td>Vibration and Seismic Controls for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
<td>7</td>
</tr>
<tr>
<td>260573</td>
<td>Overcurrent Protective Device Short-Circuit, Coordination, Arc-Flash Study</td>
<td>11</td>
</tr>
<tr>
<td>260923</td>
<td>Lighting Control Devices</td>
<td>8</td>
</tr>
<tr>
<td>262413</td>
<td>Group Mounted Circuit Breaker Distribution Switchboards</td>
<td>13</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
<td>10</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
<td>9</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
<td>7</td>
</tr>
<tr>
<td>264113</td>
<td>Lightning Protection for Structures</td>
<td>3</td>
</tr>
<tr>
<td>264313</td>
<td>Transient-Voltage Suppression For Low-Voltage Electrical Power Circuits</td>
<td>5</td>
</tr>
<tr>
<td>265100</td>
<td>Interior Lighting</td>
<td>8</td>
</tr>
<tr>
<td>265600</td>
<td>Exterior Lighting</td>
<td>6</td>
</tr>
<tr>
<td>DIVISION 28 ELECTRONIC SAFETY AND SECURITY</td>
<td>Digital, Addressable Fire-Alarm System</td>
<td>11</td>
</tr>
<tr>
<td>283111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVISION 31 EARTHWORK</td>
<td>Site Clearing</td>
<td>1</td>
</tr>
<tr>
<td>311000</td>
<td>Excavation and Fill</td>
<td>5</td>
</tr>
<tr>
<td>312300</td>
<td>Subgrade Preparation</td>
<td>2</td>
</tr>
<tr>
<td>312313</td>
<td>Structure Excavation and Backfill</td>
<td>4</td>
</tr>
<tr>
<td>312333</td>
<td>Trenching and Backfilling</td>
<td>7</td>
</tr>
<tr>
<td>312500</td>
<td>Erosion Control</td>
<td>8</td>
</tr>
<tr>
<td>DIVISION 32 EXTERIOR IMPROVEMENTS</td>
<td>Aggregate Base Course</td>
<td>1</td>
</tr>
<tr>
<td>321123</td>
<td>Asphaltic Concrete Paving</td>
<td>2</td>
</tr>
<tr>
<td>321216</td>
<td>Portland Cement Paving</td>
<td>3</td>
</tr>
<tr>
<td>321300</td>
<td>Concrete Pavement Joint Sealant</td>
<td>2</td>
</tr>
<tr>
<td>322900</td>
<td>Turf Restoration</td>
<td>5</td>
</tr>
<tr>
<td>DIVISION 33 UTILITIES</td>
<td>Water Distribution</td>
<td>12</td>
</tr>
<tr>
<td>331000</td>
<td>Sanitary Sewerage</td>
<td>11</td>
</tr>
<tr>
<td>334000</td>
<td>Storm Drainage</td>
<td>5</td>
</tr>
</tbody>
</table>

END OF SECTION 000110
SECTION 220500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Transition fittings.
3. Dielectric fittings.
4. Mechanical sleeve seals.
5. Sleeves.
7. Grout.
8. Coordination drawings.
10. Trenchings, excavating and backfilling.
11. Equipment installation requirements common to equipment sections.
12. Painting and finishing.
13. Concrete bases.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for rubber materials:
1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel".

B. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the Contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Protect stored pipes and tubes from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.

C. Protect flanges, fittings, and piping specialties from moisture and dirt.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Plumbing contractor shall be responsible for furnishing and installing access doors required for their work.
D. Sequence, coordinate, and integrate installations of plumbing materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.

E. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

F. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All plumbing work shall be scheduled to meet project completion date. Plumbing work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

A. Acceptable Manufacturers:
 3. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 4. JCM Industries.
 5. Smith-Blair, Inc.
 6. Viking Johnson.

B. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 1. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
 2. Underground Piping NPS 2 and Larger: AWWA C219, metal sleeve-type coupling.
 3. Aboveground Pressure Piping: Pipe fitting.

C. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Acceptable Manufacturers:
 1. Capitol Manufacturing Co.
 2. Calpico, Inc.
 3. Epco Sales, Inc.
 5. Lochinvar Corp.;
2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Acceptable Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.
2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated or rough brass.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

2.10 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated drawings (min. ¼” scale) showing following systems/items as a minimum:
 1. Plumbing piping routing including locations of valves, drops to fixtures, risers, etc.
 2. Plumbing equipment locations and clearances required.

B. The contractor shall submit the CAD generated drawings to mechanical contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by HVAC Contractor.

C. The contractor shall participate in coordination meetings when requested by HVAC Contractor.
2.11 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.
 1. Format: Same CAD program, version and operating system as the original Contract Drawings.
 2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 TRENCHING, EXCAVATING AND BACKFILLING

A. Excavate to required dimensions and depth. The trench excavation shall be in open cut from surface and shall be minimum width necessary to permit the placing of the pipe as required. Excess excavation shall be backfilled with crusher run rock. Such rocks shall be placed at the Contractor’s expense. Lines shall be used to lay out trenches.

B. All excavations shall be properly protected by the necessary bracing and timbers, to prevent any cave-ins or injury to adjacent improvements. The sides of the excavations shall be securely held by bracing or sheathing, which bracing or sheathing shall not be removed until the level of the backfill has reached the point where such removal can be safely carried out. Where adjacent improvements might be injured by the removal of such bracing, the braces shall be left in place to prevent such injury. The thickness of the sheathing and dimensions of the brass braces, shoes and miscellaneous supports to be used by the Contractor shall be of the type required to properly protect the sides of the trench and to prevent injurious cave-ins or erosions.

C. The Contractor shall do all pumping and bailing necessary to keep all excavations free of water and shall provide for the uninterrupted flow of the surface water adjacent to the line of the work during the progress of the work. The Contractor shall inspect the ground where excavation is required to ascertain the structure of the soil. Additional consideration will not be allowed for encountering rock, stone, old foundations or other unfavorable excavating conditions.

D. The backfilling of trenches shall be carried out as rapidly as the testing and acceptance of the finished sections of the installation will permit. The trench shall be backfilled in layers of not to exceed eight inches (8”) with good selected clean earth, thoroughly tamped with mechanical tamper to a 95% optimum compaction. Density shall be tested by an approved laboratory, using a standard method. Tests shall be made for each 2 ft. depth on the basis of one test per 1000 sq. ft. of fill area. Last 12” of backfill (except under streets, drives, and walks) shall be made with good clean top soil. Contractor shall obtain and pay for tests. Submit five (5) copies of tests for approval. Note: Broken stones, cinders, wood and rubbish are not acceptable for backfilling. Backfill all street cuts in a manner meeting the approval of the Architect.

E. In spaces between walls and line of excavation, fill with thin layers of selected clean earth; thoroughly tamp in eight inches (8”) thick layers and bring up to a finished level of established grades. All wood and foreign materials shall be removed from excavation prior to backfilling.

F. After backfilling, all surplus excavated materials shall be removed from the property.
G. The Contractor shall make a field inspection of the location along which the underground piping is to be constructed, and note all obstructions and improvements at the surface and overhead which may affect the method of operation in the construction of these lines. Such overhead wires and underground pipes or conduits which may exist, or which may be encountered, shall be protected by the Contractor during this construction. Any expense or inconvenience caused by their existence and the necessary protection for utilities adjacent thereto shall be considered as covered and included in the contract, without additional cost to the Owner.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas. Plumbing contractor shall be responsible for furnishing and installing access doors required for their work.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access. In general install piping tight to slab, beams, joists and structural members if possible.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
h. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed hinge and set screw or spring clips.
i. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
j. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.
k. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:

 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.

 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Section 079200 "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

V. Draining and Refilling of Systems: Provide all shutoff valves, drain valves, pipe, fittings, and miscellaneous material required to drain each existing system as required for new work. After new work is completed, tested, and found tight, refill each system as required. Time for shutting down existing system for draining shall be coordinated with all other work and with Owner’s representative. Cost for all chemicals and additives for refill shall be borne by the Contractor.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook", using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. **Damaged Threads:** Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. **Welded Joints:** Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. **Flanged Joints:** Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.

2. **Dry Piping Systems:** Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3. **Wet Piping Systems:** Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Section 099123 "Interior Painting".

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

A. **Concrete Bases:** Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.

3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

5. Install anchor bolts to elevations required for proper attachment to supported equipment.

6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.9 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.
SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer’s factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in plumbing equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated. All motors shall meet minimum ASHRAE energy efficiency requirements.

C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Motors ½ HP and Larger: Three phase, unless shown otherwise.

B. Motors Smaller than ½ HP: Single phase, unless shown otherwise.

C. Frequency Rating: 60 Hz.
D. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.

E. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.

F. Duty: Continuous duty at ambient temperature of 105 deg F and at altitude of 3300 feet above sea level.

G. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designed speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

H. Enclosure: Open dripproof.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F unless otherwise noted.

I. Code Letter Designation:

1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.

1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.
5. Electronically Commutated Motor (ECM)

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Thermometers.
 2. Gages.
 3. Test plugs.

B. Related Sections:
 1. Division 22 Section "Domestic Water Piping" for domestic and fire-protection water service meters inside the building.

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.

B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated; include performance curves.

B. Shop Drawings: Schedule for thermometers and gages indicating manufacturer's number, scale range, and location for each.

C. Product Certificates: For each type of thermometer and gage, signed by product manufacturer.

PART 2 - PRODUCTS

2.1 DIRECT-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Marsh Bellofram.
 3. Trerice, H. O. Co.
4. Weiss Instruments, Inc.
5. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Case: Dry or liquid-filled type, drawn steel or cast aluminum 4-1/2-inch diameter.

C. Element: Bourdon tube or other type of pressure element.

D. Movement: Mechanical, connecting element and pointer.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Metal.

I. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

J. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 BIMETALLIC-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Eugene Ernst Products Co.
3. Marsh Bellofram.
4. Palmer - Wahl Instruments Inc.
5. Trerice, H. O. Co.
6. Weiss Instruments, Inc.
7. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Description: Direct-mounting, bimetallic-actuated dial thermometers complying with ASME B40.3.

C. Case: Dry or liquid-filled type, stainless steel with 5-inch diameter.

D. Element: Bimetal coil.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Stainless steel.
I. Connector: Adjustable angle type.

J. Stem: Metal, for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.3 PRESSURE GAGES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK, Inc.; U.S. Gauge Div.
3. Ernst Gage Co.
5. Palmer - Wahl Instruments Inc.
6. Trerice, H. O. Co.
7. Weiss Instruments, Inc.
8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.

1. Case: Dry or liquid-filled] type, drawn steel or cast aluminum, 4-1/2-inch diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer.
6. Pointer: Red or other dark-color metal.
7. Window: Glass or plastic.
8. Ring: Metal.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:

1. Valves: NPS 1/4 brass or stainless-steel needle type.
2. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

A. Install thermometers in the inlet and outlet of each domestic water heater.

B. Install vapor or bimetallic-actuated dial thermometers at suction and discharge of each pump.
C. Provide the following temperature ranges for thermometers:
 1. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.
 2. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS
 A. Install dry-case-type pressure gages for discharge of each pressure-reducing valve.
 B. Install pressure gages at suction and discharge of each pump.
 C. Install pressure gage after the building backflow preventer.
 D. Install pressure gage after the water meter.
 E. Install pressure gages after the branch or isolation valve on each floor for both the hot and cold water piping.

3.3 INSTALLATIONS
 A. Install direct-mounting thermometers and adjust vertical and tilted positions.
 B. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
 C. Install needle-valve and snubber fitting in piping for each pressure gage.
 D. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.
 E. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION 220519
SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Bronze angle valves.
2. Bronze ball valves.
4. Bronze globe valves.

B. Related Sections:
1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
2. Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.
G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.
1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
2. ASME B31.1 for power piping valves.
3. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set angle, gate, and globe valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Block check valves in either closed or open position.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:

1. Handwheel: For valves other than quarter-turn types.
2. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
3. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every ten (10) plug valves, for each size square plug-valve head.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Grooved: With grooves according to AWWA C606.
 4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Crane Co., Crane Valve Group
 2. Hammond Valve.
 4. NIBCO Inc.

B. Class 150, Bronze Angle Valves with Bronze Disc:
 1. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron.

2.3 BRONZE BALL VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Crane Co.; Crane Valve Group; Crane Valves.
 3. Hammond Valve.
 5. NIBCO INC.
 6. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Description:
GENERAL-DUTY VALVES FOR PLUMBING PIPING

2.4 BRONZE SWING CHECK VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Valve, Inc.
2. Crane Co.; Crane Valve Group; Crane Valves.
3. Crane Co.; Crane Valve Group; Jenkins Valves.
4. Crane Co.; Crane Valve Group; Stockham Division.
5. Hammond Valve.
7. NIBCO Inc.
8. Powell Valves.
9. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 150, Bronze Swing Check Valves with Bronze Disc:

1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

2.5 BRONZE GATE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group.
2. Hammond Valve.
4. NIBCO Inc.
5. Powell Valves.
6. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 150, NRS Bronze Gate Valves:

1. Description:
2.6 BRONZE GLOBE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Crane Co.; Crane Valve Group.
3. NIBCO Inc.
4. Powell Valves.
5. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

B. Class 150, Bronze Globe Valves with Nonmetallic Disc:

1. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.
3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball, gate, or plug valves.
 2. Throttling Service: Globe or angle, or ball valves.
 3. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

B. Pressure ratings for valves shall not be less than as required by system pressures.

C. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

D. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Steel Piping, NPS 2 and Smaller: Threaded ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Bronze Angle Valves: Class 125 or Class 150, bronze disc.
 3. Ball Valves: Two piece, full port, brass or bronze with stainless-steel trim.
 4. Bronze Swing Check Valves: Class 125 or Class 150, bronze disc.
5. Bronze Globe Valves: Class 125 or Class 150, bronze disc.

3.6 SANITARY-WASTE AND STORM-DRAINAGE VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze Angle Valves: Class 125 or Class 150, bronze or nonmetallic disc.
 2. Ball Valves: Two piece, full port, brass or bronze stainless-steel trim.
 3. Bronze Swing Check Valves: Class 125 or Class 150, bronze or nonmetallic disc.

END OF SECTION 220523
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for plumbing system piping and equipment:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Pipe positioning systems.
8. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports".

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

A. Product Data: For the following:

1. Steel pipe hangers and supports.
2. Thermal-hanger shield inserts.
3. Powder-actuated fastener systems.
4. Pipe positioning systems.
B. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to the following:

1. AWS D1.1, "Structural Welding Code--Steel".
2. AWS D1.2, "Structural Welding Code--Aluminum".
3. AWS D1.4, "Structural Welding Code--Reinforcing Steel".
4. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Acceptable Manufacturers:

2. Globe Pipe Hanger Products, Inc.
3. Grinnell Corp.
4. GS Metals Corp.
6. Piping Technology & Products, Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.
2.4 METAL FRAMING SYSTEMS
A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
B. Acceptable Manufacturers:
 2. GS Metals Corp.
 4. Thomas & Betts Corporation.
 5. Unistrut Corp.; Tyco International, Ltd.
C. Coatings: Manufacturer’s standard finish unless bare metal surfaces are indicated.
D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS
A. Description: 100-psig minimum, compressive-strength insulation insert encased in sheet metal shield.
B. Acceptable Manufacturers:
 1. Carpenter & Paterson, Inc.
 2. PHS Industries, Inc.
 3. Pipe Shields, Inc.
 5. Value Engineered Products, Inc.
C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.
D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.
E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS
A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Acceptable Manufacturers:
b. Empire Industries, Inc.
c. Hilti, Inc.
d. ITW Ramset/Red Head.
e. MKT Fastening, LLC.
f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

2.8 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.10 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 2.
10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
L. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

M. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

N. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.

2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Section 220400 "Plumbing Fixtures" for plumbing fixtures.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and
larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

N. Insulated Piping: Comply with the following:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

5. Insert Material: Length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099123.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 220529
SECTION 220548 - VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Isolation pads.
 2. Isolation mounts.
 3. Freestanding spring isolators.
 4. Elastomeric hangers.
 5. Spring hangers.
 6. Pipe riser resilient supports.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Delegated-Design Submittal: For vibration isolation details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
 2. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring
deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.

3. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.

C. Welding certificates.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For air-mounting systems to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel".

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
3. Mason Industries.
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.
6. Vibration Mountings & Controls, Inc.

B. Pads Type A.1: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene or rubber.

C. Mounts Type A.2: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

D. Spring Isolators Type B.1: Freestanding, laterally stable, open-spring isolators.
1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

E. Elastomeric Hangers Type B.4: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

F. Spring Hangers Type B.5: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

G. Pipe Riser Resilient Support Type D.1: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

H. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch-thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.2 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanized metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits.

3.3 VIBRATION-CONTROL DEVICE INSTALLATION

A. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole.
and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Remove and replace malfunctioning units and retest as specified above.
C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.
B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
C. Adjust active height of spring isolators.
D. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.6 VIBRATION ISOLATOR SCHEDULE FOR SLAB ON GRADE LOCATED EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Water Heaters</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td>(Vertical or Horizontal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Softening/RO System/ DI System</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrifugal Pumps, Booster Pumps</td>
<td>Floor</td>
<td>Up to 10 HP</td>
<td>E.1</td>
<td>A.2</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Floor Suspended</td>
<td>Above 10 HP</td>
<td>E.2</td>
<td>B.1</td>
<td>0.75"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All sizes</td>
<td></td>
<td>B.5</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Horizontal</td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.4</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Vertical</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>D.1</td>
<td>0.25"</td>
</tr>
</tbody>
</table>

Notes:
1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.
2. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps and equipment mounted on type “B” isolators. Remaining piping does not require isolation.
3.7 VIBRATION ISOLATOR AND SEISMIC – RESTRAINT SCHEDULE FOR EQUIPMENT LOCATED ABOVE GRADE

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Water Heaters (Vertical or Horizontal)</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td>Water Softening/RO System/ DI System Equipment</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td>Centrifugal Pumps, Booster Pumps</td>
<td>Floor</td>
<td>All sizes</td>
<td>E.2</td>
<td>B.1</td>
<td>1"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>B.5</td>
<td></td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Horizontal</td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.4</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Vertical</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>D.1</td>
<td>0.25"</td>
</tr>
</tbody>
</table>

Notes:
1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.
2. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps and equipment mounted on type “B” isolators. Remaining piping does not require isolation.

END OF SECTION 220548
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Pipe labels.
3. Stencils.
4. Valve tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.3 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

 1. Stencil Material: Fiberboard or metal.
 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.
2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Section 099123 "Interior Painting".

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels complying with ASME A13.1, on each piping system.
 1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment and within mechanical rooms, boiler rooms, chiller rooms, etc.
7. On piping above removable acoustical ceilings.

D. Pipe Label Color Schedule:

1. Domestic Water Piping:
 a. Background Color: Blue.

2. Sanitary Waste, Vent and Storm Drainage Piping:
 a. Background Color: Black.

3. Liquified-Petroleum Gas Piping:
 a. Background Color: Yellow.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:
 b. Hot Water: Natural.
 c. Liquified-Petroleum Gas: Natural.

3. Letter Color:
 b. Hot Water: Black.
 c. Liquified-Petroleum Gas: Black
END OF SECTION 220553
SECTION 220700 - PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
2. Insulating cements.
3. Adhesives.
5. Lagging adhesives.
7. Factory-applied jackets.
10. Field-applied jackets.
11. Tapes.
12. Securements.
13. Corner angles.

B. Related Sections include the following:

1. Division 23 Section "HVAC Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings:

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.
8. Detail field application for each equipment type.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. NOMACO Insulation.

2. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour sq. ft. °F at 75°F mean temperature.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning; Fiberglas Corp.

2. Density: 3 lbs/cu. ft.

3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. °F at 75°F mean temperature.

H. Mineral-Fiber, Preformed Pipe Insulation:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
Rebuild Kitchen & Stabilize Structure
Project No. X2001-01
Tavern, Arrow Rock State Historic Site, Missouri
May 12, 2020

PLUMBING INSULATION

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.

3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. °F at 75°F mean temperature

I. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning Fiberglas Corp.

2. Density: 2.5 lbs/cu. ft.

3. Thermal Conductivity: Not exceeding 0.27 BTU-in/hour °F at 75°F mean temperature.

1. Acceptable Manufacturers: Subject to compliance with requirements provide product by IFS Corporation; Truebro.

2.2 INSULATING CEMENTS

B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
Rebuild Kitchen & Stabilize Structure Project No. X2001-01
Tavern, Arrow Rock State Historic Site, Missouri May 12, 2020

PLUMBING INSULATION 220700 - 5

2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA Inc.
 b. Armacell LCC.
 c. Foster Products Corporation, H. B. Fuller Company.
 d. RBX Corporation.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. ITW TACC, Division of Illinois Tool Works.
 d. Marathon Industries, Inc.
 e. Mon-Eco Industries, Inc.

2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. ASJ Adhesive, and FSK Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. ITW TACC, Division of Illinois Tool Works.
 d. Marathon Industries, Inc.
 e. Mon-Eco Industries, Inc.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Childers Products, Division of ITW.
3. ITW TACC, Division of Illinois Tool Works.
4. Marathon Industries, Inc.
5. Mon-Eco Industries, Inc.

C. Vapor-Barrier Mastic: Water or solvent based; suitable for indoor and outdoor use on below ambient services.

1. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.05 perm at 43-mi dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
2. Service Temperature Range: Minus 20 to plus 200 deg F.
3. Solids Content: 63 percent by volume and 73 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Childers Products, Division of ITW.
b. Foster Products Corporation, H. B. Fuller Company.
c. Marathon Industries, Inc.
d. Mon-Eco Industries, Inc.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment and pipe insulation.
4. Service Temperature Range: Minus 50 to plus 180 deg F.

2.6 SEALANTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Childers Products, Division of ITW.
 3. Marathon Industries, Inc.
 4. Mon-Eco Industries, Inc.
 5. Pittsburgh Corning Corporation.

B. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, Kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with Kraft-paper backing; complying with ASTM C 1136, Type II.
2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. P.I.C. Plastics, Inc.
 c. Proto PVC Corporation.
 d. Speedline Corporation.

2. Adhesive: As recommended by jacket material manufacturer.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

5. Factory-fabricated tank heads and tank side panels.

C. Metal Jacket:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. PABCO Metals Corporation.
 c. RPR Products, Inc.

 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

3. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.

 a. Factory cut and rolled to size.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:

 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Avery Dennison Corporation, Specialty Tapes Division.
 2. Compac Corp.
 4. Venture Tape.

B. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

C. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
2.10 SECUREMENTS

A. Bands:

1. Stainless Steel: ASTM A 167 or ASTM A 240, Type 304; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel or aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation,
install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.

4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire-Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.

2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.

2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.

3. Protect exposed corners with secured corner angles.

4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:

a. Do not weld anchor pins to ASME-labeled pressure vessels.

b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.

c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.

d. Do not overcompress insulation during installation.

e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.

f. Impale insulation over anchor pins and attach speed washers.

g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.

6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make
taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.

7. Stagger joints between insulation layers at least 3 inches.
8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:

1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
2. Fabricate boxes from galvanized steel or aluminum, at least 0.040 inch thick.
3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe
diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:
1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
3.10 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer’s recommended protective coating.

B. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one (1) location(s) for each type of equipment defined in the “Equipment Insulation Schedule” Article. For large equipment, remove only a portion adequate to determine compliance.

2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three (3) locations of straight pipe, locations of threaded valves, and three locations of flanged valves for each pipe service defined in the “Piping Insulation Schedule, General” Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor’s option.

B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.

C. Domestic water pump including booster pump insulation shall be the following:

1. Flexible Elastomeric: 1 inch thick.

D. Domestic water and domestic hot-water tanks; compression tanks insulation shall be the following:

1. Flexible Elastomeric: 1 inch thick.

3.13 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor’s option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.14 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 2 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Truebro Handi-Lav-Guard fully molded model 102 insulation kits, including interlocking trap and valve assemblies and nylon fasteners.

D. Condensate, Drinking Fountain Waste and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.

E. Floor Drains/Floor Sinks Bodies and Traps Located in Mechanical Rooms, and Sanitary Drain Piping, from these drains/sinks, up to main risers:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.

3.15 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Equipment, Concealed:
 1. None.

D. Equipment, Exposed:
1. None.

E. Piping, Concealed:
 1. None.

F. Piping, Exposed:
 1. Stainless Steel, Type 304, Smooth 2B Finish: 0.016 inch thick, for piping located in kitchen areas.
 2. PVC, Smooth: 30 mil thick elsewhere.

3.16 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.016 inch thick.

END OF SECTION 220700
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
2. Flexible connectors.
3. Escutcheons.
4. Sleeves and sleeve seals.
5. Wall penetration systems.

1.3 SUBMITTALS

A. Product Data: For the following products:

1. Specialty valves.
2. Transition fittings.
3. Dielectric fittings.
4. Flexible connectors.
5. Backflow preventers and vacuum breakers.
7. Sleeves and sleeve seals.
8. Water penetration systems.

B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 61 for potable domestic water piping and components.

1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 5. Pro Press or equal press-fit fittings will be allowed in copper piping 2" and smaller.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Calpico, Inc.
 2. Capitol Manufacturing Company.
 3. Central Plastics Company.
 4. EPCO Sales, Inc.
 6. Lochinvar Corp.
 7. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 8. Zurn Plumbing Products Group; Wilkins Water Control Products.
C. **Dielectric Unions:**
 1. **Description:**
 a. Pressure Rating: 150 psig at 180 deg F.
 b. End Connections: Solder-joint copper alloy and threaded ferrous.

D. **Dielectric Couplings:**
 1. **Description:**
 a. Galvanized-steel coupling.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Female threaded.
 d. Lining: Inert and noncorrosive, thermoplastic.

E. **Dielectric Nipples:**
 1. **Description:**
 a. Electroplated steel nipple complying with ASTM F 1545.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Male threaded or grooved.
 d. Lining: Inert and noncorrosive, propylene.

2.5 **FLEXIBLE CONNECTORS**
 A. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Flex-Weld, Inc.
 4. Hyspan Precision Products, Inc.
 5. Metraflex, Inc.
 6. Unaflex, Inc.
 7. Universal Metal Hose; a Hyspan company
 B. **Bronze-Hose Flexible Connectors:** Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

2.6 **ESCUTCHEONS**
 A. **General:** Manufactured ceiling, floor, and wall escutcheons and floor plates.
 B. **One Piece, Cast Brass:** Polished, chrome-plated finish with setscrews.
 C. **One Piece, Deep Pattern:** Deep-drawn, box-shaped brass with chrome-plated finish.
D. One Piece, Stamped Steel: Chrome-plated finish with setscrew.

E. Split Casting, Cast Brass: Polished, chrome-plated finish with concealed hinge and setscrew.

F. Split Plate, Stamped Steel: Chrome-plated finish with concealed hinge, setscrew.

G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.7 SLEEVES

A. Cast-Iron Wall Pipes: Fabricated of cast iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc-coated, with plain ends.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.8 SLEEVE SEALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex, Inc.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.9 WALL PENETRATION SYSTEMS

A. Description: Wall-sleeve assembly, consisting of housing and gland, gaskets, and pipe sleeve.
 1. Carrier-Pipe Deflection: Up to 5 percent without leakage.
2. Housing: Ductile-iron casting with hub, waterstop, anchor ring, and locking devices. Include gland, bolts, and nuts.
3. Housing-to-Sleeve Gasket: EPDM rubber.

2.10 GROUT
B. Characteristics: Nonshrink; recommended for interior and exterior applications.
C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
B. Install shutoff valve immediately upstream of each dielectric fitting.
C. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.
D. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
G. Install piping adjacent to equipment and specialties to allow service and maintenance.
H. Install piping to permit valve servicing.
I. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
J. Install piping free of sags and bends.
K. Install fittings for changes in direction and branch connections.
L. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

3.2 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook".

F. Copper-Tubing Grooved Joints: Roll groove end of tube. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for roll-grooved joints.

G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

H. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.3 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Section 220523 "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Section 221119 "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
3.4 DIELECTRIC FITTING INSTALLATION
 A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings.

3.5 FLEXIBLE CONNECTOR INSTALLATION
 A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.
 B. Install bronze-hose flexible connectors in copper domestic water tubing.

3.6 HANGER AND SUPPORT INSTALLATION
 A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
 B. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.
 C. Support vertical piping and tubing at base and at each floor.
 D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
 E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 F. Install supports for vertical copper tubing every 10 feet. For piping 2" and smaller install guide at midpoint between supports.
 G. Install supports for vertical steel piping every 15 feet.
 H. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.
3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 2. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Section 224000 "Plumbing Fixtures" for connection sizes.
 3. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection.

3.8 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and floors.

B. Escutcheons for New Piping:
 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 4. Bare Piping in Unfinished Service Spaces: One piece, stamped steel with set screw.
 5. Bare Piping in Equipment Rooms: One piece, stamped steel with set screw.
 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.9 SLEEVE INSTALLATION

A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.

B. Sleeves are not required for core-drilled holes.

C. Permanent sleeves are not required for holes formed by removable PE sleeves.

D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.

E. Install sleeves in new partitions, slabs, and walls as they are built.

F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants" for joint sealants.
G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants" for joint sealants.

H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.

I. Seal space outside of sleeves in concrete slabs and walls with grout.

J. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

K. Install sleeve materials according to the following applications:
 1. Sleeves for Piping Passing through Concrete Floor Slabs: Steel pipe.
 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe.
 a. Extend sleeves 2 inches above finished floor level.
 b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 b. Exception: Sleeves are not required for water supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.
 4. Sleeves for Piping Passing through Concrete Roof Slabs: Steel pipe.
 5. Sleeves for Piping Passing through Exterior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.
 b. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 c. Do not use sleeves when wall penetration systems are used.
 6. Sleeves for Piping Passing through Interior Concrete Walls:
 a. Steel pipe sleeves for pipes smaller than NPS 6.

L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.10 IDENTIFICATION

A. Identify system components. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for identification materials and installation.

B. Label pressure piping with system operating pressure.
3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.12 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.13 CLEANING

A. Clean and disinfect potable and non-potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Clean non-potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.
3.14 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water, building service piping, NPS 3 and smaller, shall be one of the following:

1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed or press fit joints. Piping joints may only be soldered or brazed where not within 48” or over flammable materials.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and brazed, soldered joints or press-fit joints. Piping joints may only be soldered or brazed where not within 48” or over flammable materials.

3.15 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:

1. Vacuum breakers.
2. Backflow preventers.
4. Temperature-actuated water mixing valves.
5. Strainers.
6. Hose bibbs.
7. Wall hydrants.
8. Drain valves.
10. Air vents.

B. Related Sections include the following:

1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Division 22 Section "Domestic Water Piping" for water meters.
3. Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Conbraco Industries, Inc.
2. FEBCO; SPX Valves & Controls.
4. Toro Company (The); Irrigation Div.
7. Zurn Industries, LLC; Wilkins Div.

B. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
4. Inlet and Outlet Connections: Threaded.
5. Finish: Chrome plated.

C. Hose-Connection Vacuum Breakers:

2. Body: Bronze, nonremovable, with manual drain.
4. Finish: Chrome or nickel plated.

2.2 BACKFLOW PREVENTERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Conbraco Industries, Inc.
2. FEBCO; SPX Valves & Controls.
3. McDonald, A.Y. Mfg Co.
6. Zurn Industries, LLC; Wilkins Div.

B. Intermediate Atmospheric-Vent Backflow Preventers:

1. Standard: ASSE 1012.
2. Operation: Continuous-pressure applications.
5. End Connections: Union, solder joint.
6. Finish: Chrome plated.

C. Reduced-Pressure-Principle Backflow Preventers:

2. Operation: Continuous-pressure applications.
3. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
4. Size: To match pipe size.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

D. Double-Check Backflow-Prevention Assemblies:

2. Operation: Continuous-pressure applications, unless otherwise indicated.
3. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
4. Size: To match pipe size.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

E. Hose-Connection Backflow Preventers:

2. Operation: Up to 10-foot head of water back pressure.
3. Inlet Size: NPS 1/2 or NPS 3/4.
5. Capacity: At least 3-gpm flow.
F. Backflow-Preventer Test Kits:
 1. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.3 BALANCING VALVES

 A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armstrong.
 2. Tour & Anderson.
 3. Victaulic.

 B. Copper-Alloy Calibrated Balancing Valves:
 1. Type: Y-pattern globe valve with two readout ports and multi-turn memory setting indicator with stop.
 2. Body: Brass or bronze.
 3. Size: Same as connected piping, but not larger than NPS 2.
 4. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.4 HOSE BIBBS

 A. Hose Bibbs:
 4. Supply Connections: NPS 1/2 threaded or solder-joint inlet.
 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 10. Finish for Finished Rooms: Chrome or nickel plated.
 11. Operation for Equipment Rooms: Wheel handle or operating key.
 12. Operation for Service Areas: Operating key.
 14. Include operating key with each operating-key hose bibb.
 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.5 WALL HYDRANTS

 A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Company.
 3. Tyler Pipe; Wade Div.
4. Watts Drainage Products Inc.
5. Woodford Manufacturing Company.
6. Zurn Industries, LLC; Light Commercial Operation.
7. Zurn Industries, LLC; Specification Drainage Operation.

B. Vacuum Breaker Wall Hydrants:
1. Standard: ASSE 1019, Type A or Type B.
2. Type: Freeze-resistant, automatic draining with integral air-inlet valve.
3. Classification: Type B, for automatic draining with hose removed or with hose attached and nozzle closed.
5. Operation: Loose key.
6. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
7. Inlet: NPS 1/2 or NPS 3/4.

2.6 DRAIN VALVES
A. Ball-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.7 WATER HAMMER ARRESTERS
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. AMTROL, Inc.
2. Josam Company.
5. Tyler Pipe; Wade Div.
6. Watts Drainage Products Inc.
7. Zurn Plumbing Products Group; Specification Drainage Operation.

B. Water Hammer Arresters:
2. Type: Metal bellows.
3. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 3. Do not install bypass piping around backflow preventers.

C. Install water control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.

E. Install water hammer arresters in water piping in accessible locations according to PDI-WH 201.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Intermediate atmospheric-vent backflow preventers.
 3. Reduced-pressure-principle backflow preventers.
 5. Water pressure-reducing valves.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:
1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer and double-check backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119
SECTION 221123 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following all-bronze and bronze-fitted centrifugal pumps for domestic cold- and hot-water circulation:
B. Related Sections include the following:
 1. Division 22 Section "Domestic-Water Packaged Booster Pumps" for booster systems.

1.3 SUBMITTALS
A. Product Data: For each type and size of domestic water pump specified. Include certified performance curves with operating points plotted on curves; and rated capacities of selected models, furnished specialties, and accessories.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Operation and Maintenance Data: For domestic water pumps to include in emergency, operation and maintenance manuals.

1.4 QUALITY ASSURANCE
A. Product Options: Drawings indicate size, profiles, and dimensional requirements of domestic water pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements".
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Retain shipping flange protective covers and protective coatings during storage.
B. Protect bearings and couplings against damage.

C. Comply with pump manufacturer's written rigging instructions for handling.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

 a. Armstrong Pumps Inc.
 b. Bell & Gossett Domestic Pump; ITT Industries.
 c. Paco Pumps Inc.
 d. Taco Inc.

2.2 CLOSE-COUPLLED, HORIZONTALLY MOUNTED, IN-LINE CENTRIFUGAL PUMPS

A. Description: Factory-assembled and -tested, overhung impeller, single-stage, close-coupled, horizontally mounted, in-line centrifugal pumps as defined in HI 1.1-1.2 and HI 1.3; and designed for installation with pump and motor shafts mounted horizontally.

1. Pump Construction: All bronze.

 a. Casing: Radially split, cast iron, with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
 b. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, closed, and keyed to shaft.
 c. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve.
 d. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket. Include water slinger on shaft between motor and seal.
 e. Bearings: Oil-lubricated; bronze-journal or ball type.

2. Shaft Coupling: Rigid type if pump is provided with coupling.

3. Motor: Single speed, with grease-lubricated ball bearings. Comply with requirements in Division 22 Section "Common Motor Requirements for Plumbing Equipment."

B. Capacities and Characteristics as schedule on drawings.
2.3 FLEXIBLE CONNECTORS

A. Acceptable Manufacturers:
 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Flex-Pression, Ltd.
 4. Flex-Weld, Inc.
 5. Hyspan Precision Products, Inc.
 6. Metraflex, Inc.
 7. Unaflex Inc.

B. Description: Corrugated, bronze inner tubing covered with bronze wire braid. Include copper-tube ends or bronze flanged ends, braze-welded to tubing. Include 125-psig minimum working-pressure rating and ends matching pump connections.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.

C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

D. Install horizontally mounted centrifugal pumps with motor and pump shafts horizontal.

E. Install continuous-thread hanger rods and spring hangers with vertical-limit stop of sufficient size to support pump weight. Vibration isolation devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment". Fabricate brackets or supports as required. Hanger and support materials are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment".

F. Suspend vertically mounted, in-line centrifugal pumps independent of piping. Install pumps with motor and pump shafts vertical. Use continuous-thread hanger rods and spring hangers with vertical-limit stop of sufficient size to support pump weight. Vibration isolation devices are specified in Division 21 Section "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment". Hanger and support materials are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment".
3.3 CONTROL INSTALLATION

A. Install immersion-type thermostats in hot-water return piping.

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps to allow service and maintenance.

C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles. Refer to Division 22 Section "Domestic Water Piping".

1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. Separately coupled, in-line centrifugal pumps.
 b. Separately coupled, horizontally mounted, in-line centrifugal pumps.
 c. Close-coupled, horizontally mounted, in-line centrifugal pumps.
 d. Close-coupled, vertically mounted, in-line centrifugal pumps.

2. Install shutoff valve and strainer on suction side of pumps, and check valve and throttling valve on discharge side of pumps. Install valves same size as connected piping. Refer to Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty valves for domestic water piping and Division 22 Section "Domestic Water Piping Specialties" for strainers.

3. Install pressure gages at suction and discharge of pumps. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and gage connectors.

D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems".

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables".

F. Connect thermostats and timers to pumps that they control.

G. Interlock pump with water heater burner and time delay relay.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Set thermostats and timers for automatic starting and stopping operation of pumps.
5. Perform the following startup checks for each pump before starting:
a. Verify bearing lubrication.
b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
c. Verify that pump is rotating in the correct direction.

6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Start motor.
8. Open discharge valve slowly.
9. Adjust temperature settings on thermostats.
10. Adjust timer settings.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps. Refer to Division 01 Section "Demonstration and Training".

END OF SECTION 221123
SECTION 221123.13 - DOMESTIC-WATER PACKAGED BOOSTER PUMPS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Variable Speed Pumping Package.
B. Pump Control Panel.
C. Variable Frequency Drive.
D. Sensor Transmitters.
E. Sequence of Operation.

1.2 REFERENCES

D. HI - Hydraulic Institute.
E. ASME - American Society of Mechanical Engineers.
F. UL - Underwriters Laboratories.
G. ISO - International Standards Organization.
I. ETL - Electrical Testing Laboratories.
J. CSA - Canadian Standards Association.
K. NEC - National Electrical Code.

1.3 SUBMITTALS

A. Submittals shall include the following:
2. Sequence of operation (see specifications).
3. Shop drawing indicating dimensions, required clearances and location and size of each field connection.
4. Power wiring diagrams.
5. System profile analysis including variable speed pump curves and system curve. The analysis shall also include pump, motor, pump efficiencies, horsepower and kilowatt/hour consumption.
6. Pump data sheets.

B. Submittals must be specific to this project. Generic submittals will not be accepted.

1.4 QUALITY ASSURANCE

A. The pumping package shall be assembled by the pump manufacturer. An assembler of pumping systems not actively engaged in the design and construction of centrifugal pumps shall not be considered a pump manufacturer. The manufacturer shall assume "Unit Responsibility" for the complete pumping package. Unit responsibility shall be defined as responsibility for interface and successful operation of all system components supplied by the pumping system manufacturer.

B. The manufacturer shall have a minimum of 10 years experience in the design and construction of packaged pumping systems, and over 25 years in active design/production of centrifugal pumps.

C. The pumping system shall be factory tested to the job specific condition points prior to shipment.

D. Bidders shall comply with all sections of this specification relating to packaged pumping systems. Any deviations from this specification shall be bid as a voluntary alternate clearly defined in writing. If no exceptions are noted, the supplier or contractor shall be bound by these specifications.

E. The pumping package shall be certified by an approved independent testing and certification organization as being compliant with the requirements of NSF/ANSI 61 & 372 for potable drinking water and low lead content for a wetted area, weighted average lead content < 0.25%. Packages that are not certified shall NOT be considered equal.

F. Manufacturer shall be listed by UL as a manufacturer of packaged pumping systems under UL/cUL category QCZJ.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Subject to compliance with these specifications, the following manufacturers shall be acceptable:

1. Bell & Gossett.
2. Grundfos.
3. Armstrong Pump.
2.2 MANUFACTURED UNITS

A. Furnish and install as shown on the plans a variable speed booster system.

B. Manufacturer shall be listed by Underwriters Laboratories as a manufacturer of packaged pumping systems.

C. The pump logic control system shall include, at a minimum, drive integrated programmable logic station controller with Multi-Pump and Multi-Master Capability, motor mounted/integrated variable frequency drives, manifold mounted 4-20mA pressure transducers, one per pump, and any additional equipment as specified or as required to properly execute the sequence of operation.

D. System shall require only suction, discharge and drain connections and single point power connections from a service entrance disconnect.

E. All components shall be mounted and shipped as a single unit.

F. The discharge of each pump shall be fitted with a control valve appropriate for station operation. Each pump and discharge valve assembly shall also be equipped with isolation valves so that the pump can be serviced while system is still filled.

G. Pressure gauges shall be installed on the suction and discharge headers.

H. Piping shall be sized so that water velocity shall not exceed 10.0 ft/sec in either the branches or manifolds.

I. Pumps shall be protected from thermal accumulation via individual thermal relief mechanisms.

2.3 COMPONENTS

A. Variable Speed Pump Logic Controller.

1. The logic controller shall be one completely integrated unit including the variable frequency drive, programmable pump specific control logic (PLC), and include a UL Type 1 / IP55 enclosure. Standard variable frequency drives that do not incorporate pump control logic as the primary control software, programming and features directly applicable to booster pump applications shall NOT be considered equal.

2. Additional control panels, PLCs or other external controls shall NOT be necessary to accomplish complete pump programming and variable speed control of the pump system.

3. The integrated microprocessor shall provide automatic start and stop of up to 8 variable speed controlled pumps and enable automatic changeover for lead and lag pump sequencing, without the use of external devices (PLC’s) or timers.

4. The pump controller shall be listed/recognized by and bear the label of Underwriter's Laboratory, Inc. (UL/cUL).

5. The logic controller will be mounted to a standard NEMA, TEFC, Premium Efficient, 2-pole AC induction motor with adjustable clamps/bracket assemblies. The controller shall NOT require special integrated pump motors.

6. The pump controller shall function to a proven program that safeguards the pumps/system against damaging hydraulic conditions.

7. The pump controller shall be capable of accepting individual analog inputs from up to 2 zone sensor/transmitters as indicated on the plans. Analog input resolution shall be 12-bit minimum, and the controller shall scan each analog input a minimum of once every 100
milliseconds. All sensor/transmitter inputs shall be individually wired to the pump logic controller for continuous scan and comparison function. All analog inputs shall be provided with current limit circuitry to provide short circuit protection and safeguard against incorrect wiring of sensors.

8. Hydraulic stabilization program shall utilize a proportional-integral-derivative control function. The proportional, integral and derivative values shall be user adjustable over an infinite range. The scan and compare rate that selects the command set point and process variable signal shall be continuous and automatically set for optimum performance. Each sensor shall be scanned at least once every 100 milliseconds.

9. The pump controller shall provide an LCD display with programming keypad for data entry in plain English or other optional language pumping terms.

10. The pump controller shall be capable of communicating with the Building Automation System (BAS) by both hard-wired and serial communications.

11. The following communication features shall be provided to the Building Automation System via an onboard RS-485 port utilizing Modbus RTU, Modbus ASCII, or BACnet MS/TP protocol.

12. The controller shall be rated to operate from 3-phase power at 208-240VAC or 380-460VAC, +15%, 48Hz to 62Hz. The drive shall employ a full wave rectifier to prevent input line notching and operate at a fundamental (displacement) input power factor of 0.98 at all speeds and nominal load. The drive efficiency shall be 98% or better at full speed and load.

13. Built in Total Harmonic Distortion filters (TDHi) shall reduce harmonic interference.

14. The VFD shall be suitable for elevations to 3300 ft above sea level without derating. Maximum operating ambient temperature rating shall not be greater than 104º F. VFD shall be suitable for operation in environments up to 90% non-condensing humidity.

15. The VFD shall have the ability to automatically restart after a motor Overload, Over-Voltage, Under-Voltage, Inverter Overheat, Phase Loss, Communication Loss, Lack of Water, and Failure of Sensor 1. When enabled, the VFD will allow an automatic restart five (5) times when an error occurs. On the sixth occurrence, the VFD will shut-off and display an error message with the appropriate terminology.

16. Protective Functions:

a. Built-in protection for following conditions:

1) Over/Under voltage.
2) Overcurrent/output short.
3) Low water (requires low water pressure switch).
4) Sensor failure.
5) Motor over-temperature.
6) Inverter over-temperature.
7) Minimum threshold/conveyer limit.

b. For each programmed warning and fault protection function, the Drive shall display a message in complete English words or Standard English abbreviations. The three (3) most recent fault messages along with time, current, speed, voltage, frequency and DI Status shall be stored in the Drive's fault history. The last five (5) fault names shall be stored in Drive memory.

c. The Drive shall include internal MOV's for phase to phase and phase to ground line voltage transient protection.

d. Output short circuit withstand rating and ground fault protection rated for 100,000 AIC shall be provided without relying on line fuses. Motor phase loss protection shall be provided.

e. The Drive shall provide electronic motor overload protection.

f. Protection shall be provided for AC line or DC bus overvoltage at 130% of maximum rated or under voltage at 65% of min. rated and input phase loss.
17. Variable Speed System Sequence of Operation:
 a. The system shall consist of a Hydrovar pump logic controller with multi-pump / multi-master parallel operation control, duty-standby pump selection, automatic alternation and automatic transfer to the secondary master control upon pump/VFD failure.
 b. The pumping system shall start upon the closure of customer's contact when the pump logic controller Mode of Operation is in REMOTE.
 c. When the pump logic controller mode in LOCAL, the pumping system shall operate automatically.
 d. Each sensor/transmitter shall send a 4-20mA signal to the Hydrovar pump logic controller, indicative of process variable condition.
 e. When the set point is satisfied by the process variable, the pump speed shall remain constant at the optimum energy consumption level.
 f. The pump controller shall automatically start the lag pumps as necessary to satisfy system demand.
 g. As demand is satisfied, the controller shall automatically stop lag pumps as necessary to conserve energy.
 h. In the event of a pump failure or a VFD fault, the pump logic controller automatically initiates a timed sequence of operation to start the redundant pump/VFD set in the variable speed mode.
 i. In the event of the failure of a zone sensor/transmitter, its process variable signal shall be removed from the scan/compare program. The redundant zone sensor/transmitters, if available, shall remain in the scan/compare program for control.
 j. PUMP or VFD fault shall be continuously scrolled through the display on the operator interface of the pump logic controller until the fault has been corrected and the controller has been manually reset.
 k. When the system is satisfied, the pump controller shall shut down the single running lead pump and enter energy saving / no flow shutdown mode.

18. BAUD rate setting for communication:

B. Electrical:

1. Station Panel Enclosure: The main station disconnect shall have a through-door operator and shall be sized as shown in the technical data sheet. Individual integrated circuit breaker disconnects shall have exterior operators, and shall be sized as shown in the technical data sheet. Station disconnect panel shall be housed in a NEMA 12 enclosure with integral latches.

2. Controls and Enclosure: The control panel with controls shall be built in accordance with NEC, and shall comply with UL standards. Pump station manufacturer shall be authorized under UL508A to manufacture its own control panels. All equipment and wiring shall be mounted within the enclosure and each device shall be labeled with proper identification. All adjustments and maintenance shall be accessible from the front of the control enclosure. A complete wiring circuit diagram and legend with terminals, components, and wiring completely identified shall be provided. Main disconnect shall be interlocked with door.

3. Pump Disconnects: Individual circuit breaker service disconnects for each pump are provided in the main station panel. The disconnects are approved under UL and CSA for use in systems rated up to 600VAC and are sized accordingly up to 200A. Disconnects are accessible without disengaging the main station disconnect to ensure that operation
of the Booster is not interrupted during individual pump service. Stations that do not provide external access to individual pump disconnects without disengaging the main station disconnect shall NOT be considered equal.

4. Station shall have a short circuit current rating (SCCR) OF 5000A.

5. Sensor / Transmitters:
 a. Pressure transducers shall be utilized for providing all pressure signals for the pump control logic. Pressure transducer shall be a solid-state bonded strain gage type with an accuracy of < ±0.5% BFSL and constructed of 316 stainless steel. Transducer shall be rated for a pressure of 300 psi and shall provide gauge pressure output, rather than an absolute. Pressure transducer constructed of plastic is not acceptable. Pressure transducer shall be 4-20mA analog type with 10-28 VDC supply range shall utilize a packard type connector to prevent moisture intrusion and include surge protection against voltage spikes.
 b. Provide a low pressure switch, with a 6-90 PSI range. The switch shall be mounted to the suction manifold and provide protection against low inlet pressure.
 c. Flowmeter, when specified and shown in the plans.

C. Mechanical:

1. Station Frame:
 a. The pump station frame shall be constructed from 304 stainless steel and designed to provide structural support for all attached equipment and provide anchor bolt support. The base shall supply sufficient rigidity to withstand the stresses of reasonable and competent transportation to site, off-loading, installation and operation.

2. Manifolds and Piping:
 a. All piping shall be constructed from 304 stainless steel, schedule 10 or heavier pipe as required to maintain a 3 to 1 pressure safety factor (including 0.062 in corrosion allowance).

3. Isolation Ball Valves:
 a. Isolation ball valves shall be certified to NSF-61 for use with potable drinking water.
 b. Isolation ball valves shall be certified as low lead having wetted surface area with a weighted average lead content<0.25%.
 c. Valves shall be rated for 600.0 psi g WOG / 150.0 psi g WSP for valves 0.25 in to 2.0 in and 400.0 psi g WOG / 125.0 psi g WSP for valves 2.5 in to 4.0 in.
 d. Seats and stem packing shall be virgin PTFE. Stem shall be bottom loaded blowout proof design with fluorocarbon elastomer O-ring to prevent stem leaks.
 e. Valves shall be 2-piece full port design.

4. Isolation Grooved Butterfly Valves:
 a. Valves shall be certified to NSF-61 for use with potable drinking water.
 b. Valve bodies shall be nylon coated ductile iron conforming to ASTM A536 with integral neck and ISO mounting top.
 c. The disc shall be encapsulated with Gr. E EPDM for cold and hot water services.
 d. Valves shall be rated for 300.0 psi g CWP.
5. Threaded Check Valves:
 a. Body shall be stainless steel.
 b. Dome shall be Delrin.
 c. Disc shall be Buna-n.
 d. Guide shall be Delrin.
 e. Screw shall be stainless steel.
 f. Spring shall be stainless steel.

6. Wafer Style Silent Check Valves:
 a. The valve body shall be constructed of ASTM A126 Class B cast iron for Class 125/250 (Lead free).
 b. The seat and double guided disc shall be ASTM B584, C87600 silicon bronze.
 c. The compression spring shall be ASTM A313 Type 316 Stainless Steel.
 d. Valve shall be NSF/ANSI 61 & 372 certified.
 e. The valve design shall incorporate a center guided, spring loaded disc, guided at opposite ends and having a short linear stroke that generates a flow area equal to the nominal valve size.
 f. The operation of the valve shall not be affected by the position of installation. The valve shall be capable of operating in the horizontal or vertical positions with the flow up or down.
 g. All component parts shall be field replaceable without the need of special tools. A replaceable guide bushing shall be provided and held in position by the spring. The spring shall be designed to withstand 100,000 cycles without failure and provide a cracking pressure of 0.5 psig.
 h. The valve disc shall be concave to the flow direction providing for disc stabilization, maximum strength, and a minimum flow velocity to open the valve.
 i. The valve disc and seat shall have a seating surface finish of 16 micro-inch or better to ensure positive seating at all pressures. The leakage rate shall not exceed the allowable rate for metal seated valves allowed by AWWA Standard C508 or 1 oz (30 ml) per hour per inch (mm) of valve diameter.
 j. The valve flow way shall be contoured and unrestricted to provide full flow areas at all locations within the valve. Cv flow coefficients shall be equal to or greater than specified below and verified by an independent testing laboratory.
 k. The valves shall be hydrostatically tested at 1.5 times their rated cold working pressure and seat tested at the valve CWP.

7. Pumps:
 a. Stainless Steel Vertical Multistage.
 b. AISI 304 wetted components.
 c. Impellers: AISI 304.
 d. Diffuser: AISI 304.
 e. External Sleeve: AISI 304.
 f. Pump Body: Class 30/45B Cast Iron.
 g. Seal Housing: AISI 304.
 h. Mechanical Seal: Carb-Silcarb-Viton: Access to mechanical seal shall not require removing the motor.

8. Pressure Gauges:
 a. Gauges shall be provided for the suction and discharge manifold.
 b. Accuracy shall be ±1.5%.
c. Bourdon tube and connection shall be constructed of 316SS.
d. Case, bezel and internals shall be constructed of 316SS.
e. Gauge shall be filled with glycerin in order to dampen pulsation and vibration and to provide lubrication to the internal parts.
f. Gauge range shall be selected to cover the largest operating range for the specific conditions and pump selected.

9. Flange Bolts:
 a. Bolts shall be zinc plated and shall meet ASTM Grade A193 B7.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install equipment in accordance with manufacturer's instructions.

B. The contractor shall align the pump and motor shafts to within the manufacturer's recommended tolerances prior to system start-up.

C. Power wiring, as required, shall be the responsibility of the electrical contractor. All wiring shall be performed per manufacturer's instructions and applicable state, federal and local codes.

D. Control wiring for remote mounted switches and sensor / transmitters shall be the responsibility of the controls contractor. All wiring shall be performed per manufacturer's instructions and applicable state, federal and local codes.

3.2 DEMONSTRATION

A. The system manufacturer's factory qualified representative shall be capable of providing optional start-up of the packaged pumping system. This start-up shall include verification of proper installation, system initiation, adjustment and fine tuning. Start-up shall not be considered complete until the sequence of operation, including all alarms, has been sufficiently demonstrated to the owner or owner's designated representative. This job site visit shall occur only after all hook-ups, tie-ins, and terminations have been completed and signed-off on the manufacturer's start-up request form.

B. The system manufacturer's factory qualified representative shall be capable of providing on-site training for owner's personnel. This training shall fully cover maintenance and operation of all system components.

C. The system manufacturer must have an optional complete pressure booster training program available for owner's personnel. The training sessions shall take place at the manufacturer's facility and cover all aspects of pressure booster system design, service and operation.

3.3 WARRANTY

A. The manufacturer shall warrant the water pumping system to be free of defects in material and workmanship for one year (12 months) from date of authorized start-up, not to exceed eighteen
(18) months from date of manufacturer's invoice. Complete terms and conditions will be provided upon request.

3.4 START-UP SERVICE

A. Owner start up assistance will be provided by a manufacturer qualified representative and will be limited to one 8-hour day, unless previously negotiated by the factory representative. When discharge piping, electrical connections, and electrical inspection have been completed, the pump station representative shall be contacted for start up. A minimum two-week notice shall be given to manufacturer representative prior to scheduled start up date. During start up, the complete pumping system shall be given a running test of normal start and stop, and fully loaded operating conditions. During this test, each pump shall demonstrate its ability to operate without undue vibration, or overheating, and shall demonstrate its general fitness for service. All defects shall be corrected and adjustments shall be made to the pumping station for satisfactory operation. System problems or concerns will be corrected by the general contractor or site station staff, in conjunction with the appropriate factory representative. Testing shall be repeated until satisfactory results are obtained, as determined by the engineer.

END OF SECTION 221123.13
SECTION 221126 - FACILITY LIQUIFIED-PETROLEUM GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators.
7. Vaporizers.
8. Mechanical sleeve seals.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. For Piping Containing Only Vapor:
 a. Piping and Valves: 125 psig unless otherwise indicated.

2. For Piping Containing Liquid:
 a. Piping between Shutoff Valves: 350 psig unless otherwise indicated.
 b. Piping Other Than Above: 250 psig unless otherwise indicated.
 c. Valves and Fittings: 250 psig unless otherwise indicated.

B. LPG System Pressure within Buildings: One pressure range. More than 0.5 psig but not more than 2 psig.

C. Delegated Design: Design restraints and anchors for LPG piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For facility LPG piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
C. Delegated-Design Submittal: For LPG piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of seismic restraints.
2. Design Calculations: Calculate requirements for selecting seismic restraints.

D. Welding certificates.

E. Field quality-control reports.

F. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedules 40 and 80, Type E or S, Grade B.

4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. OmegaFlex, Inc.
 b. Parker Hannifin Corporation; Parflex Division.
 c. Titeflex.
 d. Tru-Flex Metal Hose Corp.

3. Coating: PE with flame retardant.
 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.

4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.

5. Striker Plates: Steel, designed to protect tubing from penetrations.

6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.

7. Operating-Pressure Rating: 5 psig.

2.2 PIPING SPECIALTIES

A. Flexible Piping Joints:
 1. Approved for LPG service.
 2. Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 3. Minimum working pressure of 250 psig and 250 deg F operating temperature.
 4. Threaded-end connections to match equipment connected and shall be capable of minimum 3/4-inch misalignment.
 5. Maximum 36-inch length for liquid LPG lines.

B. Appliance Flexible Connectors:
 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig.

C. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 1. Copper-alloy convenience outlet and matching plug connector.
 2. Nitrile seals.
 3. Hand operated with automatic shutoff when disconnected.
 4. For indoor or outdoor applications.
 5. Adjustable, retractable restraining cable.

D. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller.
 3. Strainer Screen: 40-mesh startup strainer and perforated stainless-steel basket with 50 percent free area.

E. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for LPG.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. Metallic Valves, NPS 2 and Smaller for Liquid Service: Comply with ASME B16.33 and UL 842.
 1. CWP Rating: 250 psig.
 5. Listing by CSA or agency acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Valves 1-1/4 inch and larger shall be suitable for LPG service, with "WOG" indicated on valve body.

C. General Requirements for Metallic Valves, NPS 2 and Smaller for Vapor Service: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inch to NPS 2 shall have initials "WOG" permanently marked on valve body.

D. Two-Piece, Full-Port, Bronze Ball Valves with Stainless Steel Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. BrassCraft Manufacturing Company; a Masco company.
c. Lyall, R. W. & Company, Inc.
e. Perfection Corporation; a subsidiary of American Meter Company.

4. Stem: Stainless steel; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for LPG service with "WOG" indicated on valve body.

E. Bronze Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.

5. Operator: Square head or lug type with tamperproof feature where indicated.
6. Pressure Class: 125 psig.
7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for LPG service with "WOG" indicated on valve body.

F. Valve Boxes:

1. Cast-iron, two-section box.
2. Top section with cover with "GAS" lettering.
3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
4. Adjustable cast-iron extensions of length required for depth of bury.
5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

A. Hydrostatic Relief Valves: Comply with NFPA 58.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
b. Fisher Control Valves and Regulators; Division of Emerson Process Management.
c. Murray Equipment, Inc.
d. Sherwood; a division of Harsco Corporation.

5. Spring: Stainless steel.
7. Brass body and stainless-steel, spring-operated valve with resilient rubber disc seat and protective cap.
8. Factory set and tested.
9. Listing: Valves listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Valve shall reseat after relieving pressure.

B. Electrically Operated Valves: Comply with UL 429.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. ASCO.
 b. ASCO Power Technologies, LP; Division of Emerson.
 c. Dungs, Karl, Inc.
 d. Eclipse Combustion, Inc.
 e. Goyen Valve Corp.; Tyco Environmental Systems.
 f. Magnatrol Valve Corporation.
 g. Parker Hannifin Corporation; Climate & Industrial Controls Group; Skinner Valve Div.
 h. Watts Regulator Co.; Division of Watts Water Technologies, Inc.

3. Pilot operated.
4. Body: Brass or aluminum.
5. Seats and Disc: Nitrile rubber.
7. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, replaceable.
8. NEMA ICS 6, Type 4, coil enclosure.

2.6 PRESSURE REGULATORS

A. General Requirements:

1. Single stage and suitable for LPG.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Eclipse Combustion, Inc.
 d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 e. Invensys.
 f. Maxitrol Company.
 g. Richards Industries; Jordan Valve Div.

3. Body and Diaphragm Case: Cast iron or die-cast aluminum.
6. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
7. Orifice: Aluminum; interchangeable.
9. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet and no pressure sensing piping external to the regulator.
10. Pressure regulator shall maintain discharge pressure setting downstream and not exceed 150 percent of design discharge pressure at shutoff.
12. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.

9. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
10. Maximum Inlet Pressure: 1 psig.
2.7 DIELECTRIC UNIONS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Central Plastics Company.
5. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
6. Wilkins; Zurn Plumbing Products Group.

B. Minimum Operating-Pressure Rating: 150 psig.

C. Combination fitting of copper alloy and ferrous materials.

D. Insulating materials suitable for LPG.

E. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

2.8 STORAGE CONTAINERS

A. Description: Container tank to comply with requirements in NFPA 58 and ASME Boiler and Pressure Vessel Code and bearing the ASME label. Tank shall be rated for 250-psig minimum working pressure.

1. Liquid outlet and vapor inlet and outlet connections shall have shutoff valves with excess-flow safety shutoff valves and bypass and back-pressure check valves with smaller than 0.039-inch drill-size hole to equalize pressure. Liquid-fill connection shall have backflow check valve.

 a. Connections: Color-code and tag valves to indicate type.

 1) Liquid fill and outlet, red.
 2) Vapor inlet and outlet, yellow.

2. Level gage shall indicate current level of liquid in the container. Gages shall also indicate storage container contents; e.g., "Butane," "50-50 LPG Mix," or "Propane."

3. Pressure relief valves, type and number as required by NFPA 58, connected to vapor space and having discharge piping same size as relief-valve outlet and long enough to extend at least 84 inches directly overhead. Identify relief valves as follows:

 a. Discharge pressure in psig (kPa).
 b. Rate of discharge for standard air in cfm (L/s).
 c. Manufacturer's name.
 d. Catalog or model number.

4. Container pressure gage.

5. Exposed metal surfaces mechanically cleaned, primed, and painted for resistance to corrosion.

6. Ladders for access to valves more than 72 inches aboveground.
7. Stainless-Steel Nameplate: Attach to aboveground storage container or to adjacent structure for underground storage container.
 a. Name and address of supplier or trade name of container.
 b. Water capacity in gallons and liters.
 c. Design pressure in psig (kPa).
 d. Statement, "This container shall not contain a product having a vapor pressure in excess of Insert maximum pressure in psig (kPa) at 100 deg F (37.8 deg C)."
 e. Outside surface area in sq. ft. (sq. m).
 f. Year of manufacture.
 g. Shell thickness in inches (mm).
 h. Overall length in feet (m).
 i. OD in feet (m).
 j. Manufacturer's serial number.
 k. ASME Code label.

8. Asphalt-based coating for corrosion protection.

9. Container connections and valves protected in manway at top of storage container.

2.9 VAPORIZERS

A. Description: Factory-fabricated, -assembled, and -tested vaporizer with heat exchanger sealed pressure-tight, built on a steel base; including insulated jacket, flue-gas vent, liquid fuel supply and vapor connections, and controls. Assembly shall be FMG labeled and comply with NFPA 58 and NFPA 70.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Algas-SDI.
 c. Ely Energy, Inc.
 d. Ransome Manufacturing; a division of Meeder Equipment Company.

B. Fabricate base and attachment to vaporizers with reinforcement strong enough to resist vaporizer movement during a seismic event when steel base is anchored to a concrete base.

C. Casing:
 1. Mineral-fiber insulation, a minimum of 2 inches thick, surrounding the heat exchanger.
 2. Lifting lugs on top of vaporizer.
 3. Sheet metal jacket with screw-fastened closures and powder-coat protective finish.
 4. Mounting base to secure boiler to concrete base.

D. LPG Liquid and Vapor Circuit Specialties:
 1. Y-type strainer with drain valve at inlet.
 2. Vaporizer coil safety pressure relief valve.
 3. Vaporizer coil blowdown valve.
 4. Vapor outlet isolation valve.
5. Pressure gages, a minimum of 2-1/2 inches in diameter, at liquid inlet and vapor discharge. Gages shall have operating-temperature ranges so normal operating range is at approximately 50 percent of full range.

6. Inlet safety solenoid valve to close with off-normal operation alarm.

8. Liquid carryover or float-type safety shutoff switch.

9. LPG Vapor Filter: Steel shell designed and manufactured per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1; factory mounted on vaporizer discharge. Shells larger than 5 inches shall be ASME "U" stamped. Fill with stainless-steel, woven-mesh coalescing element to remove 99 percent of particles larger than 10 microns. 250-psig minimum working pressure. Finish with corrosion-resistant coating for an exterior application. Include factory-mounted and -piped, differential pressure gage with gage cocks in and out, and minimum NPS 3/4 full-port, ball-type drain valve.

E. Indirect-Type, Single Core Dry Heat Exchanger:

1. Description:
 a. Indirect electric heating elements cast in an aluminum core.
 b. Liquid inlet solenoid valve.
 c. Over pressure relief valve.
 d. Dual thermocouple temperature sensor.
 e. Fusible link overcurrent protection.
 f. High liquid level safety valve.
 g. Temperature gage; a minimum of 2-1/2 inches in diameter. Gages shall have operating-temperature ranges so normal operating range is at approximately 50 percent of full range.

F. Capacities and Characteristics:

2. Vaporization Heat Exchanger:

 b. Test Pressure: 375 psig.

3. LPG Vaporization Rate: See Schedule.

4. Entering-LPG Temperature: Minus 30 deg F.

5. Leaving-LPG Temperature: 80 deg F.

8. Water-Bath Shell Operating Pressure: Atmospheric.

9. Water-Bath Operating Temperature: 160 deg F.

10. Electrical Characteristics:

 b. Phase: Three.
 c. Hertz: 60.

2.10 SLEEVES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

2.11 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe and sleeve.

3. Pressure Plates: Carbon steel.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one nut and bolt for each sealing element.

2.12 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 OUTDOOR PIPING INSTALLATION

A. Comply with NFPA 58 and the International Fuel Gas Code requirements for installation and purging of LPG piping.

B. Install underground, LPG piping buried at least 36 inches below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

1. If LPG piping is installed less than 36 inches below finished grade, install it in containment conduit.
C. Install underground, PE, LPG piping according to ASTM D 2774.

D. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 3. Replace pipe having damaged PE coating with new pipe.

E. Install fittings for changes in direction and branch connections.

F. Exterior-Wall Pipe Penetrations: Seal penetrations using steel or cast-iron sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

H. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Division 23 Section “Meters and Gages for HVAC Piping.”

3.3 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of LPG piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install LPG piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.
K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for materials.

L. Verify final equipment locations for roughing-in.

M. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

N. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where readily accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

O. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

P. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.

T. Do not use LPG piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.4 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install earthquake valves aboveground outside buildings according to listing.

E. Install anode for metallic valves in underground PE piping.
3.5 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full ID of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Ch. 22, "Pipe and Tube."

F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.6 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

D. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod, 3/8 inch.

3.7 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install LPG piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliances and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.8 STORAGE CONTAINER INSTALLATION

A. Fill storage container to at least 80 percent capacity with propane.

B. Install piping connections with swing joints or flexible connectors to allow for storage container settlement and for thermal expansion and contraction.

C. Ground containers according to NFPA 780. Grounding is specified in Division 26 Section "Lightning Protection for Structures."

D. Install cathodic protection for storage container. Cathodic protection is specified in Division 26 Section "Cathodic Protection."

3.9 VAPORIZER INSTALLATION

A. Install vaporizer with access space for periodic maintenance.

B. Set vaporizers on and anchor to concrete base.

C. Connect liquid line from tank, and vapor supply to distribution piping.

D. Install backup connection from vapor space of container to inlet of pressure-regulating valve at vaporizer discharge to bypass the vaporizer during maintenance. Install shutoff valves to change source from vaporizer to storage container.

3.10 LABELING AND IDENTIFYING

A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.
3.11 FIELD QUALITY CONTROL

A. Test, inspect, and purge LPG according to NFPA 58 and the International Fuel Gas Code and requirements of authorities having jurisdiction.

B. LPG piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.12 OUTDOOR PIPING SCHEDULE

A. Underground LPG liquid piping shall be the following:

B. Aboveground LPG liquid piping shall be the following:
 1. NPS 2 and Smaller: Schedule 40 steel pipe, malleable-iron threaded fittings and threaded and seal welded joints. Coat pipe and fittings with protective coating for steel piping.

C. Underground LPG vapor piping shall be the following:

D. Aboveground LPG vapor piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with wrought-steel fittings and welded joints.

3.13 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG

A. Aboveground, branch piping NPS 1and smaller shall be the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with steel welding fittings and welded joints.

C. Underground, below building, piping shall be one of the following:
 1. Schedule 40, steel pipe with malleable-iron fittings and threaded joints.
 2. Schedule 40, steel pipe with wrought-steel fittings and welded joints.
D. Containment Conduit: Schedule 40, steel pipe with wrought-steel fittings and welded joints. Coat underground pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Schedule 40, steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.14 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.

B. Underground Vapor Piping: Bronze plug valve.

3.15 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Aboveground Liquid Piping:
 1. Two-piece, full-port, bronze ball valves with stainless steel trim.

B. Valves for pipe NPS 2 and smaller at service meter shall be the following:
 1. Two-piece, full-port, bronze ball valves with stainless steel trim.

C. Distribution piping valves for pipe NPS 2 and smaller shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with stainless steel trim.
 2. Bronze plug valve.

D. Valves in branch piping for single appliance shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with stainless steel trim.
 2. Bronze plug valve.

END OF SECTION 231126
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following for soil, waste, and vent piping inside the building:
 1. Pipe, tube, and fittings.
 2. Special pipe fittings.

1.3 DEFINITIONS
B. EPDM: Ethylene-propylene-diene terpolymer rubber.
C. LLDPE: Linear, low-density polyethylene plastic.
D. NBR: Acrylonitrile-butadiene rubber.
E. PE: Polyethylene plastic.
F. PVC: Polyvinyl chloride plastic.
G. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

1.5 SUBMITTALS
A. Product Data: For pipe, tube, fittings, and couplings.
B. Field quality-control inspection and test reports.
1.6 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class.
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 2. Husky SD2000 or equal stainless steel couplings will be allowed.

2.5 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade A or B, Standard Weight or Schedule 40, galvanized. Include ends matching joining method.
B. Drainage Fittings: ASME B16.12, galvanized, threaded, cast-iron drainage pattern.
C. Pressure Fittings:

D. Grooved-Joint Systems:

1. Acceptable Manufacturers:
 a. Anvil International.
 b. Star Pipe Products; Star Fittings Div.
 c. Victaulic Company.
 d. Ward Manufacturing, Inc.
2. Grooved-End, Steel-Piping Fittings: ASTM A 47/A 47M, malleable-iron casting; ASTM A 106, galvanized-steel pipe; or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
3. Grooved-End, Steel-Piping Couplings: AWWA C606, for steel-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

2.6 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 1785, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 1785, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.
 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Solvent Cement: ASTM D 2564.
 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 SPECIAL PIPE FITTINGS

A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
 1. Sleeve Materials:

B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

C. Pressure Pipe Couplings: AWWA C219 metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 2. Gasket Material: Natural or synthetic rubber.
 3. Metal Component Finish: Corrosion-resistant coating or material.

PART 3 - EXECUTION

3.1 EXCAVATION
 A. Refer to Section 220500 "Common Work Results for Plumbing" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS
 A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

 B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 1. Hubless cast-iron soil pipe and fittings heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.

 C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.

 D. Underground, soil, waste, and vent piping shall be any of the following:
 1. Solid-wall, Schedule 40 PVC pipe, PVC socket fittings and solvent-cemented joints.

 E. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 shall be any of the following:
 1. Steel pipe, pressure fittings, and threaded joints.

 F. Underground sanitary-sewage force mains NPS 4 and smaller shall be any of the following:
 1. Steel pipe, pressure fittings, and threaded joints.
 a. Include grooved-joint system fittings and couplings and grooved joints where indicated.
 2. Pressure pipe couplings, if dissimilar pipe materials or piping with small difference in OD must be joined.
3.3 PIPING INSTALLATION

A. Basic piping installation requirements are specified in Section 220500 "Common Work Results for Plumbing".

B. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings".

C. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

D. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

E. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:

1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

F. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

G. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Section 220500 "Common Work Results for Plumbing".

C. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.

D. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.
3.5 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment". Install the following:

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Install individual, straight, horizontal piping runs according to the following:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Section 220529 "Hangers and Supports for Plumbing Piping and Equipment".

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.

F. Install supports for vertical cast-iron soil piping every 15 feet.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
3.7 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.8 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following sanitary drainage piping specialties:
 1. Backwater valves.
 2. Metal cleanouts.
 3. Floor drains.
 4. Floor Sinks.
 5. Roof flashing assemblies.
 7. Miscellaneous sanitary drainage piping specialties.
 8. Flashing materials.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Operation and Maintenance Data: For drainage piping specialties to include in operation, and maintenance manuals.

1.4 QUALITY ASSURANCE
 A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

1.5 COORDINATION
 A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.
 B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 BACKWATER VALVES
 A. Drain-Outlet Backwater Valves:
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 c. Watts Drainage Products Inc.
 d. Zurn Industries, LLC; Specification Drainage Operation.

2. Size: Same as floor drain outlet.
3. Body: Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
4. Check Valve: Removable ball float.
5. Inlet: Threaded.
6. Outlet: Threaded or spigot.

2.2 METAL CLEANOUTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 2. Josam Company; Blucher-Josam Div.
 4. Tyler Pipe; Wade Div.
 5. Watts Drainage Products Inc.

B. Exposed Metal Cleanouts:

 1. Standard: ASME A112.36.2M for cast iron/ASME A112.3.1 for stainless steel for cleanout test tee.
 2. Size: Same as connected drainage piping
 3. Body Material: As required to match connected piping.
 4. Closure: Raised-head, brass or cast-iron plug.
 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

C. Metal Floor Cleanouts:

 1. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.
 2. Size: Same as connected branch.
 3. Type: Heavy-duty, adjustable housing.
 4. Body or Ferrule: Cast iron.
 5. Clamping Device: Required.
 7. Closure: Brass plug with straight threads and gasket.
 8. Adjustable Housing Material: Cast iron with threads.
 10. Frame and Cover Shape: Round.
 11. Top Loading Classification: Heavy Duty.
 12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
 14. Size: Same as connected branch.
 15. Housing: Stainless steel.
17. Riser: Stainless-steel drainage pipe fitting to cleanout.

D. Cast-Iron Wall Cleanouts:

1. Standard: ASME A112.36.2M. Include wall access.
2. Size: Same as connected drainage piping.
3. Body: As required to match connected piping.
4. Closure: Raised-head, brass or cast-iron plug.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.3 FLOOR DRAINS

A. Floor Drains:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Josam Company
 c. Tyler Pipe; Wade Div.
 d. Watts Drainage Products Inc.
 e. Zurn Industries
2. Standard: ASME A112.6.3.
4. Seepage Flange: Required.
5. Clamping Device: Required.
6. Outlet: Bottom or Side.
10. Top or Strainer Material: Gray iron/Nickel bronze/Stainless steel.
12. Top Shape: Round.
13. Dimensions of Top or Strainer: Minimum 8 inch diameter.
16. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet.
17. Trap Material: Cast iron.
19. Trap Features: ProSet Trap Guard.

2.4 FLOOR SINKS

A. Floor Sinks:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Josam Co.
c. Mifab.
e. Tyler Pipe, Wade Div.
g. Zurn Industries, LLC; Specification Drainage Operation.

2. Standard: ASME A112.3.1.
4. Seepage Flange: Required.
5. Clamping Device: Required.
6. Outlet: Bottom or side.
7. Exposed Surfaces and Interior Lining: Acid-resistant enamel.
8. Sediment Bucket: Required.
10. Top of Body and Strainer Finish: Nickel bronze or gray iron or stainless steel.
11. Top Shape: Square.
12. Dimensions of Top or Strainer: Minimum 12” x 12” with 8” sump and ½ grate.
13. Top Loading Classification: Light duty.
14. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trap seal primer valve connection.
15. Trap Material: Cast iron.

2.5 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Engineering Company; Elmdor/Stoneman Div.
 b. Thaler Metal Industries Ltd.

B. Description: Manufactured assembly made of 4.0-lb/sq. ft. thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

2.6 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

2. Size: Same as connected soil, waste, or vent stack.
3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
5. Special Coating: Corrosion resistant on interior of fittings.

2.7 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
 2. Size: Same as connected waste piping with increaser fitting of size indicated.

B. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch- minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

C. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

D. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

E. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

F. Vent Caps:
 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 2. Size: Same as connected stack vent or vent stack.
G. Frost-Resistant Vent Terminals:
 1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-
 coated copper, or galvanized steel.
 2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of
 flashing collar extension, with counterflashing.

H. Expansion Joints:
 1. Standard: ASME A112.21.2M.
 2. Body: Cast iron with bronze sleeve, packing, and gland.
 3. End Connections: Matching connected piping.
 4. Size: Same as connected soil, waste, or vent piping.

2.8 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights
 and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft. thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses,
 unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft.
 2. Vent Pipe Flashing: 8 oz./sq. ft.

C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-
 inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-
 phosphatized finish for painting if indicated.

D. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum
 thickness.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units
 required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Section 220500 "Common Work Results for Plumbing" for piping joining materials, joint
 construction, and basic installation requirements.
B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet.
4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.
2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

H. Assemble open drain fittings and install with top of hub 2 inches above floor.

I. Install deep-seal traps on floor drains and other waste outlets, if indicated.

J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

K. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

L. Install vent caps on each vent pipe passing through roof.

M. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

N. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
O. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

P. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

Q. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.

2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.

2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.

3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings.

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:
1. **Leak Test:** After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

2. **Test and adjust controls and safeties.** Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 221323 - SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following types of interceptors outside the building:

1. Grease interceptors.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

B. HDPE: High-density polyethylene plastic.

C. PE: Polyethylene plastic.

D. PP: Polypropylene plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plastic interceptor indicated. Include materials of fabrication, dimensions, rated capacities, retention capacities, operating characteristics, size and location of each pipe connection, furnished specialties, and accessories.

B. Shop Drawings: For each type and size of precast concrete interceptor indicated.

1. Include materials of construction, dimensions, rated capacities, retention capacities, location and size of each pipe connection, furnished specialties, and accessories.

C. Coordination Drawings: Interceptors, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Interceptors.
2. Piping connections. Include size, location, and elevation of each.
3. Interface with underground structures and utility services.
1.5 PROJECT CONDITIONS

A. Interruption of Existing Sewer Services: Do not interrupt services to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sewer services according to requirements indicated:

1. Notify Architect no fewer than seven (7) days in advance of proposed interruption of service.
2. Do not proceed with interruption of sewer services without Architect's written permission.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Schier Products Co.
 c. Zurn Industries, LLC; Specification Drainage Operation.

2.2 GREASE INTERCEPTORS

A. Grease Interceptors: Hydromechanical grease interceptor model shall be lifetime guaranteed and made of seamless, rotationally-molded polyethylene with minimum 3/8" uniform wall thickness. Interceptor shall be furnished for above or below grade installation. Interceptor shall be built in accordance to ASME A112.14.3 (type C) and CSA B481.1, with field cut riser system, built-in flow control, built in test/sealing caps and three outlet options. Interceptor flow rate shall be 100 GPM. Interceptor grease capacity shall be 1895 lbs. Cover shall provide water/gas tight seal.

1. Structural Design Loads:

2. Resilient Pipe Connectors: ASTM C 923, cast or fitted into interceptor walls, for each pipe connection.
3. Grade Rings: Polyethylene riser rings, field cuttable, to match diameter of manhole frame and cover.
4. Furnish with high water anchor kit.
5. Provide with integral membrane collar kit.
6. Manhole Covers: Ferrous; 24-inch ID, gas/water tight, H-20 rated for 40,000 lbs.
 a. Ductile Iron: ASTM A 536, Grade 60-40-18, unless otherwise indicated.
 c. Include indented top design with lettering cast into cover, using wording equivalent to "GREASE INTERCEPTOR".
d. **Protective Coating:** Foundry-applied, SSPC-Paint 16, coal-tar, epoxy-polyamide paint; 10-mil minimum thickness applied to all ferrous surfaces.

B. **Sampling Port:** Sampling port model shall be lifetime guaranteed and made of seamless, rotationally molded polyethylene with minimum 3/8" uniform wall thickness. Port shall be built in accordance with the Water Environment Federation’s “Standard methods for Examination of Water and Wastewater” with sealed top access port and highway rated composite cover and field cut riser as required when buried.

C. **Grease Interceptor Capacity and Characteristics:**
 1. **Capacity:** As shown on drawings.
 2. **Number of Compartments:** Minimum Two.
 3. **Trapped Outlet Required:** Integral.
 4. **Installation Position:** Top flush with grade or underground with manhole riser to grade.

2.3 **MISCELLANEOUS MATERIALS**

A. **Metal Paint:** SSPC-Paint 16, coal-tar, epoxy polyamide.

B. **PE Film:** ASTM D 4397, 0.10-inch thickness sheet.

PART 3 - EXECUTION

3.1 **EARTHWORK**

A. Excavating, trenching, and backfilling are specified in Section “Common Work Results for Plumbing”.

B. Burial pit shall be excavated a minimum 6” deeper than tank bottom and minimum 12” larger than tank on all sides. Provide 6” minimum compacted layer of ¾” rock at base of pit.

3.2 **INSTALLATION**

A. Install interceptor inlets and outlets at elevations indicated.

B. Install interceptor with anchor kit and backfill with concrete of flowable fill in lifts so interceptor is not crushed.

C. Install interceptors according to ASTM C 891. Set level and plumb.

D. Install manhole risers from top of underground interceptors to manholes and gratings at finished grade.

E. Set tops of manhole frames and covers flush with finished surface in pavements or grade.

F. Provide cleanout tees on inlet and discharge piping from interceptor to grade with cast or ductile iron cleanout covers set in concrete.
G. Clean and prepare metal surfaces to be field painted according to SSPC-PA 1. Paint the following metal surfaces according to SSPC-PA 1 and SSPC-Paint 16:

 1. Metal Manhole Frames and Covers Including Grates: All surfaces.
 2. Do not paint metal surfaces with factory-applied, corrosion-resistant coating.

H. Prepare and paint metal components, to be field painted, according to SSPC-Paint 16.

I. Repair and restore protective coatings to original condition.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Make piping connections between interceptors and piping systems.

3.4 IDENTIFICATION

A. Identification materials and installation are specified in Division 22 Section "Earth Moving." Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.

 1. Use warning tapes or detectable warning tape over ferrous piping.
 2. Use detectable warning tape over nonferrous piping and over edges of underground structures.

END OF SECTION 221323
SECTION 221329 - SANITARY SEWERAGE PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following sewage pumps and accessories for sanitary drainage piping systems in buildings:
 1. Submersible sewage pumps.
 2. Sewage pump basins.

1.3 SUBMITTALS

A. Product Data: For each type and size of sewage pump specified. Include certified performance curves with operating points plotted on curves; and rated capacities of selected models, furnished specialties, and accessories.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For each sewage pump to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of sewage pumps and are based on the specific system indicated. Refer to Division 01 Section “Product Requirements.”

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.

B. Protect bearings and couplings against damage.

C. Comply with pump manufacturer's written rigging instructions for handling.
1.6 COORDINATION

A. Coordinate size and location of fiberglass basins.

PART 2 - PRODUCTS

2.1 SUBMERSIBLE SEWAGE PUMPS

A. Submersible Sewage Pumps: Factory-assembled and -tested, Weil 1408 (or equal) simplex, single-stage, centrifugal, end-suction, submersible, direct-connected sewage pumps complying with UL 778 and with HI 1.1-1.2 and HI 1.3 for submersible sewage pumps. Coordinate first subparagraph and list below with Part 2 "Manufacturers" Article. Retain "Available" for nonproprietary and delete for semiproprietary specifications.

1. Manufacturers:
 a. Goulds Pumps; ITT Industries.
 b. Weil Pump Company, Inc.
 c. Weinman Div.; Crane Pumps & Systems.
 d. Yeomans Chicago Corporation.
 e. Zoeller Company.

2. Casing: Cast iron, with open inlet, legs that elevate pump to permit flow into impeller, and vertical discharge with companion flange for piping connection.

3. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, open or semiopen, nonclog design and capable of handling solids; overhung, single suction, and keyed and secured to shaft.

5. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump. Comply with Division 22 Section "Common Motor Requirements for Plumbing Equipment."
 a. Moisture-Sensing Probe: Internal moisture sensor and moisture alarm.

B. Pump Discharge Piping: Factory or field fabricated, ASTM A 53/A 53M, Schedule 40, galvanized-steel pipe.

C. Basin Cover: Cast iron or coated steel and suitable to support controls. See Part 2 "Sewage Pump Basins" Article for other requirements.

D. Controls: Weil HLA-4X control panel with 8245 Level control system, NEMA 250, Type 1 enclosure, pedestal mounted unless wall mounting is indicated; with four mercury-float switches in NEMA 250, Type 6 enclosures; mounting rod; and electric cables. Include automatic alternator to alternate operation of pump units on successive cycles and to operate multiple units if one pump cannot handle load.
 1. Float Guide: Pipe or other restraint for floats and rods in basins of depth greater than 60 inches.
2. High-Water Alarm: Rod-mounted, NEMA 250, Type 6 enclosure with mechanical-float switch alarm matching control and electric bell; 120-V ac, with transformer and contacts for remote alarm bell.

E. Capacities and Characteristics (see schedule on drawings):

2.2 SEWAGE PUMP BASINS

A. Description: Factory fabricated basin with sump, pipe connections, and separate cover.

B. Sump: Fabricate watertight, with sidewall openings for pipe connections.

2. Reinforcement: Mounting plates for pumps, fittings, guide-rail supports, and accessories.
3. Anchor Flange: Same material as or compatible with sump, cast in or attached to sump, in location and of size required to anchor basin in concrete slab.

C. Cover: Fabricate with openings having gaskets, seals, and bushings; for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.

1. Material: Cast iron or steel with bituminous coating.
2. Reinforcement: Steel or cast iron, capable of supporting foot traffic for basins installed in foot-traffic areas.

D. Capacities and Characteristics:

2. Diameter: 24 inches
3. Depth: 48 inches
4. Inlet configuration: Refer to drawings for size and location of the inlets – coordinate depths on site prior to ordering basin.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of sanitary drainage and vent piping connections before sewage pump installation.

3.2 INSTALLATION

A. Excavating, trenching, and backfilling are specified in Division 31 Section "Earth Moving."

B. Install sewage pumps according to applicable requirements in HI 1.4.

C. Install pumps and arrange to provide access for maintenance including removal of motors, impellers, couplings, and accessories.

D. Set submersible sewage pumps on basin floors. Make direct connections to sanitary drainage piping.
1. Anchor guide-rail supports to basin bottoms and sidewalls or covers. Install pumps so pump and discharge pipe disconnecting flanges make positive seals when pumps are lowered into place.

E. Install sewage pump basins and connect to drainage and vent piping. Brace interior of basins according to manufacturer’s written instructions to prevent distortion or collapse during concrete placement. Set basin cover and fasten to basin top flange. Install cover so top surface is flush with finished floor.

3.3 CONNECTIONS

A. Piping installation requirements are specified in Division 22 Section "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to sewage pumps to allow service and maintenance.

C. Connect sanitary drainage and vent piping to pumps. Install discharge piping equal to or greater than size of pump discharge piping. Install vent piping equal to or greater than size of pump basin vent connection. Refer to Division 22 Section "Sanitary Drainage and Vent Piping."

1. Install flexible connectors adjacent to pumps in discharge piping.
2. Install check and shutoff valves on discharge piping from each pump. Install unions on pumps having threaded pipe connections. Install valves same size as connected piping. Refer to Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty valves for sanitary waste piping.

D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.
2. Verify bearing lubrication.
3. Disconnect couplings and check motors for proper direction of rotation.
4. Verify that each pump is free to rotate by hand. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
5. Verify that pump controls are correct for required application.

B. Start pumps without exceeding safe motor power:

1. Start motors.
2. Open discharge valves slowly.
3. Check general mechanical operation of pumps and motors.

C. Test and adjust controls and safeties.

D. Remove and replace damaged and malfunctioning components.
1. Pump Controls: Set pump controls for automatic start, stop, and alarm operation as required for system application.

2. Set field-adjustable switches and circuit-breaker trip ranges as indicated, or if not indicated, for normal operation.

E. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project outside normal occupancy hours for this purpose.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 221329
SECTION 221429 - SUMP PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following sump pumps and accessories, inside the building, for building storm drainage systems:

1. Submersible sump pumps.
2. Sump pump basins and pits.

1.3 SUBMITTALS

A. Product Data: For each type and size of sump pump specified. Include certified performance curves with operating points plotted on curves, and rated capacities of selected models, furnished specialties, and accessories.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For each sump pump to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of sump pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.

B. Protect bearings and couplings against damage.

C. Comply with pump manufacturer's written rigging instructions for handling.
1.6 COORDINATION

A. Coordinate size and location of concrete bases and pits. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SUBMERSIBLE SUMP PUMPS

A. Acceptable Manufacturers:

1. Weil
2. Goulds Pumps; ITT Industries.
3. Zoeller.

B. Description: Factory-assembled and -tested, simplex/duplex, single-stage, centrifugal, end-suction, submersible, direct-connected sump pumps complying with UL 778 and HI 1.1-1.2 and HI 1.3 for submersible sump pumps.

C. Casing: Cast iron; with cast-iron inlet strainer, legs that elevate pump to permit flow into impeller, and vertical discharge with companion flange for piping connection.

D. Impeller: ASTM A 48; statically and dynamically balanced, semiopen nonclog design, overhung, single suction, keyed and secured to shaft.

E. Casing: Stainless steel; with stainless-steel inlet strainer, legs that elevate pump to permit flow into impeller, and vertical discharge with companion flange suitable for piping connection.

F. Impeller: Stainless steel or other corrosion-resistant material.

G. Casing and Impeller: Cast-iron casing with metal inlet strainer and brass, bronze, or cast-iron impeller.

H. Pump and Motor Shaft: Stainless steel/Steel, with factory-sealed, grease-lubricated ball bearings and double-mechanical seals.

I. Motor: Hermetically sealed, capacitor-start type, with built-in overload protection; three-conductor waterproof power cable of length required, and with grounding plug and cable-sealing assembly for connection at pump. Comply with requirements in Division 22 Section "Common Motor Requirements for Plumbing Equipment."

1. Moisture-Sensing Probe: Internal moisture sensor with moisture alarm.
J. Pump Discharge Piping: Factory or field fabricated.

K. Basin/Pit Cover: Cast iron or steel with bituminous coating and strong enough to support controls. See Part 2 "Sump Pump Basins/Pits" Article for other requirements.

L. Controls: NEMA 250, Type 1 enclosure, pedestal mounted unless wall mounting is indicated; with two mechanical-float or micropressure switches in NEMA 250, Type 6 enclosures; mounting rod; and electric cables.

M. Capacity and Characteristics as shown on drawings.

2.3 SUMP PUMP PITS

A. Description: Fiberglass pit with sump, pipe connections, curb frame, and separate cover.

B. Curb Frame and Cover:

1. Curb Frame Material: Galvanized steel or steel with bituminous coating.
 a. Pattern: Z-cross-section shape with raised outer rim of height matching cover, for recessed mounting having installed cover flush with top of floor slab.

2. Cover: Fabricate with openings having gaskets, seals, and bushings, for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.
 a. Material: Cast iron or steel with bituminous coating.
 b. Reinforcement: Steel or cast iron, capable of supporting foot traffic for pits installed in foot-traffic areas.

C. Capacity and Characteristics as shown on drawings:

2.4 FLEXIBLE CONNECTORS

A. Acceptable Manufacturers:

1. Flex-Hose Co., Inc.
2. Flex-Weld, Inc.
3. Hyspan Precision Products, Inc.
4. Metraflex, Inc.

B. Description: 125-psig minimum working-pressure rating and ends matching pump connection:

1. Bronze Flexible Connectors: Corrugated, bronze inner tubing covered with bronze wire braid. Include copper-tube ends or bronze flanged ends, braze welded to tubing.
2. Stainless-Steel Flexible Connectors: Corrugated, stainless-steel inner tubing covered with stainless-steel wire braid. Include stainless-steel nipples or flanges, welded to tubing.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of plumbing piping to verify actual locations of storm drainage piping connections before sump pump installation.

3.2 CONCRETE

A. Cast-in-place concrete materials and placement requirements are specified in Division 03.

3.3 SUMP PUMP INSTALLATION

A. Excavating, trenching, and backfilling are specified in Section "Common Work Results for Plumbing".

B. Install pumps and arrange to provide access for maintenance including removal of motors, impellers, couplings, and accessories.

C. Set submersible sump pumps on basin or pit floor. Make direct connections to storm drainage piping.

D. Construct sump pump pits and connect to drainage piping. Set pit curb frame recessed in and anchored to concrete. Fasten pit cover to pit curb flange. Install cover so top surface is flush with finished floor.

E. Support piping so weight of piping is not supported by pumps.

3.4 CONNECTIONS

A. Piping installation requirements are specified in Division 22 Section "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to sump pumps to allow service and maintenance.

C. Connect storm drainage piping to pumps. Install discharge piping equal to or greater than size of pump discharge piping.

 1. Install flexible connectors adjacent to pumps in discharge piping.
 2. Install check and shutoff valves on discharge piping from each pump. Install unions on pumps having threaded pipe connections. Install valves same size as connected piping. Refer to Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty valves for drainage piping.

D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify bearing lubrication.
3. Disconnect couplings and check motors for proper direction of rotation.
4. Verify that each pump is free to rotate by hand. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
5. Verify that pump controls are correct for required application.

B. Start pumps without exceeding safe motor power:

1. Start motors.
2. Open discharge valves slowly.
3. Check general mechanical operation of pumps and motors.

C. Test and adjust controls and safeties.

D. Remove and replace damaged and malfunctioning components.

1. Pump Controls: Set pump controls for automatic start, stop, and alarm operation as required for system application.
2. Set field-adjustable switches and circuit-breaker trip ranges as indicated, or if not indicated, for normal operation.

END OF SECTION 221429
SECTION 223400 - FUEL-FIRED DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following fuel-fired water heaters:

1. Commercial, high-efficiency, gas water heaters.
2. Compression tanks.
3. Water heater accessories.

1.3 DEFINITIONS

A. LP Gas: Liquefied-petroleum fuel gas.

1.4 SUBMITTALS

A. Product Data: For each type and size of water heater indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. LEED Submittal:

1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with ASHRAE/IESNA 90.1-2004, Section 7 - "Service Water Heating".

C. Shop Drawings: Diagram power, signal, and control wiring.

D. Product Certificates: For each type of commercial and instantaneous water heater, signed by product manufacturer.

E. Manufacturer Seismic Qualification Certification: Submit certification that commercial water heaters, accessories, and components will withstand seismic forces defined in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment". Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event".
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

F. Source quality-control test reports.

G. Field quality-control test reports.

H. Operation and Maintenance Data: For water heaters to include in emergency, operation, and maintenance manuals.

I. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain same type of water heaters through one source from a single manufacturer.

B. Product Options: Drawings indicate size, profiles, and dimensional requirements of water heaters and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements".

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.

F. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9" for all components that will be in contact with potable water.

1.6 COORDINATION

A. Coordinate size and location of concrete bases with Architectural and Structural Drawings.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired water heaters that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Period(s): From date of Substantial Completion:
 a. Commercial, Gas Water Heaters:
 1) Storage Tank: Five years.
 2) Controls and Other Components: Three years.
 b. Compression Tanks: One year(s).

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

 1. Description: Manufacturer’s proprietary design to provide at least 95 percent combustion efficiency at optimum operating conditions. Following features and attributes may be modified or omitted if water heater otherwise complies with requirements for performance.
 a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Lining: Seamless glass complying with NSF 61 barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.
 3. Factory-Installed, Storage-Tank Appurtenances:
 b. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 c. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 d. Jacket: Steel with enameled finish.
e. Combination Temperature and Pressure Relief Valves: ANSI Z21.22/CSA 4.4. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

4. Burner or Heat Exchanger: Modulating down fired power burner complying with UL 795 or approved testing agency requirements for high-efficiency water heaters and for natural-gas or LP-gas fuel as indicated.

5. Temperature Control: Solid-state temperature and ignition control with graphical interface with fault and temperature display.

6. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.

8. Intake Air Connection: 4" minimum connection.

9. Provide with condensate neutralization kit.

10. Capacity and Characteristics as shown on drawings:

2.2 COMPRESSION TANKS

A. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

1. Acceptable Manufacturers:

a. AMTROL Inc.
b. Armstrong Pumps, Inc.
c. Honeywell Sparco.
d. Smith, A. O.; Aqua-Air Div.
e. State Industries, Inc.
f. Taco, Inc.
g. Watts Regulator Co.
h. Wessels Co.

2. Construction:

a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
c. Air-Charging Valve: Factory installed.
d. Working-Pressure Rating: 150 psig.
e. Acceptable Capacities: As shown on drawings.

2.3 WATER HEATER ACCESSORIES

B. Gas Pressure Regulators: ANSI Z21.18, appliance type. Include pressure rating, capacity, and pressure differential required between gas supply and water heater.

C. Gas Automatic Valves: ANSI Z21.21, appliance, electrically operated, on-off automatic valve.
D. Combination Temperature and Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than water heater working-pressure rating. Select each relief valve with sensing element that extends into storage tank.

E. Pressure Relief Valves: Include pressure setting less than working-pressure rating of water heater.

F. Drain Pans: Corrosion-resistant metal with raised edge. Provide dimensions not less than base of water heater and include drain outlet not less than NPS 3/4.

G. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1-2004 or ASHRAE 90.2-2004.

2.4 SOURCE QUALITY CONTROL

A. Test and inspect water heater storage tanks, specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial water heater storage tanks before shipment to minimum of one and one-half times pressure rating.

C. Prepare test reports.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

A. Install commercial water heaters on concrete bases.

1. Concrete base construction requirements are specified in Division 22 Section "Common Work Results for Plumbing".

B. Install water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

C. Install gas water heaters according to NFPA 54.

D. Install gas shutoff valves on gas supplies to gas water heaters without shutoff valves.

E. Install gas pressure regulators on gas supplies to gas water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.

F. Install combination temperature and pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater, relief-valve outlet, with drain piping same as domestic water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
G. Install water heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for water heaters that do not have tank drains. Refer to Division 22 Section "Domestic Water Piping Specialties" for hose-end drain valves.

H. Install thermometer on outlet piping of water heaters. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

I. Install pressure gage(s) on inlet and outlet piping of commercial, fuel-fired water heater piping. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

J. Install piping-type heat traps on inlet and outlet piping of water heater storage tanks without integral or fitting-type heat traps.

K. Fill water heaters with water.

L. Charge compression tanks with air.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to water heaters to allow service and maintenance. Arrange piping for easy removal of water heaters.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:
 1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace water heaters that do not pass tests and inspections and retest as specified above.
3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water heaters. Refer to Division 01 Section "Demonstration and Training".

END OF SECTION 223400
SECTION 224000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:

1. Faucets for lavatories and sinks.
2. Flushometers.
3. Toilet seats.
4. Protective shielding guards.
5. Fixture supports.
7. Lavatories.
8. Commercial sinks.

B. Related Sections include the following:

1. Section 221119 "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.

E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

F. FRP: Fiberglass-reinforced plastic.

G. PMMA: Polymethyl methacrylate (acrylic) plastic.
H. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.

1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:

2. Vitreous-China Fixtures: ASME A112.19.2M.
H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:

1. Faucets: ASME A112.18.1.

I. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:

2. Brass and Copper Supplies: ASME A112.18.1.

J. Comply with the following applicable standards and other requirements specified for miscellaneous components:

2. Floor Drains: ASME A112.6.3.
4. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 WARRANTY

A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures of unit shell.
 b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Period for Commercial Applications: One (1) year from date of final acceptance by Owner.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed but not less than 2.
2. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.

PART 2 - PRODUCTS

2.1 FAUCETS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Standard Companies, Inc.
2. Bradley Corporation.
3. Chicago Faucets.
4. Delta Faucet Company.
5. Eljer.
6. Kohler Co.
7. Moen, Inc.
10. T & S Brass and Bronze Works, Inc.
11. Zurn Industries, LLC; Commercial Brass Operation.

B. Description: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.

2. Finish: Polished chrome plate or other finish as scheduled.
3. Maximum Flow Rate: 0.5 gpm unless rated otherwise.

2.2 FLUSHOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Sloan Valve Company.
2. Toto.
3. Zurn Industries, LLC; Commercial Brass Operation.

B. Description: Flushometer for urinal or water-closet-type fixture. Include brass body with corrosion-resistant internal components, control stop with check valve, vacuum breaker, sensor operated electric powered copper or brass tubing, and polished chrome-plated finish on exposed parts.

2.3 TOILET SEATS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.4 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
 b. McGuire Manufacturing Co., Inc.
 c. TRUEBRO, Inc.
 d. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. TRUEBRO, Inc.
 b. Pro Flow.
 c. Sloan Valve Co.

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

2.5 FIXTURE SUPPORTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Josam Company.
3. Tyler Pipe; Wade Div.
5. Zurn Industries, LLC; Specification Drainage Operation.

B. Lavatory Supports:
 1. Description: Type for wall-mounting, lavatory-type fixture. Include steel uprights with feet.

2.6 WATER CLOSETS
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Standard Companies, Inc.
 2. Eljer.
 4. Toto.

B. Description: Wall/Floor-mounting, back/floor-outlet, vitreous-china fixture designed for operation. Minimum 300 lbs. weight capacity. Fixture shall be ADA compatible where specified.
 1. Bowl Type: Elongated with siphon-jet design.
 2. Design Consumption: Maximum 1.26 gal./flush.
 3. Color: White, unless noted otherwise.

2.7 LAVATORIES
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Standard Companies, Inc.
 2. Eljer.

B. Description: Wall or Counter-mounting, vitreous-china fixture.
 1. Color: White, unless noted otherwise.

2.8 COMMERCIAL SINKS
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Standard Co., Inc.
 2. Elkay Manufacturing Co.
 4. Kohler Co.
 5. Marlo Manufacturing.
B. Description: Counter-mounting/Wall mounting, stainless-steel commercial sink fixture.
 1. Material: 18 gauge, type 304. Stainless steel with satin finish.
 2. Type: Self-rimming for counter mounting, with back-splash for wall mounting.
 3. Number of Compartment: As shown on drawings.

2.9 JANITOR’S SINKS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Acorn Engineering Company.
 2. Crane Plumbing, L.L.C./Fiat Products.
 3. Florestone Products Co., Inc.
 4. Precast Terrazzo Enterprises, Inc.
 5. Stern-Williams Co., Inc.
 6. Zurn Industries, LLC; Light Commercial Operation.

B. Description: Flush-to-wall, floor-mounting, precast terrazzo fixture with stainless steel rim guard.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers’ written instructions.

B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 1. Use carrier supports without waste fitting for fixtures with tubular waste piping.

C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.

D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.

E. Install wall-mounting fixtures with tubular waste piping attached to supports.

F. Install counter-mounting fixtures in and attached to casework.
PLUMBING FIXTURES

G. Install fixtures level and plumb according to roughing-in drawings.

H. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.

1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Section 220523 "General-Duty Valves for Plumbing Piping."

I. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

J. Install toilet seats on water closets.

K. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

L. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

M. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

N. Install traps on fixture outlets.

1. Exception: Omit trap on fixtures with integral traps.
2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

O. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Section 220500 "Common Work Results for Plumbing."

P. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.5 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Operate and adjust disposers/hot-water dispensers and controls. Replace damaged and malfunctioning units and controls.

C. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

D. Replace washers and seals of leaking and dripping faucets and stops.

3.6 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000
SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Sleeves.
 5. Escutcheons.
 7. Coordination drawings.
 8. Project Record Drawings.
 9. Equipment installation requirements common to equipment sections.
 10. Painting and finishing.
 11. Concrete bases.
 12. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

F. The following are industry abbreviations for plastic materials:
 1. CPVC: Chlorinated polyvinyl chloride plastic.
 2. PE: Polyethylene plastic.
3. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Transition fittings.
2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Escutcheons.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel".

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications".

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping".
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. Any additional costs as a result of these modifications shall be borne by the contractor. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Mechanical contractor shall be responsible for furnishing and installing access doors required for their work.

D. Sequence, coordinate, and integrate installations of HVAC materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.

E. Coordinate connection of HVAC systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

F. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.

G. Sequence, coordinate, and integrate removal of existing equipment and material as required to maintain services for existing building and for portions of remodeled areas at all times.

1.8 SCHEDULING AND PHASING

A. All HVAC work shall be scheduled to meet project completion date. HVAC work shall be phased for projects requiring phasing of work. Install additional fittings, valves, caps, and dampers as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
B. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

E. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

F. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

A. Acceptable Manufacturers:
 1. Eslon Thermoplastics.
 2. NIBCO, Inc.
 3. Thompson Plastics, Inc.

B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.

D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Acceptable Manufacturers:
 1. Capitol Manufacturing Co.
 2. Capico Inc.
 3. Epcos Sales, Inc.
D. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.

E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Acceptable Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.

 1. Underdeck Clamp: Clamping ring with set screws.

E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE: Reusable, PE, tapered-cup shaped and smooth-outer surface with nailing flange for attaching to wooden forms.
2.8 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated or rough brass.

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.

F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

G. One-Piece, Floor-Plate Type: Cast-iron floor plate.

H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

2.10 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated overall coordination drawings (min ¼” scale) to coordinate HVAC systems installation with other trades. Following systems/items shall be indicated and co-coordinated, but not limited to, with each other based on input from installers of these systems:
 1. Ceiling layout.
 2. Sheet metal ductwork including locations of boxes, diffusers, grilles/registers, duct risers, fire/smoke dampers, etc.
 3. HVAC piping routing including locations of valves, expansion loops, risers, etc.
 4. Fire suppression piping mains, sprinkler heads, flow switches, etc.
 5. Plumbing piping routing including locations of valves, drops to fixtures, risers, etc.
 6. Electrical systems including locations of light fixtures, routing of main feeders/conduits larger than 3” dia., routing of cable tray, etc.
B. Contractor shall obtain information of other systems from General Contractor, Electrical Contractor, Fire Suppression Contractor, Plumbing Contractor and others as required for incorporation in the coordination drawings.

C. Contractor shall arrange coordination meeting with other contractors, whose systems need coordination, to resolve conflicts.

2.11 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy prints.

1. Format: Same CAD program, version and operating system as the original Contract Drawings.
2. Incorporate changes and additional information previously marked on Record prints. Delete, re-draw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas. Mechanical contractor shall be responsible for furnishing and installing access doors required for their work.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping minimum 8 inches above accessible ceilings to allow sufficient space for ceiling panel removal and service access.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.
J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

2. Existing Piping: Use the following:
 a. Chrome-Plated Piping: Split-casting, cast-brass type with chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge and spring clips.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: Split-casting, cast-brass type with rough-brass finish.
 f. Bare Piping in Equipment Rooms: Split-casting, cast-brass type.
 g. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 1) Seal space outside of sleeve fittings with grout.
4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Section 079200 "Joint Sealants" for materials and installation.

Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

V. Draining and Refilling of Systems: Provide all shutoff valves, drain valves, pipe, fittings, and miscellaneous material required to drain each existing system as required for new work. After new work is completed, tested, and found tight, refill each system as required. Time for shutting down existing system for draining shall be coordinated with all other work and with Owner’s representative.
3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 4. PVC Nonpressure Piping: Join according to ASTM D 2855.

H. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

I. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

A. Painting of HVAC systems, equipment, and components is specified in Section 099123 "Interior Painting".

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement.

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

B. Field Welding: Comply with AWS D1.1.
3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.9 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 230500
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Motors ½ HP and Larger: Three phase, unless shown otherwise.

B. Motors Smaller than ½ HP: Single phase, unless shown otherwise.

C. Frequency Rating: 60 Hz
D. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.

E. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.

F. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

G. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

H. Enclosure: Open drip-proof.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F unless otherwise noted.

I. Code Letter Designation:

1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.

1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
5. Motors under 100 hp – Provide shaft grounding ring on either the drive end or non-drive end of the motor in accordance with manufacturer’s recommendations.
6. Motors 100 hp and above – Provide ceramic bearing or bearing journal on non-drive end of the motor and shaft grounding ring on the opposite end in accordance with manufacturer’s recommendations.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.
 5. Electronically Commuted Motor (ECM)

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230519 - METERS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Thermometers.

1.3 DEFINITIONS

A. CR: Chlorosulfonated polyethylene synthetic rubber.

B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated; include performance curves.

B. Shop Drawings: Schedule for thermometers and gages indicating manufacturer’s number, scale range, and location for each.

C. Product Certificates: For each type of thermometer, gage, flowmeter and thermal-energy meter, signed by product manufacturer.

PART 2 - PRODUCTS

2.1 DIRECT-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Marsh Bellofram.
3. Trelice, H. O. Co.
4. Weiss Instruments, Inc.
5. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Case: Dry or Liquid-filled type, drawn steel or cast aluminum, 4-1/2-inch diameter.
C. Element: Bourdon tube or other type of pressure element.

D. Movement: Mechanical, connecting element and pointer.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Metal.

I. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

J. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 REMOTE-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK, Inc.; U.S. Gauge Div.
3. Marsh Bellofram.
4. Palmer - Wahl Instruments Inc.
5. Tel-Tru Manufacturing Company.
6. Trerice, H. O. Co.
7. Weiss Instruments, Inc.
8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

B. Case: Dry type, drawn steel or cast aluminum, 4-1/2-inch diameter with holes for panel mounting.

C. Element: Bourdon tube or other type of pressure element.

D. Movement: Mechanical, connecting element and pointer.

E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.

F. Pointer: Red or other dark-color metal.

G. Window: Glass or plastic.

H. Ring: Metal.

I. Connector: Bottom or Back union type.
J. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.

K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

A. Install liquid-in-glass thermometers in the following locations:
 1. Outside-air, return-air, and mixed-air ducts.

B. Provide the following temperature ranges for thermometers:
 1. Air Ducts: Minus 40 to plus 110 deg F, with 2-degree scale divisions.

3.2 INSTALLATIONS

A. Install direct-mounting thermometers and adjust vertical and tilted positions.

B. Install remote-mounting dial thermometers on panel, with tubing connecting panel and thermometer bulb supported to prevent kinks. Use minimum tubing length.

C. Duct Thermometer Support Flanges: Install in wall of duct where duct thermometers are indicated. Attach to duct with screws.

3.3 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.

3.4 ADJUSTING

A. Adjust faces of gages to proper angle for best visibility.

END OF SECTION 230519
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following hangers and supports for HVAC system piping and equipment:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Equipment supports.

B. Related Sections include the following:

1. Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.
2. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports".

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

A. Product Data: For the following:
1. Steel pipe hangers and supports.
2. Thermal-hanger shield inserts.
3. Powder-actuated fastener systems.

B. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to the following:

1. AWS D1.1, "Structural Welding Code--Steel".
2. AWS D1.2, "Structural Welding Code--Aluminum".
3. AWS D1.3, "Structural Welding Code--Sheet Steel".
4. AWS D1.4, "Structural Welding Code--Reinforcing Steel".
5. ASME Boiler and Pressure Vessel Code—Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Acceptable Manufacturers:

2. Carpenter & Paterson, Inc.
3. Empire Industries, Inc.
5. Grinnell Corp.
6. GS Metals Corp.
8. Piping Technology & Products, Inc.

C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.
2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Acceptable Manufacturers:
 2. GS Metals Corp.
 4. Thomas & Betts Corporation.
 5. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig-minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Acceptable Manufacturers:
 1. Carpenter & Paterson, Inc.
 2. PHS Industries, Inc.
 3. Pipe Shields, Inc.
 5. Value Engineered Products, Inc.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.6 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Acceptable Manufacturers:
 b. Empire Industries, Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head.
 e. MKT Fastening, LLC.
 f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

1. Acceptable Manufacturers:
 a. ERICO/Michigan Hanger Co.
 b. MIRO Industries.

C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.

2. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
3. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.

1. Bases: One or more plastic.
2. Vertical Members: Two or more protective-coated-steel channels.
3. Horizontal Member: Protective-coated-steel channel.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structural-steel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.
2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use padded hangers for piping that is subject to scratching.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
Rebuild Kitchen & Stabilize Structure
Project No. X2001-01
Tavern, Arrow Rock State Historic Site, Missouri
May 12, 2020

8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.

11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.

12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.

2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.

3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.

2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.

3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.

4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.

5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.

6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.

7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.

8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and
larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.

N. Insulated Piping: Comply with the following:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields and hard inserts on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 5. Insert Material: Length at least as long as protective shield.
 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099123 “Interior Painting”.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 230529
SECTION 230548 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Isolation pads.
 2. Isolation mounts.
 3. Freestanding and restrained spring isolators.
 4. Housed spring mounts.
 5. Elastomeric hangers.
 7. Spring hangers with vertical-limit stops.
 8. Pipe riser resilient supports.
 9. Resilient pipe guides.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
 4. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
B. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.

C. Welding certificates.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For air-mounting systems to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel".

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
3. Mason Industries.
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.
6. Vibration Mountings & Controls, Inc.

B. Pads Type A.1: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene or rubber.

C. Mounts Type A.2: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

D. Spring Isolators Type B.1: Freestanding, laterally stable, open-spring isolators.
VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

E. Restrained Spring Isolators Type B.2: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

F. Housed Spring Mounts Type B.3: Housed spring isolator with integral seismic snubbers.
 1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
 2. Base: Factory drilled for bolting to structure.
 3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting a resilient collar.

G. Elastomeric Hangers Type B.4: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

H. Spring Hangers Type B.5: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

I. Spring Hangers with Vertical-Limit Stop Type B.6: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic- and wind-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-and wind-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application.
B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL DEVICE INSTALLATION

A. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Remove and replace malfunctioning units and retest as specified above.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust active height of spring isolators.
C. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.6 VIBRATION ISOLATOR AND SEISMIC-RESTRAINT SCHEDULE FOR SLAB ON GRADE LOCATED EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal fans</td>
<td>Floor</td>
<td>Up to 60 HP</td>
<td>E.1</td>
<td>B.1</td>
<td>0.75"</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
<td>75 HP and above</td>
<td>E.1</td>
<td>B.1</td>
<td>0.75"</td>
</tr>
<tr>
<td>Inline fans</td>
<td>Floor</td>
<td>Up to 40 HP</td>
<td>E.1</td>
<td>B.1</td>
<td>1.0"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.5</td>
<td>0.75"</td>
</tr>
<tr>
<td>Air Handling units</td>
<td>Floor</td>
<td>Up to 5" SP</td>
<td>--</td>
<td>A.1</td>
<td>0.75"</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
<td>Above 5" SP</td>
<td>--</td>
<td>A.1</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.5</td>
<td>0.75"</td>
</tr>
<tr>
<td>Piping – Horizontal</td>
<td>Suspended</td>
<td>All sizes</td>
<td>-</td>
<td>B.4</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Vertical</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>D.1</td>
<td>0.25"</td>
</tr>
</tbody>
</table>

Notes: 1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.

2. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps, air compressors, vacuum pumps, and equipment mounted on type “B” isolators. Remaining piping does not require isolation.

3. Fans within air handling units, equipped with internal vibration isolators, shall not require isolation for fans as indicated in table above.

3.7 VIBRATION ISOLATOR AND SEISMIC – RESTRAINT SCHEDULE FOR EQUIPMENT LOCATED ABOVE GRADE

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal Fans</td>
<td>Floor</td>
<td>Up to 40 HP</td>
<td>E.1</td>
<td>B.1</td>
<td>2.0"</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
<td>50 HP and above</td>
<td>E.2</td>
<td>B.1</td>
<td>2.0"</td>
</tr>
<tr>
<td>Inline Fans</td>
<td>Floor</td>
<td>Up to 40 HP</td>
<td>E.1</td>
<td>B.1</td>
<td>1.0"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.6</td>
<td>1.0"</td>
</tr>
<tr>
<td>Air Handling Units</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>B.1</td>
<td>2.0"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.6</td>
<td>2.0"</td>
</tr>
<tr>
<td>Piping – Horizontal</td>
<td>Suspended</td>
<td>All sizes</td>
<td>--</td>
<td>B.4</td>
<td>0.25"</td>
</tr>
<tr>
<td>Piping – Vertical</td>
<td>Floor</td>
<td>All sizes</td>
<td>--</td>
<td>D.1</td>
<td>0.25"</td>
</tr>
</tbody>
</table>

Notes: 1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.

2. Isolators indicated for horizontal piping is only for three (3) hangers on discharge/outlet and three (3) hangers on suction/inlet pipes for pumps, air compressors, vacuum pumps, and equipment mounted on type “B” isolators. Remaining piping does not require isolation.

3. Fans within air handling units, equipped with internal vibration isolators, shall not require isolation for fans as indicated in table above.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Duct labels.
5. Stencils.
6. Valve tags.
7. Warning tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Black.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/2 inch and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings (SA – supply air, RA – return air, EXH – exhaust air, OA – outside air and RLF – relief air), duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.
2.5 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Material: Fiberboard or metal.
2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.7 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches.
2. Fasteners: Reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER", "CAUTION", or "DO NOT OPERATE".

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Section 099123 "Interior Painting".

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer’s option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment, within mechanical rooms, boiler rooms, chiller rooms, etc.

D. In general follow Pipe Label Color Schedule as shown below, unless the Owner has different schedule standards in which case the Owner’s schedule shall be followed:

1. Refrigerant Piping:
 a. Background Color: Blue.

3.4 DUCT LABEL INSTALLATION

A. Install plastic-laminated or self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:

1. Blue: For cold-air supply ducts.
2. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
3. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Stenciled Duct Label Option: Stenciled labels, showing service and flow direction, may be provided instead of plastic-laminated duct labels, at Installer’s option, if lettering larger than 1
inch high is needed for proper identification because of distance from normal location of required identification.

C. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system. Reduce intervals to 25 feet in areas of congested piping and equipment, within mechanical rooms, boiler rooms, chiller rooms, etc.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:
 a. Refrigerant: Natural.

3. Letter Color:
 a. Refrigerant: Black.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 2. Duct leak testing.

1.3 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 SUBMITTALS

A. Qualification Data: Within 15 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
D. Certified TAB reports.
E. Sample report forms.
F. Instrument calibration reports, to include the following:
1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or NEBB or TABB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB or TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or NEBB or TABB as a TAB technician.

B. TAB Conference: Meet with Architect, Owner, Construction Manager, Commissioning Authority on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days’ advance notice of scheduled meeting time and location.
 1. Agenda Items:
 b. The TAB plan.
 c. Coordination and cooperation of trades and subcontractors.
 d. Coordination of documentation and communication flow.

C. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. TAB Report Forms: Use standard TAB contractor’s forms approved by Architect and Commissioning Authority.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation".

1.6 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

A. Notice: Provide seven days’ advance notice for each test. Include scheduled test dates and times.
B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, flow-control devices, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 233113 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems", or in SMACNA's "HVAC Systems - Duct Design". Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
L. Examine operating safety interlocks and controls on HVAC equipment.

M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:

1. Permanent electrical-power wiring is complete.
2. Automatic temperature-control systems are operational.
3. Equipment and duct access doors are securely closed.
4. Balance, smoke, and fire dampers are open.
5. Isolating and balancing valves are open and control valves are operational.
6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
7. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" or ASHRAE 111 or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories".
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230700 "HVAC Insulation".

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.
3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

D. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

E. Verify that motor starters are equipped with properly sized thermal protection.

F. Check dampers for proper position to achieve desired airflow path.

G. Check for airflow blockages.

H. Calibrate all airflow sensors at the inlet of each AHU fan in cooperation with the temperature control contractor.

I. Check condensate drains for proper connections and functioning.

J. Check for proper sealing of air-handling-unit components.

K. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts".

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

 1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.

 2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.
4. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

5. Obtain approval from Architect or Commissioning Authority for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.

1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.

1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.
B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.7 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.8 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each electric heating coil:
 1. Nameplate data.
 2. Airflow.
 3. Entering- and leaving-air temperature at full load.
 4. Voltage and amperage input of each phase at full load and at each incremental stage.
 5. Calculated kilowatt at full load.
 6. Fuse or circuit-breaker rating for overload protection.

B. Measure, adjust, and record the following data for each refrigerant coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Wet-bulb temperature of entering and leaving air.
 3. Airflow.
 4. Air pressure drop.
 5. Refrigerant suction pressure and temperature.

3.9 PROCEDURES FOR DUCT SYSTEM LEAK TESTING

A. Before testing ducts for leaks, observe the ductwork to verify completeness of installation and caps provided at end of sections to seal. Duct systems can be leak tested in sections if phasing or construction schedule prevents it to test entire system.

B. All supply air ducts and sections from air handling units to inlet of boxes shall be leak tested. All return air ducts from return air grilles to return/relief air fan shall be leak tested. Ten percent (10%) of supply air ducts downstream of boxes, but not less than five systems, shall be leak tested. Two exhaust air duct systems shall be leak tested.

C. Tests shall be conducted at 150% of static pressures, but not more than 6" wg, as identified in static pressure class.

D. Provide blower, measuring instruments and other accessories as required to conduct leak tests. Each section or system shall be maintained at test pressure for minimum 30 minutes.

E. Duct system leakage shall not exceed 5% of design air flow. If system is tested in sections, then total leakage of all sections shall not exceed 5% of design air flow.
F. Record tests results and deficiencies for each section of system and submit to Architect or Commissioning Authority for review.

G. Coordinate duct leak testing with contractor.

3.10 TOLERANCES

A. Set HVAC system’s air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 5 percent.
2. Air Outlets and Inlets: Plus or minus 5 percent.

3.11 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.12 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Fan curves.
2. Manufacturers' test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Conditions of filters.
 b. Cooling coil, wet- and dry-bulb conditions.
 c. Fan drive settings including settings and percentage of maximum pitch diameter.
 d. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.
3. Pipe and valve sizes and locations.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.
2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
3. **Test Data (Indicated and Actual Values):**

 a. Total air flow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling-coil static-pressure differential in inches wg.
 g. Heating-coil static-pressure differential in inches wg.
 h. Return airflow in cfm.

F. **Apparatus-Coil Test Reports:**

1. **Coil Data:**

 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.

2. **Test Data (Indicated and Actual Values):**

 a. Air flow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Return-air, wet- and dry-bulb temperatures in deg F.
 e. Entering-air, wet- and dry-bulb temperatures in deg F.
 f. Leaving-air, wet- and dry-bulb temperatures in deg F.
 g. Refrigerant expansion valve and refrigerant types.
 h. Refrigerant suction pressure in psig.
 i. Refrigerant suction temperature in deg F.

G. **Gas-Fired Heat Apparatus Test Reports:** In addition to manufacturer's factory startup equipment reports, include the following:

1. **Unit Data:**

 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
I. Motor full-load amperage and service factor.

2. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Low-fire fuel input in Btu/h.
 c. High-fire fuel input in Btu/h.
 d. Manifold pressure in psig.
 e. High-temperature-limit setting in deg F.
 f. Operating set point in Btu/h.
 g. Motor voltage at each connection.
 h. Motor amperage for each phase.
 i. Heating value of fuel in Btu/h.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Air flow rate in cfm.
 i. Face area in sq. ft.
 j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):
 a. Heat output in Btu/h.
 b. Air flow rate in cfm.
 c. Air velocity in fpm.
 d. Entering-air temperature in deg F.
 e. Leaving-air temperature in deg F.
 f. Voltage at each connection.
 g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Motor Data:
a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Suction static pressure in inches wg.

J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated air flow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual air flow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

K. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.13 INSPECTIONS

A. Initial Inspection:

1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
2. Check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets, but not less than six.
b. Measure water flow of at least 5 percent of terminals, but not less than two.
c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
d. Verify that balancing devices are marked with final balance position.
e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect or Commissioning Authority.
2. The TAB contractor’s test and balance engineer shall conduct the inspection in the presence of Architect or Commissioning Authority.
3. Architect or Commissioning Authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED".
5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.

3.14 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

C. Refer to sections 233423–HVAC Power Ventilators and 239100–Variable-Frequency Motor Controllers. These specification sections include a requirement that pertains to re-measurement (verification) of a sample of field measurements with the Commissioning Professional witnessing the re-measurements.

END OF SECTION 230593
SECTION 230700 - HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
2. Fire-rated insulation systems.
3. Insulating cements.
4. Adhesives.
5. Mastics.
7. Sealants.
8. Factory-applied jackets.
10. Tapes.
11. Securements.
12. Corner angles.

B. Related Sections:

1. Section 220700 "Plumbing Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings:

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail field application for each equipment type.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC; AP Armaflex.
 c. NOMACO Insulation.

2. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour oF at 75 oF mean temperature.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning Fiberglas Corp.

2. Density: 1.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.25 BTU-in/hour sq. ft. oF at 75 oF mean temperature.
4. Blanket Type Insulation shall be acceptable, only where specified.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. CertainTeed Corp.
b. Johns Manville.
c. Knauf Insulation.
d. Manson Insulation Inc.
e. Owens Corning Fiberglas Corp.

2. Density: 3.0 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. \(^{\circ}F\) at 75\(^{\circ}F\) mean temperature.

H. Mineral-Fiber, Preformed Pipe Insulation:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning Fiberglas Corp.

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.
3. Thermal Conductivity: Not exceeding 0.23 BTU-in/hour sq. ft. \(^{\circ}F\) at 75\(^{\circ}F\) mean temperature.

I. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning Fiberglas Corp.

2. Density: 2.5 lbs/cu. ft.
3. Thermal Conductivity: Not exceeding 0.27 BTU-in/hour sq. ft. \(^{\circ}F\) at 75\(^{\circ}F\) mean temperature.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by a NRTL acceptable to authority having jurisdiction.

B. Commercial Kitchen Grease Duct and other Systems Requiring Fire-Rated Wrap: Kitchen grease exhaust ductwork shall be insulated with 2 hour rated, 1-1/2" thick, one layer, totally foil-encapsulated flexible fireproofing wrap specifically tested to provide 2 hour rating on kitchen grease duct and ventilation ducts where noted on drawings. The wrap shall be Thermal Ceramics, Firemaster, or equal and shall be installed per manufacturer’s recommendations with
all recommended tape, stick-clips and drawbands. Fire-rated duct wrap shall be listed by NFPA 96, and shall be installed with perimeter and longitudinal overlap of 3”.

1. Products: Subject to compliance with requirements, provide the following:
 a. CertainTeed Corp.; FlameChek.
 b. Johns Manville; Firetemp Wrap.
 d. Thermal Ceramics; FireMaster Duct Wrap.
 e. Unifrax; FyreWrap Elite
 f. 3M; Fire Barrier Wrap Products.

2.3 INSULATING CEMENTS

2.4 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide one of the following:
 a. Armacell LCC.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. RBX Corporation.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. ITW TACC, Division of Illinois Tool Works.
 d. Marathon Industries, Inc.
 e. Mon-Eco Industries, Inc.
2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Chemical Company (The).
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Childers Products, Division of ITW.
 3. ITW TACC, Division of Illinois Tool Works.
 4. Marathon Industries, Inc.
 5. Mon-Eco Industries, Inc.

C. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.

 1. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.05 perm at 43-mil dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

 1. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 200 deg F.
 3. Solids Content: 63 percent by volume and 73 percent by weight.
2.6 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. Foster Products Corporation, H. B. Fuller Company.
 c. Marathon Industries, Inc.
 d. Mon-Eco Industries, Inc.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation.
4. Service Temperature Range: Minus 50 to plus 180 deg F.

2.7 SEALANTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Childers Products, Division of ITW.
3. Marathon Industries, Inc.
4. Mon-Eco Industries, Inc.
5. Pittsburgh Corning Corporation.

B. FSK and Metal Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2.8 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. P.I.C. Plastics, Inc.
 c. Proto PVC Corporation.
 d. Speedline Corporation.

2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

5. Factory-fabricated tank heads and tank side panels.

D. Metal Jacket:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Products, Division of ITW.
 b. PABCO Metals Corporation.
 c. RPR Products, Inc.
 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Prefomed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

E. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.

2.10 TAPES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Avery Dennison Corporation, Specialty Tapes Division.
 2. Compac Corp.
 4. Venture Tape.

B. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

C. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
1. Width: 2 inches.
2. Thickness: 3.7 mils.
3. Adhesion: 100 ounces force/inch in width.
4. Elongation: 5 percent.
5. Tensile Strength: 34 lbf/inch in width.

2.11 SECUREMENTS

A. Bands:
1. Stainless Steel: ASTM A 167 or ASTM A 240, Type 304; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:
1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel or aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.
B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

F. Insulation Installation at Floor Penetrations:
 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Pipe: Install insulation continuously through floor penetrations.
 3. Seal penetrations through fire-rated assemblies.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe
diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials. Insulation thicknesses greater than 2” shall be built-up of multiple-layer installations, with each layer secured separately. Joints in multiple layer installations shall be staggered.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer’s recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c.
Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.

 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

 d. Do not overcompress insulation during installation.

 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped
pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."
3.10 FINISHES
A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

3.11 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe for each pipe service defined in the "Piping Insulation Schedule, General" Article.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 DUCT INSULATION SCHEDULE, GENERAL
A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply, outdoor air ductwork and exhaust fan discharge ductwork, casings and plenums.
 2. Indoor, exposed supply, return, relief, outdoor air ductwork and exhaust fan discharge ductwork, casings and plenums unless otherwise noted on drawings.
 3. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 4. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
B. Items Not Insulated:
 1. General Exhaust air ductwork except exhaust fan discharge ductwork and plenums.
 2. Factory-insulated flexible ducts.
 3. Factory-insulated plenums and casings, terminal boxes, and filter boxes and sections.
 4. Flexible connectors.
 5. Vibration-control devices.
 7. Nameplates and data plates.
 8. Factory-insulated access panels and doors.
3.13 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Service: Concealed, round and flat-oval, supply-air, return air, combustion air and exhaust air downstream of automatic dampers duct insulation shall be the following:

2. Thickness: 1-1/2 inches.
3. Number of Layers: One.
5. Vapor Retarder Required: Yes.

B. Service: Round or rectangular exposed supply air, return air, relief air and combustion air including ducts located in mechanical rooms, boiler room and chiller rooms; relief air plenums.

2. Thickness: 1 inch.
3. Number of Layers: One.
4. Field-Applied Jacket: None
5. Vapor Retarder Required: Yes.

C. Service: Outside air intake ducts and plenums.

2. Thickness: 2 inches.
3. Number of Layers: One.
5. Vapor Retarder Required: Yes.

D. Service: Exposed and concealed Type 1, commercial, kitchen hood exhaust ducts and plenums.

2. Thickness: As required for 2-hour fire rating.
3. Number of Layers: As required for 2-hour fire rating.
5. Vapor Retarder Required: Yes.

3.14 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
4. Flexible Connectors
5. Vibration Control Devices
3.15 INDOOR PIPING INSULATION SCHEDULE

A. Service: Condensate drain piping.
 1. Operating Temperature: 35 to 75 deg C.
 2. Insulation Material: Flexible elastomeric.
 3. Insulation Thickness: ¾ inch.
 5. Vapor Retarder Required: Yes.
 6. Finish: None.

B. Service: Chilled-water, glycol chilled water & chilled/heating water supply and return.
 1. Operating Temperature: 35 to 200 deg F.
 2. Insulation Material: Flexible elastomeric.
 3. Insulation Thickness: Apply the following insulation thicknesses:
 a. Pipe Sizes Up to 1-1/2": 1 inch.
 b. Pipe Sizes 2" and Larger: 1-1/2 inches.
 5. Vapor Retarder Required: No.
 6. Finish: None.

C. Service: Refrigerant piping.
 1. Operating Temperature: 35 to 150 deg F.
 2. Insulation Material: Flexible elastomeric.
 3. Insulation Thickness: Apply the following thicknesses
 a. Pipes Sizes up to 7/8": 3/4 inch.
 b. Pipes Sizes 1" and Larger: 1 inch.
 5. Vapor Retarder Required: No.
 6. Finish: None.

D. Service: Heating hot-water supply and return.
 1. Operating Temperature: 100 to 200 deg F.
 2. Insulation Material: Mineral fiber.
 3. Insulation Thickness: Apply the following insulation thicknesses:
 a. Pipe Sizes up to 1-1/2": 1 inch.
 b. Pipe Sizes 2" and Larger: 2 inches.
 5. Vapor Retarder Required: No.
 6. Finish: None.
3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts and Plenums, Exposed:
 1. None.

E. Equipment, Concealed:
 1. None.

F. Equipment, Exposed:
 1. 30" mil PVC.

G. Piping, Concealed:
 1. None.

H. Piping, Exposed:
 1. 30" mil PVC jacket in mechanical rooms.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Equipment, Concealed:
 1. None.

D. Equipment, Exposed:
 1. Aluminum, Smooth with Z-Shaped Locking Seam: 0.024 inch thick.

E. Piping, Concealed:
 1. None.

F. Piping, Exposed:
 1. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.024 inch thick.
END OF SECTION 230700
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

1.4 SUBMITTALS

A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:

1. Thermostatic expansion valves.
2. Solenoid valves.
3. Hot-gas bypass valves.
4. Filter dryers.
5. Strainers.
6. Pressure-regulating valves.

B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

1. Shop Drawing Scale: 1/4 inch equals 1 foot.
2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

C. Welding certificates.

D. Field quality-control test reports.
E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:

2. End Connections: Socket ends.
3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
5. Maximum Operating Temperature: 250 deg F.
2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.
 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
 1. Body and Bonnet: Forged brass or cast bronze.
 2. Packing: Molded stem, back seating, and replaceable under pressure.
 3. Operator: Rising stem.
 5. Seal Cap: Forged-brass or valox hex cap.
 6. End Connections: Socket, union, threaded, or flanged.
 8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 6. End Connections: Socket, union, threaded, or flanged.
 7. Maximum Opening Pressure: 0.50 psig.
 9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
 1. Body: Forged brass with brass cap including key end to remove core.
 2. Core: Removable ball-type check valve with stainless-steel spring.
 4. End Connections: Copper spring.
 6. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
 8. Maximum Operating Temperature: 240 deg F.

E. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.

F. Straight-Type Strainers:
2. Screen: 100-mesh stainless steel.
3. End Connections: Socket or flare.
5. Maximum Operating Temperature: 275 deg F.

G. Angle-Type Strainers:
1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

2.3 REFRIGERANTS

A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR ALL REFRIGERANTS

A. Suction Lines for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

C. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

D. Brazed or soldered joints may only occur where not within 48" or above any flammable materials.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless or packed-angle valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless or packed-angle valves on inlet and outlet side of filter dryers.

E. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

F. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

G. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Compressor.

H. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified if valves or equipment requiring maintenance is concealed behind finished surfaces.
L. Install refrigerant piping in protective conduit where installed belowground.

M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

N. Slope refrigerant piping as follows:

1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps and double risers to entrain oil in vertical runs.
4. Liquid lines may be installed level.

O. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

P. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:

1. Shot blast the interior of piping.
2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

Q. Install pipe sleeves at penetrations in exterior walls and floor assemblies.

R. Seal penetrations through fire and smoke barriers.

S. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

T. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.

U. Seal pipe penetrations through exterior walls according to Section 079200 "Joint Sealants" for materials and methods.

V. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

B. Adjust set-point temperature of air-conditioning controllers to the system design temperature.

C. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:

1. Open shutoff valves in condenser water circuit.
2. Verify that compressor oil level is correct.
3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
D. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round and flat-oval ducts and fittings.
 4. Duct liner.
 5. Sealants and gaskets.
 6. Hangers and supports.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233119 "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
 3. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.4 SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of main duct runs from building grid lines.
 6. Fittings.
 7. Reinforcement and spacing.
 8. Seam and joint construction.
 9. Penetrations through fire-rated and other partitions.
 10. Equipment installation based on equipment being used on Project.
 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Coordination Drawings: CAD generated plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 2. Suspended ceiling components.
 3. Structural members to which duct will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Penetrations of smoke barriers and fire-rated construction.
 6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.
 7. Refer to Section "Common Work Results for HVAC".

D. Welding certificates.

E. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1, "Structural Welding Code - Steel", for hangers and supports.
B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up".

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation".

D. Duct liner shall not be utilized in healthcare facilities, unless noted otherwise.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 1-4, "Transverse (Girth) Joints", for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 1-5, "Longitudinal Seams - Rectangular Ducts", for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction", for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Chapter 3, "Round, Oval, and Flexible Duct", based on indicated static-pressure class unless otherwise indicated. Note: Snap Lock Duct is not acceptable.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 3-2, "Transverse Joints - Round Duct", for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 3-1, "Seams - Round Duct and Fittings", for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 3-4, "90 Degree Tees and Laterals", and Figure 3-5, "Conical Tees", for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Reinforcement Shapes and Plates: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard".

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. CertainTeed Corporation; Insulation Group.
b. Johns Manville.
c. Knauf Insulation.
d. Owens Corning.
e. Maximum Thermal Conductivity:

1) Type I, Flexible: \(0.27 \text{ Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.}\)
2) Type II, Rigid: \(0.23 \text{ Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.}\)

2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

3. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.

a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 2-19, "Flexible Duct Liner Installation".

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:

a. Fan discharges.
b. Intervals of lined duct preceding unlined duct.
c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.

a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.

10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: 3 inches.
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
 8. Service Temperature: Minus 40 to plus 200 deg F.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:

 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:

 1. Application Method: Brush on.
2. Base: Synthetic rubber resin.
4. Solids Content: Minimum 60 percent.
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
9. VOC: Maximum 395 g/L.
10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
11. Service: Indoor or outdoor.
12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
 1. Seal shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible", Table 4-1, "Rectangular Duct Hangers Minimum Size", and Table 4-2, "Minimum Hanger Sizes for Round Duct".

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
H. Trapeze and Riser Supports:

3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines".
3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 20 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts before external insulation is applied. Provide adequate sealing as required to meet duct leakage requirements.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Table 4-1, "Rectangular Duct Hangers Minimum Size", and Table 4-2, "Minimum
Hanger Sizes for Round Duct", for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories".

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts, for 24 inches length, that are visible through return and exhaust registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099123 "Interior Painting".

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Maximum Allowable Leakage: Duct system leakages shall not exceed 5% of design air flows. When systems are leak tested in section, the total cumulative leakage of the system shall not exceed 5%.
 3. Test the following systems:
 a. All supply air ducts and sections from air handling unit to terminal units.
 b. All return air ducts and sections from grilles/registers to return/relief air fan.
 c. 10% of supply air ductwork downstream of boxes, but not less than two systems.
 d. Two exhaust air duct systems.
 4. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 5. Test for leaks before applying external insulation.
 6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum
system design pressure. Do not pressurize systems above maximum design operating pressure.

7. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems".
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.
E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer’s written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC".

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:

1. Downstream of Air Handling Units:
 a. Pressure Class: Positive 4-inch wg.

C. Return Ducts:

1. All Ducts:
 a. Pressure Class: Negative 2-inch wg.

D. Exhaust Ducts:

1. General Exhaust System Ducts:
 a. Pressure Class: Negative 2-inch wg.

 a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 b. Concealed: Type 304, stainless-steel sheet, No. 2D finish or Carbon-steel sheet.
 c. Welded seams and joints.
d. Pressure Class: Positive or negative 2-inch wg.

E. Outdoor-Air Ducts:
 1. All Ducts:
 a. Pressure Class: Positive or negative 1-inch wg.

F. Intermediate Reinforcement:
 1. Galvanized-Steel Ducts: Galvanized steel or carbon steel coated with zinc-chromate primer.
 2. PVC-Coated Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.
 3. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.
 4. Aluminum Ducts: Aluminum or galvanized sheet steel coated with zinc chromate.

G. Liner:
 1. Return Air Boots and Supply Grille Plenums: Fibrous glass, Type I, 1 inch thick.

H. Elbow Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 2-2, "Rectangular Elbows".
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 2-3, "Vanes and Vane Runners", and Figure 2-4, "Vane Support in Elbows".
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 2-3, "Vanes and Vane Runners", and Figure 2-4, "Vane Support in Elbows".
2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 2-2, "Rectangular Elbows".
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 2-3, "Vanes and Vane Runners", and Figure 2-4, "Vane Support in Elbows".

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 3-3, "Round Duct Elbows".
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Table 3-1, "Mitered Elbows". Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.

I. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 2-6, "Branch Connections".
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: 45-degree square to round.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", Figure 3-4, "90 Degree Tees and Laterals", and Figure 3-5, "Conical Tees". Saddle taps are permitted in existing duct.
 a. Combination Boot Tee.
 b. 45-degree lateral.

END OF SECTION 233113
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Backdraft dampers.
 3. Fire dampers.
 4. Flange connectors.
 5. Turning vanes.
 6. Remote damper operators.
 7. Duct-mounted access doors.
 8. Flexible connectors.
 10. Duct accessory hardware.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 e. Duct security bars.
 f. Wiring Diagrams: For power, signal, and control wiring.
C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE
A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems", and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems".

B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed, but not less than two.

PART 2 - PRODUCTS

2.1 MATERIALS
A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653.

 2. Exposed-Surface Finish: Mill phosphatized.

C. Stainless-Steel Sheets: Comply with ASTM A 480, Type 304, and having a No. 2 finish for concealed ducts and D4 finish for exposed ducts.

D. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

E. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 MANUAL VOLUME DAMPERS

A. Standard, Manual Volume Dampers:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. McGill AirFlow LLC.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Ruskin Company.
 g. Vent Products Company, Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:

 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness (20G), or 0.10 inch aluminum sheet channels.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:

 a. Multiple or single blade.
 b. Opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick (20G), or roll-formed aluminum 0.10 inch thick.

7. Adjustment: Locking quadrant with 1-1/2” stand-off brackets on insulated duct.
8. Bearings:

 a. Molded synthetic or Stainless-steel sleeve.
 b. Dampers shall have axles full length of damper blades and bearings at both ends of operating shaft.

2.3 FIRE DAMPERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
5. McGill AirFlow LLC.
6. METALAIRE, Inc.
7. Nailor Industries Inc.
8. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.052 inch thick and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

K. General Requirements:
 1. Labeled according to UL 555C by an NRTL.
 2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory".

L. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.

M. Blades: Galvanized sheet steel with refractory insulation.

N. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

O. Fire Rating: 2 hours.

2.4 FLANGE CONNECTORS

A. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
B. Material: Galvanized steel.

C. Gage and Shape: Match connecting ductwork.

2.5 TURNING VANES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. METALAIRE, Inc.
4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners", and 2-4, "Vane Support in Elbows".

E. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.6 DUCT-MOUNTED ACCESS DOORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
3. Ductmate Industries, Inc.
5. Greenheck Fan Corporation.
6. McGill AirFlow LLC.
7. Nailor Industries Inc.
8. Ventfabs, Inc.

1. Door:
AIR DUCT ACCESSORIES

2.7 FLEXIBLE CONNECTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd.
2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F.

1. Minimum Weight: 24 oz./sq. yd.
2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F.

1. Minimum Weight: 16 oz./sq. yd.
2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).

1. Minimum Weight: 14 oz./sq. yd. (474 g/sq. m).
2. Tensile Strength: 450 lbf/inch (79 N/mm) in the warp and 340 lbf/inch (60 N/mm) in the filling.
3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).

I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.8 FLEXIBLE DUCTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.
3. Thermaflex.

B. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene or aluminized vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.

C. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action or Nylon strap in sizes 3 through 18 inches, to suit duct size.
2.9 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards", for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

D. Set dampers to fully open position before testing, adjusting, and balancing.

E. Install test holes at fan inlets and outlets and elsewhere as indicated.

F. Install fire dampers according to UL listing.

G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

 1. On both sides of duct coils.
 2. Upstream and downstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. At each change in direction and at maximum 50-foot spacing.
 8. Upstream or downstream from duct silencers.
 9. Control devices requiring inspection.
 10. Elsewhere as indicated.
H. Install access doors with swing against duct static pressure.

I. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

J. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

K. Install flexible connectors to connect ducts to equipment.

L. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

M. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

N. Connect diffusers or light troffer boots to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

O. Connect flexible ducts to metal ducts with draw bands and adhesive plus sheet metal screws. Do not use flexible ducts through walls, partitions.

P. Install duct test holes where required for testing and balancing purposes.

Q. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 4. Inspect turning vanes for proper and secure installation.
 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Ceiling-mounted ventilators.

1.3 PERFORMANCE REQUIREMENTS
 A. Project Altitude: Base fan-performance ratings on actual Project site elevations.
 B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS
 A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Fan speed controllers.
 B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Size and location of initial access modules for acoustical tile.
 3. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
D. Field quality-control test reports.

E. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.

C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

D. UL Standard: Power ventilators shall comply with UL 705.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.

B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.

C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION
A. Coordinate size and location of structural-steel support members.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.

1.8 EXTRA MATERIALS
A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Bayley Fans; a division of Lau Industries, Inc.
2. Greenheck Fan Corp.
3. JencoFan; Div. of Breidert Air Products.
4. Loren Cook Company.
5. New York Blower Company (The).
6. Penn Ventilation.
7. Twin City Fans.

2.2 CEILING-MOUNTING VENTILATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Greenheck.
2. JencoFan; Div. of Breidert Air Products.
3. Loren Cook Company.
4. Penn Ventilation.

B. Description: Centrifugal fans designed for installing in ceiling or wall or for concealed in-line applications.

C. Housing: Steel, lined with acoustical insulation.

D. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.

E. Grille: Styrene louvered grille with flange on intake and thumbscrew attachment to fan housing.

F. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

G. Accessories:

1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.

H. Capacities and Characteristics as indicated on drawings:

2.3 PROPELLER FANS

A. Description: Direct-driven propeller fans consisting of fan blades, hub, housing, orifice ring, motor, drive assembly, and accessories.

B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.

C. Aluminum Fan Wheels: Aluminum blades riveted to heavy-gage steel spider bolted to steel hub.
D. Direct-Driven Drive Assembly: Resiliently mounted to housing, statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower.

1. Service Factor Based on Fan Motor Size: 1.4.
2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.

 a. Ball-Bearing Rating Life: ABMA 9, L10 of 100,000 hours.

E. Accessories:

1. Motor-Side Back Guard & Prop Guard: Galvanized steel expanded mesh, complying with OSHA specifications, removable for maintenance.
2. EC Speed Controller.
3. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

F. Capacities and Characteristics as indicated on drawings.

2.4 MOTORS

A. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

B. Motor Type: Electrically Commutated.

2.5 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Support units using vibration control devices. Vibration- and seismic-control devices are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

 1. Secure vibration and seismic controls to concrete bases using anchor bolts cast in concrete base.

C. Ceiling Units: Suspend units from structure.
D. Support suspended units from structure using threaded steel rods. Vibration-control devices are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

E. Install units with clearances for service and maintenance.

F. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Verify proper motor rotation direction and verify fan wheel free rotation and smooth bearing operation.
5. Adjust damper linkages for proper damper operation.
6. Verify lubrication for bearings and other moving parts.
7. Verify that manual and automatic control.
8. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
9. Shut unit down and reconnect automatic temperature-control operators.
10. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 COMMISSIONING

A. Fully test all aspects of the HVAC Power Ventilators work.

B. Acceptance Check Sheet:
1. Prepare a check sheet that includes all points for all functions of the HVAC Power Ventilators as indicated on the point list included in the contract documents.
2. Submit the check sheet to the Engineer for approval.
3. The Engineer will use the check sheet or other means as the basis for acceptance of the HVAC Power Ventilations system.

C. Promptly rectify all listed deficiencies and submit to the Engineer that this has been done.

D. Coordination with project commissioning professional:
 1. Provide allowance for assistance with project professional.

3.5 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Refer to Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

C. Lubricate bearings.

END OF SECTION 233423
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Round ceiling diffusers.
 2. Rectangular and square ceiling diffusers.
 3. Louver face diffusers.
 4. Adjustable bar registers and grilles.
 5. Fixed face registers and grilles.

B. Related Sections:
 1. Section 233300 "Air Duct Accessories" for fire dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.

C. Source quality-control reports.
PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.

B. Round Ceiling Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Style: Minimum three cone.
5. Mounting: To match ceiling type.
7. Accessories:
 a. Equalizing grid.
 b. Sectorizing baffles.

C. Rectangular and Square Ceiling Diffusers:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Size: 24 by 24 inches or 12 by 12 inches.
5. Face Style: Plaque.
6. Mounting: To match ceiling type.
8. Accessories:
 a. Equalizing grid.
 b. Sectorizing baffles.

D. Louver Face Diffuser:

1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless noted otherwise.
4. Face Size: As indicated on drawings.
5. Mounting: To match ceiling type.
7. Accessories:
 a. Adjustable pattern vanes.
b. Equalizing grid.
c. Sectorizing baffles.
d. Operating rod extension.

2.2 REGISTERS AND GRILLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anemostat Products; a Mestek company.
2. Carnes.
4. METALAIRE, Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.

B. Adjustable Bar Register and Grille:

1. Material: Steel or Aluminum.
2. Finish: Baked enamel, white unless noted otherwise.
3. Face Blade Arrangement: Horizontal adjustable.
6. Frame: 1 inch wide.
7. Mounting: Countersunk screw.
8. Damper Type: Adjustable opposed blade for register only.
9. Accessories:
 a. Front-blade gang operator.

C. Fixed Face Register:

1. Material: Steel or Aluminum.
2. Finish: Baked enamel, white unless noted otherwise.
5. Frame: 1 inch wide.
7. Damper Type: Adjustable opposed blade for register only.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets".
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
SECTION 233723 - HVAC GRAVITY VENTILATORS, LOUVERS AND VENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following types of roof-mounting intake and relief ventilators:
 1. Louvered penthouses.
 2. Roof hoods.
B. This Section includes fixed extruded aluminum louvers and wall vents.
C. Related Sections include the following:
 1. Division 23 Section "HVAC Power Ventilators" for roof-mounting exhaust fans.

1.3 DEFINITIONS

A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.
B. Horizontal Louver: Louver with horizontal blades; i.e., the axes of the blades are horizontal.
C. Vertical Louver: Louver with vertical blades; i.e., the axes of
D. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in jambs and mullions, which carry it to bottom of unit and away from opening.
E. Storm-Resistant Louver: Louver that provided specified wind-driven rain performance, as determined by testing according to AMCA 500-L.

1.4 PERFORMANCE REQUIREMENTS

A. Structural Performance: Intake and relief ventilators shall be capable of withstanding the effects of gravity loads, wind loads, seismic loads, and thermal movements without permanent deformation of components, noise or metal fatigue, or permanent damage to fasteners and anchors.
C. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation
of louver components, noise or metal fatigue caused by louver blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.

1. Wind Loads: Determine loads based on a uniform pressure of 20 lbf/sq. ft., acting inward or outward.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.

1. Temperature Change (Range): 120 deg F ambient; 180 deg F material surfaces.

E. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.

B. Shop Drawings: For intake and relief ventilators. Include plans, elevations, sections, details, and ventilator attachments to curbs and curb attachments to roof structure.

C. Coordination Drawings: Roof framing plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Structural members to which roof curbs and ventilators will be attached.
2. Sizes and locations of roof openings.

D. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.

1. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.
2. Show mullion profiles and locations.

E. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 500-L by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver and showing compliance with performance requirements specified.

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain ventilators, louvers and vents through one source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

B. Product Options: Information on Drawings and in Specifications establishes requirements for system's aesthetic effects and performance characteristics. Aesthetic effects are indicated by
dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

C. Product Options: Drawings indicate size, profiles, and dimensional requirements of intake and relief ventilators, louvers, vents and are based on the specific equipment indicated. Refer to Division 01 Section "Product Requirements."

1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.

D. Welding: Qualify procedures and personnel according to the following:

2. AWS D1.3, "Structural Welding Code--Sheet Steel."
3. AWS D1.6, "Structural Welding Code--Stainless Steel."

1.7 COORDINATION

A. Coordinate installation of roof curbs and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

B. Field Measurements: Verify louver openings by field measurements before fabrication and indicate measurements on Shop Drawings.

1. Established Dimensions: Where field measurements cannot be made without delaying the Work, establish opening dimensions and proceed with fabricating louvers without field measurements. Coordinate construction to ensure that actual opening dimensions correspond to established dimensions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 MATERIALS

A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T5.
B. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel, unless otherwise indicated. Do not use metals that are incompatible with joined materials.

1. Use types and sizes to suit unit installation conditions.
2. Use Phillips flat-head screws for exposed fasteners, unless otherwise indicated.
3. For fastening galvanized steel, use hot-dip-galvanized steel or 300 series stainless-steel fasteners.
4. For fastening stainless steel, use 300 series stainless-steel fasteners.
5. For color-finished louvers, use fasteners with heads that match color of louvers.

C. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors, made from stainless-steel components, with capability to sustain, without failure, a load equal to 4 times the loads imposed, for concrete, or 6 times the load imposed, for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.

D. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.3 FABRICATION, GENERAL

A. Factory or shop fabricate intake and relief ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.

B. Fabricate frames, including integral bases and sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.

D. Fabricate supports, anchorages, and accessories required for complete assembly.

E. Perform shop welding by AWS-certified procedures and personnel.

F. Assemble louvers in factory to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.

G. Vertical Assemblies: Where height of louver units exceeds fabrication and handling limitations, fabricate units to permit field-bolts assembly with close-fitting joints in jambs and mullions, reinforced with splice plates.

1. Continuous Vertical Assemblies: Fabricate units without interrupting blade-spacing pattern unless horizontal mullions are indicated.
2. Horizontal Mullions: Provide horizontal mullions at joints unless continuous vertical assemblies are indicated.

H. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.

I. Include supports, anchorages, and accessories required for complete assembly.
J. Provide vertical mullions of type and at spacings indicated, but not more than recommended by manufacturer, or 72 inches o.c., whichever is less.

 1. Full Recessed Mullions: Where indicated, provide mullions fully recessed behind louver blades. Where length of louver exceeds fabrication and handling limitations, fabricate with close-fitting blade splices designed to permit expansion and contraction.

 2. Semirecessed Mullions: Where indicated, provide mullions partly recessed behind louver blades so louver blades appear continuous. Where length of louver exceeds fabrication and handling limitations, fabricate with interlocking split mullions and close-fitting blade splices designed to permit expansion and contraction.

 3. Exposed Mullions: Where indicated, provide units with exposed mullions of same width and depth as louver frame. Where length of louver exceeds fabrication and handling limitations, provide interlocking split mullions designed to permit expansion and contraction.

 4. Exterior Corners: Prefabricated corner units with mitered and welded blades and with fully recessed mullions at corners.

K. Provide subsills made of same material as louvers or extended sills for recessed louvers.

L. Join frame members to each other and to fixed louver blades with fillet welds concealed from view unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary

2.1 ROOF HOODS

A. Acceptable Manufacturers:

 2. Aerovent; a Twin City Fan company.
 3. Carnes.
 5. Loren Cook Company.
 6. Penn Ventilation.

B. Factory or shop fabricate according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figures 5-6 and 5-7.

C. Materials: Aluminum sheet, minimum 0.063-inch-thick base and 0.050-inch-thick hood; suitably reinforced.

D. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch-thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.

 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 2. Overall Height: 18 inches.

E. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.
2.2 FIXED, EXTRUDED-ALUMINUM LOUVERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ruskin Company; Tomkins PLC.
2. Greenheck Fan Corporation.
3. Louvers and Dampers, Inc.

B. Horizontal, Drainable-Blade Louvers:

1. Louver Depth: 4 inches.
2. Frame and Blade Nominal Thickness: Not less than 0.080 inch for blades and 0.080 inch for frames.
3. Mullion Type: Exposed.
4. Louver Performance Ratings:
 a. Free Area: Not less than 54% for 48-inch-wide by 48-inch-high louver.
 b. Point of Beginning Water Penetration: Not less than 873 fpm free-area velocity.
 c. Air Performance: Not more than 0.15 inch wg static pressure drop at 873-fpm free-area velocity.
5. AMCA Seal: Mark units with AMCA Certified Ratings Seal.
7. Finish: Kynar coating, color as directed by architect.

2.3 LOUVER SCREENS

A. General: Provide screen at each exterior louver.

1. Screen Location for Fixed Louvers: Interior face.
2. Screening Type: Bird screening except where insect screening is indicated.

B. Secure screen frames to louver frames with stainless-steel machine screws, spaced a maximum of 6 inches from each corner and at 12 inches o.c.

C. Louver Screen Frames: Fabricate with mitered corners to louver sizes indicated.

1. Metal: Same kind and form of metal as indicated for louver to which screens are attached. Reinforce extruded-aluminum screen frames at corners with clips.
2. Finish: Same finish as louver frames to which louver screens are attached.
3. Type: Rewirable frames with a driven spline or insert.

2.4 BLANK-OFF PANELS

A. Insulated, Blank-Off Panels: Laminated panels consisting of insulating core surfaced on back and front with metal sheets and attached to back of louver.

1. Thickness: 1 inch.
2. Metal Facing Sheets: Aluminum sheet, not less than 0.032-inch nominal thickness.
3. Insulating Core: Rigid, glass-fiber-board insulation.
4. Edge Treatment: Trim perimeter edges of blank-off panels with louver manufacturer's standard extruded-aluminum-channel frames, not less than 0.080-inch, with corners mitered and with same finish as panels.
5. Seal perimeter joints between panel faces and louver frames with gaskets or sealant.
6. Panel Finish: Same type of finish applied to louvers, but black color.
7. Attach blank-off panels with sheet metal screws.

2.5 FINISHES, GENERAL

A. Comply with NAAMM’s “Metal Finishes Manual for Architectural and Metal Products” for recommendations for applying and designating finishes.
B. Finish louvers after assembly. Finish shall be a Kynar coating, color as directed by architect.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

A. Install intake and relief ventilators, louvers, vents level, plumb, and at indicated alignment with adjacent work.
B. Secure intake and relief ventilators to roof curbs with cadmium-plated hardware. Use concealed anchorages where possible. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.
C. Louvers serving the penthouse shall be provided with a clear anodized finish to match the existing.
D. Louvers on the lower levels shall be provided with a white Kynar 500 finish to match the aluminum storefront finish specified in Section 084113.
E. Install intake and relief ventilators with clearances for service and maintenance.
F. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
G. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Division 07 Section "Joint Sealants" for sealants applied during installation.

H. Label intake and relief ventilators, louvers, vents according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

I. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.

J. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

K. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.

L. Form closely fitted joints with exposed connections accurately located and secured.

M. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Division 07 Section "Joint Sealants" for sealants applied during louver installation.

3.4 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories.

3.5 ADJUSTING AND CLEANING

A. Adjust damper linkages for proper damper operation.

B. Clean exposed surfaces of ventilators, louvers and vents that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate until final cleaning.

C. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.

D. Restore ventilators and louvers damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.

1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with factory-applied finish coating.

END OF SECTION 233723
SECTION 234100 - PARTICULATE AIR FILTRATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes factory-fabricated air-filter devices and media used to remove particulate matter from air for HVAC applications.

1.3 DEFINITIONS

A. DOP: Dioctyl phthalate or bis-(2-ethylhexyl) phthalate.
B. HEPA: High-efficiency particulate air.
C. ULPA: Ultra low penetration air.

1.4 SUBMITTALS

A. Product Data: Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.

B. Shop Drawings: Include plans, elevations, sections, and details to illustrate component assemblies and attachments.
 1. Show filter rack assembly, dimensions, materials, and methods of assembly of components.
 2. Include setting drawings, templates, and requirements for installing anchor bolts and anchorages.

C. Operation and Maintenance Data: For each type of filter and rack to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of air filters and are based on the specific system indicated.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with ARI 850.

D. Comply with ASHRAE 52.1 and ASHRAE 52.2 for method of testing and rating air-filter units.

E. Comply with NFPA 70 for installing electrical components.

F. Comply with NFPA 90A and NFPA 90B.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Provide one complete set of filters for each filter bank. If system includes prefilters, provide only prefilters.

2. Provide one container of red oil for inclined manometer filter gage.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Filters, Electrostatic Air Cleaners, and Filter-Holding Systems:
 a. AAF International.
 b. Filtration Group.
 c. CRS Industries, Inc.; CosaTron Div.
 d. Farr Co.
 e. Flanders/CSC Corp.
 f. Flanders Filters, Inc.
 g. Koch Filter Corporation.
 h. NiCon Filter Corp.; Continental Air Filter Div.
 i. Purafil, Inc.
 j. Research Products Corp.

2. Filter Gages:
 a. Airguard Industries, Inc.
 b. Dwyer Instruments, Inc.
2.2 EXTENDED-SURFACE, DISPOSABLE PANEL FILTERS
 A. Description: Factory-fabricated MERV 8, dry, extended-surface filters with holding frames.
 B. Media: Fibrous material formed into deep-V-shaped pleats with anti-microbial agent and held by self-supporting wire grid.
 C. Media and Media-Grid Frame: Nonflammable cardboard or Galvanized steel.
 D. Duct-Mounting Frames: Welded, galvanized steel with gaskets and fasteners, and suitable for bolting together into built-up filter banks.

2.3 EXTENDED-SURFACE, NONSUPPORTED-MEDIA FILTERS
 A. Description: Factory-fabricated MERV 8, dry, extended-surface, self-supporting filters with holding frames.
 B. Media: Fibrous material constructed so individual pleats are maintained in tapered form by flexible internal supports under rated-airflow conditions and anti-microbial agent.
 C. Filter-Media Frame: Galvanized steel or Hard polyurethane foam.
 D. Duct-Mounting Frames: Welded galvanized steel with gaskets and fasteners, and suitable for bolting together into built-up filter banks.

2.4 HIGH-EFFICIENCY FILTERS
 A. Description: Factory-fabricated 12” deep, MERV 13 rated filters with holding casing.
 B. Media: UL 586, fibrous glass, constructed of continuous sheets with closely spaced pleats with aluminum separators.
 C. Frame Material: 3/4-inch- Galvanized steel or Aluminized steel.
 D. Media to Frame Side Bond: Polyurethane foam/Neoprene adhesive.
 E. Face Gasket: Neoprene expanded rubber.
 F. Duct-Mounting Frames: Construct downstream corners of holding device with cushion pads to protect media. Provide bolted filter-sealing mechanism to mount and continuously seal each individual filter.

2.5 FRONT- AND REAR-ACCESS FILTER FRAMES
 A. Framing System: Aluminum framing members with access for either upstream (front) or downstream (rear) filter servicing, cut to size and prepunched for assembly into modules. Vertically support filters prevent deflection of horizontal members without interfering with either filter installation or operation.
 B. Prefilters: Incorporate a separate track, removable from front or back.
C. Sealing: Factory-installed, positive-sealing device for each row of filters to ensure seal between gasketed filter elements to prevent bypass of unfiltered air.

2.6 FILTER GAGES

A. Description: Diaphragm type with dial and pointer in metal case, vent valves, black figures on white background, and front recalibration adjustment.
 1. Diameter: 4-1/2 inches.
 2. Range: 0- to 1.0-inch wg or 0- to 2.0-inch wg based on filter type.

B. Manometer-Type Filter Gage: Molded plastic with epoxy-coated aluminum scale, logarithmic curve tube gage with integral leveling gage, graduated to read from 0- to 3.0-inch wg, and accurate within 3 percent of full scale range.

C. Accessories: Static-pressure tips, tubing, gage connections, and mounting bracket.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install filter frames according to manufacturer's written instructions.

B. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

C. Install filters in position to prevent passage of unfiltered air.

D. Install filter gage for each filter bank.

E. Install filter gage static-pressure tips upstream and downstream from filters to measure pressure drop through filter. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.

F. Coordinate filter installations with duct and air-handling unit installations.

G. Electrical wiring and connections are specified in Division 26 Sections.

H. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems".

3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components, filter and filter-frame installation, and electrical wiring, and to assist in field testing. Report results in writing.

B. HEPA Filters: Pressurize housing to a minimum of 3.0-inch wg or to designed operating pressure, whichever is higher; and test housing joints, door seals, and sealing edges of filter with soapy water to check for air leaks.
3.3 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling and air-
distribution systems, clean filter housings and install new filter media.

END OF SECTION 234100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Listed single-wall vents and chimneys.
2. Listed double-wall vents and chimneys.

1.3 SUBMITTALS

A. Product Data: For the following:

1. Type L vents.
2. Guy wires and connectors.

B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, hangers and seismic restraints, and location and size of each field connection.
2. For installed products indicated to comply with design loads, include calculations required for selecting seismic restraints and structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

C. Welding certificates.

D. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain listed system components through one source from a single manufacturer.

C. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.
1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section “Roof Accessories.”

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.

1. Warranty Period: 10 years from date of final acceptance by Owner.

PART 2 - PRODUCTS

2.1 LISTED SPECIAL GAS VENTS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Heat-Fab, Inc.
2. Metal-Fab, Inc.
3. Selkirk Inc
4. Schebler.

B. Description: Double-wall metal vents tested according to UL 1738 and rated for 480 deg F continuously, with positive or negative flue pressure complying with NFPA 211.

C. Construction: Inner shell and outer jacket separated by at least a 1/2-inch airspace.

D. Inner Shell: ASTM A 959, Type AL29-4C stainless steel.

E. Outer Jacket: Aluminized or Stainless steel.

F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.

1. Termination: 45 degree elbow with stainless steel screen.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

A. Listed Special Gas Vent: Condensing gas appliances.

3.3 INSTALLATION OF LISTED VENTS AND CHIMNEYS

A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.

B. Seal between sections of positive-pressure vents and grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.

D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

E. Lap joints in direction of flow.

F. Connect base section to foundation using anchor lugs of size and number recommended by manufacturer.

G. Join sections with acid-resistant joint cement to provide continuous joint and smooth interior finish.

H. Erect stacks plumb to finished tolerance of no more than 1 inch out of plumb from top to bottom.

3.4 INSTALLATION OF UNLISTED, FIELD-FABRICATED BREECHINGS AND CHIMNEYS

A. Suspend breechings and chimneys independent of their appliance connections.

B. Install, support, and restrain according to seismic requirements.

C. Align breechings at connections, with smooth internal surface and a maximum 1/8-inch misalignment tolerance.

D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

E. Lap joints in direction of flow.
F. Support breechings and chimneys from building structure with bolts, concrete inserts, steel expansion anchors, welded studs, C-clamps, or beam clamps according to manufacturer's written instructions.

3.5 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.

C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

END OF SECTION 235100
SECTION 235400 – DIRECT EXPANSION FAN COIL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Electric DX fan coil units and accessories complete with controls.
 2. Air filters.
 3. Refrigeration components.
B. Related Sections include the following:
 1. Division 01 Section "Sustainable Design Requirements" for additional LEED requirements.

1.3 SUBMITTALS
A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each of the following:
 1. Fan coil unit.
 2. Thermostat.
 3. Air filter.
 4. Refrigeration components.
B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
C. Operation and Maintenance Data: For each furnace to include in emergency, operation, and maintenance manuals for each of the following:
 1. Fan coil unit and accessories complete with controls.
 2. Air filter.
 3. Refrigeration components.
D. Warranty: Special warranty specified in this Section.
1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup".

D. Comply with NFPA 70.

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.6 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace the following components of furnaces that fail in materials or workmanship within specified warranty period:

1. Warranty Period, Commencing on Date of final acceptance by Owner:
 a. Refrigeration Compressors: Ten (10) years.
 b. Evaporator and Condenser Coils: Five (5) years.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Disposable Air Filters: Furnish two complete sets.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Standard Companies, Inc.
2. Carrier Corporation; Div. of United Technologies Corp.
3. Trane.
2.2 DX FAN COIL UNITS

A. General Requirements for Fan Coil Units: Factory assembled, piped, wired, and tested.

B. Cabinet: Steel, with duct liner downstream from cooling coil.
 1. Duct Liner: Fiberglass, minimum R-value of 4.2, complying with ASTM C 1071 and having a foil faced surface exposed to airstream complying with NFPA 90A or NFPA 90B and with NAIMA's "Fibrous Glass Duct Liner Standard".
 a. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
 b. Air leakage of 2% or less.

2. Factory paint external cabinets in manufacturer's standard color.

C. Fan: Centrifugal, factory balanced, resilient mounted, direct drive.
 1. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment".
 2. Special Motor Features: Single speed, Premium (TM) efficiency, as defined in Division 23 Section "Common Motor Requirements for HVAC Equipment", and with internal thermal protection and permanent lubrication.
 3. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
 4. Special Motor Features: Electronically controlled motor (ECM) controlled by integrated furnace/blower control for nominal 3.5 ton units and larger.

E. Heating-Element Control: Sequencer relay with relay for each element; switches elements on and off, with delay between each increment; initiates, stops, or changes fan speed. Provide with fused 120/24V fused transformer.

F. Capacities and Characteristics as indicated on drawings.

2.3 THERMOSTATS AND HUMIDISTATS

A. Solid-State Thermostat: Trane “Pivot” of equal smart wall-mounted, programmable, microprocessor-based unit with automatic switching from heating to cooling, preferential rate control, seven-day programmability with minimum of four temperature presets per day, vacation mode, and battery backup protection against power failure for program settings.

B. Control Wiring: Unshielded twisted-pair cabling.
 1. No. 24 AWG, 100 ohm, four pair.
 2. Cable Jacket Color: Blue.

C. Controls shall comply with requirements in ASHRAE/IESNA 90.1-2004, "Controls".
2.4 AIR FILTERS

A. Disposable Filters: 1-inch-thick fiberglass media with ASHRAE 52.2 MERV rating of 8 or higher, in sheet metal frame.

2.5 REFRIGERATION COMPONENTS

A. General Refrigeration Component Requirements:

1. Refrigeration compressor, coils, and specialties shall be designed to operate with CFC-free refrigerants.

1. Refrigerant Coil Enclosure: Steel, matching furnace and evaporator coil, with access panel and flanges for integral mounting at or on furnace cabinet and galvanized sheet metal drain pan coated with black asphaltic base paint.

C. Refrigerant Line Kits: Annealed-copper suction and liquid lines factory cleaned, dried, pressurized with nitrogen, sealed, and with suction line insulated. Provide in standard lengths for installation without joints, except at equipment connections.

1. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I, 3/4 inch thick.

D. Refrigerant Piping: Comply with requirements in Division 23 Section "Refrigerant Piping".

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine factory-installed insulation before furnace installation. Reject units that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for gas, oil and refrigerant piping systems to verify actual locations of piping connections before equipment installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Suspended Units: Suspend from structure using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.

1. Install seismic restraints to limit movement of furnace by resisting code-required seismic acceleration.

B. Base-Mounted Units: Secure units to substrate. Provide optional bottom closure base if required by installation conditions.

1. Anchor furnace to substrate to resist code-required seismic acceleration.

C. Controls: Install thermostats and humidistats at mounting height of 60 inches above floor.

D. Wiring Method: Install control wiring in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal control wiring except in unfinished spaces.

E. Install ground-mounted, compressor-condenser components on 4-inch-thick, reinforced concrete base; 4 inches larger on each side than unit. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete". Coordinate anchor installation with concrete base.

F. Install roof-mounted, compressor-condenser components on equipment supports as noted on the drawings. Anchor units to supports with removable, cadmium-plated fasteners.

3.3 CONNECTIONS

A. Install piping adjacent to equipment to allow service and maintenance.

B. Condensate drain piping shall be Type "L" hard drawn copper tubing, wrought-copper fittings, and soldered joints.

C. Connect ducts to furnace with flexible connector. Comply with requirements in Division 23 Section "Air Duct Accessories."

D. Connect refrigerant tubing kits to refrigerant coil in furnace and to air-cooled, compressor-condenser unit.

1. Flared Joints: Use ASME B16.26 fitting and flared ends, following procedures in CDA's "Copper Tube Handbook".

2. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook", using lead-free solder alloy complying with ASTM B 32.

E. Comply with requirements in Division 23 Section "Refrigerant Piping" for installation and joint construction of refrigerant piping.
3.4 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Perform electrical test and visual and mechanical inspection.
2. Leak Test: After installation, charge systems with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation, product capability, and compliance with requirements.
4. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

3.5 STARTUP SERVICE

A. Complete installation and startup checks according to manufacturer's written instructions and perform the following:

1. Inspect for physical damage to unit casings.
2. Verify that access doors move freely and are weathertight.
3. Clean units and inspect for construction debris.
4. Verify that all bolts and screws are tight.
5. Adjust vibration isolation and flexible connections.
6. Verify that controls are connected and operational.

B. Adjust fan belts to proper alignment and tension.

C. Start unit according to manufacturer's written instructions and complete manufacturer's operational checklist.

D. Measure and record airflows.

E. Verify proper operation of capacity control device.

F. After startup and performance test, lubricate bearings and adjust belt tension.

3.6 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set controls, burner, and other adjustments for optimum heating performance and efficiency. Adjust heat-distribution features, including shutters, dampers, and relays, to provide optimum heating performance and system efficiency.

3.7 CLEANING

A. After completing installation, clean furnaces internally according to manufacturer's written instructions.
B. Install new filters in each furnace within fourteen (14) days after final acceptance by Owner.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain condensing units. Refer to Division 01 Section "Demonstration and Training".

END OF SECTION 235400
SECTION 236200 - PACKAGED CONDENSING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes air- and water-cooled condensing units.

1.3 SUBMITTALS

A. Product Data: For each condensing unit, include rated capacities, operating characteristics, furnished specialties, and accessories. Include equipment dimensions, weights and structural loads, required clearances, method of field assembly, components, and location and size of each field connection.

B. Shop Drawings:
 1. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.

C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Structural members to which condensing units will be attached.
 2. Liquid and vapor pipe sizes.
 3. Refrigerant specialties.
 4. Piping including connections, oil traps, and double risers.
 5. Evaporators.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For condensing units to include in emergency, operation, and maintenance manuals.

F. Warranty: Special warranty specified in this Section.
1.4 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of condensing units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements".

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Fabricate and label refrigeration system according to ASHRAE 15, "Safety Code for Mechanical Refrigeration."

E. ASME Compliance: Fabricate and label water-cooled condensing units to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories".

C. Coordinate location of piping and electrical rough-ins.

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of condensing units that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Compressor failure.
 b. Condenser coil leak.

2. Warranty Period (Compressor Only): Ten (10) years from date of final acceptance by Owner.

3. Warranty Period (Condenser Coil Only): Five (5) years from date of final acceptance by Owner.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carrier Corporation; Carrier Air Conditioning Div.
2. Daikin.
3. Trane Co. (The); Worldwide Applied Systems Group.
4. York International Corp.

2.2 CONDENSING UNITS, AIR COOLED

A. Description: Factory assembled and tested, consisting of compressor, condenser coil, fan, motors, refrigerant reservoir, and operating controls designed for heat pump operation. Unit shall have an operating range between 115°F and 55°F. Unit shall be certified to UL 1995.

B. Compressor: Scroll, hermetically sealed, with rubber vibration isolators.

1. Motor: Two speed, and includes thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
2. Two-Speed Compressor: Include manual-reset, high-pressure switch and automatic-reset, low-pressure switch.
3. Centrifugal oil pump.
5. Refrigerant: R-410A.

C. Condenser Coil: Seamless copper-tube, aluminum-fin coil; circuited for integral liquid subcooler, with removable drain pan and brass service valves with service ports. Coil shall be tested at 2000 psi.

D. Condenser Fan: Direct-drive, aluminum propeller fan; with permanently lubricated, totally enclosed fan motor with thermal-overload protection.

E. Accessories:

1. Crankcase heater.
2. Cycle Protector: Automatic-reset timer to prevent rapid compressor cycling.
3. Evaporator Freeze Thermostat: Temperature-actuated switch that stops unit when evaporator reaches freezing temperature.
5. High-Pressure Switch: Automatic-reset switch cycles compressor off on high refrigerant pressure.
7. Low-Pressure Switch: Automatic-reset switch cycles compressor off on low refrigerant pressure.
8. Precharged and insulated suction and liquid tubing.
F. Unit Casing: Heavy gauge galvanized steel, finished with baked enamel rated for 1,000 hour salt spray; with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Mount service valves, fittings, and gage ports on exterior of casing.

G. Additional features shall include:
 1. Gasketed control panel door.
 2. Nonfused disconnect switch, factory mounted and wired, for single external power connection.
 3. Condenser coil hail guard to protect coil from damage.

2.3 MOTORS
A. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment".
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

2.4 SOURCE QUALITY CONTROL
A. Verification of Performance: Rate condensing units according to ARI 210/240, ARI 340/360, or ARI 365.

B. Test and inspect shell and tube condensers according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

C. Testing Requirements: Factory test sound-power-level ratings according to ARI 270.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of condensing units.

B. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.

C. Examine walls, floors, and roofs for suitable conditions where condensing units will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install units level and plumb, firmly anchored in locations indicated; maintain manufacturer's recommended clearances.

B. Install condensing units on concrete base. Concrete base is specified in Division 23 Section "Common Work Results for HVAC", and concrete materials and installation requirements are specified in Division 03.

C. Concrete Bases:
 1. Install dowel rods to connect concrete base to concrete slab. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of the base.
 2. For equipment supported on structural slab, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 5. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

D. Vibration Isolation: Vibration isolation devices and installation requirements are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".

E. Maintain manufacturer's recommended clearances for service and maintenance.

F. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect precharged refrigerant tubing to unit's quick-connect fittings. Install tubing so it does not interfere with access to unit. Install furnished accessories.

D. Connect refrigerant piping to air-cooled condensing units; maintain required access to unit. Install furnished field-mounted accessories. Refrigerant piping and specialties are specified in Division 23 Section "Refrigerant Piping".

E. Connect refrigerant and condenser-water piping to water-cooled condensing units. Maintain clear tube removal space. Refrigerant piping and specialties are specified in Division 23 Section "Refrigerant Piping" and condenser-water piping and specialties are specified in Division 23 Section "Hydronic Piping".

3.4 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
 1. Perform electrical test and visual and mechanical inspection.
2. Leak Test: After installation, charge systems with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation, product capability, and compliance with requirements.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

5. Verify proper airflow over coils.

B. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

C. Remove and replace malfunctioning condensing units and retest as specified above.

3.5 STARTUP SERVICE

A. Complete installation and startup checks according to manufacturer’s written instructions and perform the following:

1. Inspect for physical damage to unit casing.
2. Verify that access doors move freely and are weathertight.
3. Clean units and inspect for construction debris.
4. Verify that all bolts and screws are tight.
5. Adjust vibration isolation and flexible connections.
6. Verify that controls are connected and operational.

B. Lubricate bearings on fans.

C. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.

D. Start unit according to manufacturer’s written instructions and complete manufacturer’s startup checklist.

E. Measure and record airflow over coils.

F. Verify proper operation of condenser capacity control device.

G. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

H. After startup and performance test, lubricate bearings and adjust belt tension.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain condensing units.

END OF SECTION 236200
SECTION 237413 – PACKAGED OUTDOOR CENTRAL STATION AIR HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY
A. This section includes units with integral heating and cooling for rooftop installation. Integral heat source shall be indirect gas-fired furnace. Integral cooling source shall be packaged DX. Airflow arrangement shall be outdoor air with recirculation. Each unit shall be constructed in a horizontal configuration and shall incorporate additional product requirements as listed in Section 2 of this specification.

B. Related Section include the following:
1. Section 230500: Common Work Results for HVAC.
2. Section 230513: Common Motor Requirements.
3. Section 230553: Identification for HVAC Piping and Equipment.

1.2 SUBMITTALS
A. Product Data: For each type or model include the following:
1. Complete fan performance curves for both supply air and exhaust air, with system operating conditions indicated, as tested in an AMCA Certified Chamber.
2. Sound performance data for both supply air and exhaust air, as tested in an AMCA Certified Chamber.
3. Motor ratings, electrical characteristics and motor and fan accessories.
4. Performance ratings for all DX coils.
5. Dimensioned drawings for each type of installation, showing isometric and plan views, to include location of attached ductwork and service clearance requirements.
6. Estimated gross weight of each installed unit.
7. Installation, Operating and Maintenance manual (IOM) for each model.
8. Microprocessor Controller (DDC) specifications to include available options and operating protocols. Include complete data on all factor-supplied input devices.
9. AHRI Certified coil performance ratings with system operating conditions indicated. Ratings shall be in accordance with Standard 410.

1.3 QUALITY ASSURANCE
A. Source Limitations: Obtain unit with all appurtenant components or accessories from a single manufacturer.

B. For the actual fabrication, installation, and testing of work under this section, use only thoroughly trained and experienced workers completely familiar with the items required and with the manufacturer’s current recommended methods of installation.

C. Product Options: Drawings must indicate size, profiles and dimensional requirements of unit and are to be based on the specific system indicated. Refer to Division 1 Section “Product Requirements”.

PACKAGED OUTDOOR CENTRAL STATION AIR HANDLING UNITS 237413 - 1
D. Certifications:

1. Blowers shall be AMCA Certified for air flow.
2. Entire unit shall be ETL Certified per UL 1995 and bear an ETL sticker.
3. Coils shall be recognized components for ANSI/UL 1995, CAN / CSA C22.2 No. 236.05. DX and water coils shall be AHRI Certified per standard 410-2001.
4. Indirect gas-fired furnace shall be ETL Certified as a component of the RTU. Indirect gas-fired furnace shall be an ETL recognized component of the RTU per ANSI Z83.8.

1.4 COORDINATION

A. Coordinate size and location of all building penetrations required for installation of each unit and associated plumbing and electrical systems.

B. Coordinate sequencing of construction of associated plumbing, HVAC, electrical supply, roofing contractor.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with specifications contained within this document, manufacturers offering products that may be incorporated into the work include, but are not limited to:

2. Aaon.
3. Carrier.
4. Trane.

2.2 MANUFACTURED UNITS

A. Unit shall be fully assembled at the factory and consist of an insulated metal cabinet, evaporator coil, hot gas reheat coil, indirect gas-fired furnace, packaged DX system, phase and brownout protection, motorized dampers, motorized recirculating damper, curb assembly, filter assembly intake air, supply air blower assembly, and an electrical control center. All specified components and internal accessories factory installed are tested and prepared for single-point high voltage connection except with electric post heat which has dual point power.

2.3 CABINET

A. Materials: Formed, double wall insulated metal cabinet, fabricated to permit access to internal components for maintenance.

1. Outside Casing: 18 gauge, galvanized (G90) steel meeting ASTM A653 for components that do not receive a painted finish. Pre-painted components as supplied by the factory shall have polyester urethane paint on 18 gauge G60 galvanneal steel. Components that receive a painted finish per A / E specification shall be painted with a polyester urethane powder coat.
2. Internal Assemblies: 24 gauge, galvanized (G90) steel except for motor supports which shall be minimum 14 gauge galvanized (G90) steel.

B. Cabinet Insulation: Comply with NFPA 90A and NFPA 90B and erosion requirements of UL 181.

 a. Thickness: 2 inch (50 mm).
 b. Meets UL94HF-1 flame requirements.
 c. Location and Application: Full coverage of entire cabinet exterior to include walls, roof of unit, unit base, and doors.

C. Access Panels / Doors: Unit shall be equipped with insulated, hinged doors or removable access panels to provide easy access to all major components. Door and access panels shall be fabricated of 18 gauge galvanized G90 steel or painted galvannealed steel.

D. Supply Air Blower Assemblies: Blower assembly shall consist of an electric motor and direct-drive fans. Assembly shall be mounted on heavy gauge galvanized steel rails and further mounted on 1.125 inch thick neoprene vibration isolators. Blower motors shall be capable of continuous speed modulation and controlled by a VFD.

E. Evaporator Coil: Evaporator coil shall be AHRI Certified and shall be (silver) soldered or brazed into the compressed refrigerant system. Coil shall be constructed of copper tubing, permanently bonded to aluminum fins and enclosed in a galvanized steel frame. If two compressors are used as components of the unit, then the evaporator coil shall be of “interlaced” configuration, permitting independent operation of either compressor without conflict with the other compressor.

F. Control Panel / Connections: Units shall have an electrical control center where all high and low voltage connections are made. Control center shall be constructed to permit single-point high voltage power supply connections. RTU shall be equipped with a unit disconnect switch.

G. Condensate Drain Pan: Drain pan shall be an integral part of the unit. Pan shall be formed of welded austenitic stainless steel sheet material and provided with a welded stainless steel drain connection at the front for connection to a P-trap. Drain pan shall be sloped in two directions to provide positive draining and drain connector shall be sealed at penetration through cabinet wall.

H. P-Trap: Contractor shall provide, or fabricate, and install an appropriate P-trap, in accordance with all local and area codes and Best Practices.

I. Reheat coil with factory installed Sporlan “SDR” series or equal modulating hot gas reheat valve.

J. Indirect Gas Furnace:
 1. Shall be ETL Certified as a component of the unit.
 2. Shall have an integral combustion gas blower.
 3. Shall be ETL Certified for installation downstream of a cooling coil.
 4. Shall have fault sensors to provide fault conditions to optional digital controller or building controls.
 5. Shall have 4-pass tubular heat exchangers, constructed of type 409 stainless steel. Heat exchanger tubes shall be installed on the vest plate by means of swaged assembly,
welded connections are not acceptable. Heat exchanger tubes shall be supported by a minimum of two fabricated assemblies that support the tubes and also permit expansion and contraction of the tubes.

6. Heat exchanger shall have a one year warranty.
7. Furnace control shall be high turndown 16:1 modulating.
8. Shall be encased in a weather-tight metal housing with intake air vents. Large, metal lift-off door shall provide easy access to the enclosed vest plate, control circuitry, gas train, burner assembly and exhaust blower.
9. Shall have solid state controls permitting stand-alone operation or control by building controllers.

K. Packaged DX System: Unit shall have an integral compressor(s) and evaporator coil located with the weather-tight unit housing. Condenser coils and appurtenant condenser fan assemblies shall be factory installed as integral subassemblies of the unit and mounted on the exterior of the unit. Lead condenser fan shall have EC motor to maintain condenser pressure at part load conditions. Motors shall be UL Recognized and CSA Certified. The refrigerant compressor(s) shall be hermetic scroll-type and shall be equipped with liquid line filter drier, thermostatic expansion valves (TXV)(s), manual reset high pressure and low pressure cutouts and all appurtenant sensors, service ports and safety devices. Compressed refrigerant system shall be fully charged with R-410A refrigerant. Each compressor shall be factory-equipped with an electric crankcase heater to boil off liquid refrigerant from the oil.

L. Packaged DX Control and Diagnostics: The packaged DX system shall be controlled by an onboard digital control (DDC) that indicated both owner-supplied settings and fault conditions that may occur. The DDC shall be programmed to indicate the following faults:

1. Global alarm condition (active when there is at least one alarm).
2. Supply Air Proving alarm.
3. Dirty Filter alarm.
4. Compressor Trip alarm.
5. Compressor Locked Out alarm.
 a. Sensor #1 Out of Range (outside air temperature).
 b. Sensor #2 Out of Range (supply air temperature).
 c. Sensor #3 Out of Range (cold coil leaving air temperature).

M. Phase and Brownout Protection: Unit shall have a factory-installed phase monitor to detect electric supply phase loss and voltage brown-out conditions. Upon detection of a fault, the monitor shall disconnect supply voltage to all motors.

N. Motorized dampers / intake air, motorized damper of low leakage type shall be factory installed.

O. Curb Assembly: A curb assembly made of 14 gauge galvanized steel shall be provided by the factory for assembly and installation as part of this division. The curb assembly shall provide perimeter support of the entire unit and shall have duct adapter(s) for supply air. Curb assembly shall enclose the underside of the unit and shall be sized to fit into a recess in the bottom of the unit. Contractor shall be responsible for coordinating with roofing contractor to ensure curb unit is properly flashed to provide protection against weather/moisture penetration. Contractor shall provide and install appropriate insulation for the curb assembly. The curb shall be the height of 14 in.
P. Service Receptacle: 120 VAC GFCI service outlet shall be factory-provided and installed by this contractor in a location designated by the A / E Service outlet requires a dedicated single phase electric circuit. Unit contains a 120 VAC transformer to provide power to service outlet.

Q. Hail Guards: Protects the condensing unit from damage due to extreme weather conditions such as hail and flying debris.

2.4 BLOWER

A. Blower Section Construction, Supply Air: Direct drive motor and blower shall be assembled on a 14 gauge galvanized steel platform and shall be equipped with 1.125 inch thick neoprene vibration isolation devices.

B. Blower Assemblies: Shall be statically and dynamically balanced and designed for continuous operation at maximum rated fan speed and horsepower.

C. Fan: Direct drive, airfoil plenum fan with steel wheels statically and dynamically balanced and AMCA certified for air and sound performance.

D. Blower Section Motor Source Quality Control: Blower performance shall be factory tested for flow rate, pressure, power, air density, rotation speed and efficiency. Ratings are to be established in accordance with AMC 210, "Laboratory Methods of Testing Fans for Rating".

2.5 MOTORS

A. General: Blower motors greater than ¾ horsepower shall be “NEMA Premium” unless otherwise indicated. Compliance with EPAct minimum energy-efficiency standards for single speed ODP and TE enclosures is not acceptable. Motors shall be heavy-duty, permanently lubricated type to match the fan load and furnished at the specified voltage, phase and enclosure.

B. Motors shall be 60 cycle, 3 phase, 230 volts.

2.6 UNIT CONTROL

A. The unit shall be constructed so that it can be operated as a heating and cooling system.

B. Unit shall incorporate a DDC controller with integral LCD screen that provides test readouts of status. DDC controller shall have a built-in keypad to permit operator to access read-out screens without the use of ancillary equipment, devices or software. Alarm readouts consisting of flashing light codes are not acceptable. Owner-specified ventilating conditions can be input by means of pushbuttons.

C. Unit supply fan shall be configured for single zone VAV.

D. Unit exhaust fan shall be configured to track supply fan and kitchen hood operation.

E. Outside air / return air damper control shall be field adjustable modulating.

F. Economizer control shall be dew point.
G. Operating Protocol: The DDC shall be factory-programmed for BACNetMSTP.

H. Variable Frequency Drives (VFD): Unit shall have factory installed variable frequency drives for modulation of the supply and exhaust fan blower assemblies. The VFD shall be factory-programmed for unit-specific requirements and shall not require additional field programming to operate.

I. Airflow monitoring.

2.7 FILTERS

A. Unit shall have permanent metal filters located in the outdoor air intake and shall be accessible from the exterior of the unit. MERV 8 disposable pleated filters shall be provided in the supply air stream. MERV 8 disposable pleated filters shall be provided in the supply final air stream.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Prior to start of installation, examine area and conditions to verify correct location for compliance with installation tolerances and other conditions affecting unit performance. See unit IOM.

B. Examine roughing-in of plumbing, electrical and HVAC services to verify actual location and compliance with unit requirements. See unit IOM.

C. Proceed with installation only after all unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Installation shall be accomplished in accordance with these written specifications, project drawings, manufacturer’s installation instructions as documented in manufacturer’s IOM, Best Practices and all applicable building codes.

3.3 CONNECTIONS

A. In all cases, industry Best Practices shall be incorporated. Connections are to be made subject to the installation requirements shown above.

B. Duct installation and connection requirements are specified in Division 23 of this document.

C. Electrical installation requirements are specified in Division 26 of this document.

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory authorized service representative to inspect field assembled components and equipment installation, to include electrical and piping connections. Report results to A/E in writing. Inspection must include a complete startup
checklist to include (as a minimum) the following: Completed Start-Up Checklists as found in manufacturer’s IOM.

3.5 START-UP SERVICE

A. Engage a factory authorized service representative to perform startup service. Clean entire unit, comb coil fins as necessary, install clean filters. Measure and record electrical values for voltage and amperage. Refer to Division 23 “Testing, Adjusting and Balancing” and comply with provisions therein.

3.6 DEMONSTRATION AND TRAINING

A. Engage a factory authorized service representative to train owner’s maintenance personnel to adjust, operate and maintain the entire unit. Refer to Division 01 Section Closeout Procedures and Demonstration and Training.

END OF SECTION 237413
SECTION 238239 - UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cabinet unit heaters with centrifugal fans and hot-water/steam/electric-resistance heating coils.
 2. Propeller unit heaters with hot-water or steam coils.
 3. Wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.3 DEFINITIONS

A. BAS: Building automation system.
B. CWP: Cold working pressure.
C. PTFE: Polytetrafluoroethylene plastic.
D. TFE: Tetrafluoroethylene plastic.

1.4 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Plans, elevations, sections, and details.
 2. Location and size of each field connection.
 3. Details of anchorages and attachments to structure and to supported equipment.
 4. Equipment schedules to include rated capacities, operating characteristics, furnished specialties, and accessories.
 5. Location and arrangement of piping valves and specialties.
 6. Location and arrangement of integral controls.
C. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Suspended ceiling components.
2. Structural members to which unit heaters will be attached.
3. Method of attaching hangers to building structure.
4. Size and location of initial access modules for acoustical tile.
5. Items penetrating finished ceiling, including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.

6. Perimeter moldings for exposed or partially exposed cabinets.

D. Samples for Initial Selection: Finish colors for units with factory-applied color finishes.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup".

1.6 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Cabinet Unit Heater Filters: Furnish one spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 WALL AND CEILING HEATERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Berko Electric Heating; a division of Marley Engineered Products.
2. Chromalox, Inc.; a division of Emerson Electric Company.
3. Indeeco.
4. Markel Products; a division of TPI Corporation.
5. Marley Electric Heating; a division of Marley Engineered Products.
6. QMark Electric Heating; a division of Marley Engineered Products.
7. Trane.

B. Description: An assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.

C. Cabinet:
 1. Front Panel: Stamped-steel louver or Extruded-aluminum bar grille, with removable panels fastened with tamperproof fasteners.
 2. Finish: Baked enamel over baked-on primer with manufacturer’s standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

D. Surface-Mounting Cabinet Enclosure: Steel with finish to match cabinet.

F. Fan: Aluminum propeller directly connected to motor.
 1. Motor: Permanently lubricated, multispeed. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment".

G. Controls: Unit-mounted thermostat.

H. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

I. Capacities and Characteristics: As indicated on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for electrical connections to verify actual locations before unit heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Division 07 Section "Joint Sealants".

B. Install propeller unit heaters level and plumb.

C. Suspend propeller unit heaters from structure with all-thread hanger rods. Hanger rods and attachments to structure are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment". Vibration hangers are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".

D. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

E. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

A. Comply with safety requirements in UL 1995.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems".

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables".

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

A. Adjust initial temperature set points.
3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters. Refer to Division 01 Section "Demonstration and Training".

END OF SECTION 238239
SECTION 239100 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes solid-state, PWM, VFCs for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS

A. BMS: Building management system.
B. IGBT: Integrated gate bipolar transistor.
C. LAN: Local area network.
D. PID: Control action, proportional plus integral plus derivative.
E. PWM: Pulse-width modulated.
F. VFC: Variable frequency controller.

1.4 SUBMITTALS

A. Product Data: For each type of VFC. Include dimensions, mounting arrangements, location for conduit entries, shipping and operating weights, and manufacturer's technical data on features, performance, electrical ratings, characteristics, and finishes.

B. Shop Drawings: For each VFC.

1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:

 a. Each installed unit's type and details.
 b. Nameplate legends.
 c. Short-circuit current rating of integrated unit.
 d. Listed and labeled for series rating of overcurrent protective devices in combination controllers by an NRTL acceptable to authorities having jurisdiction.
 e. Features, characteristics, ratings, and factory settings of each motor-control center unit.
2. Wiring Diagrams: Power, signal, and control wiring for VFCs. Provide schematic wiring diagram for each type of VFC.

C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs where pipe and ducts are prohibited. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

D. Qualification Data: For manufacturer.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For VFCs, all installed devices, and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 007213 include the following:

1. Routine maintenance requirements for VFCs and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

G. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.

H. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 100 miles of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.

B. Source Limitations: Obtain VFCs of a single type through one source from a single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with NFPA 70.

E. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, minimum clearances between VFCs, and adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver VFCs in shipping splits of lengths that can be moved past obstructions in delivery path as indicated.
B. Store VFCs indoors in clean, dry space with uniform temperature to prevent condensation. Protect VFCs from exposure to dirt, fumes, water, corrosive substances, and physical damage.

C. If stored in areas subject to weather, cover VFCs to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions, unless otherwise indicated:

1. Ambient Temperature: 0 to 40 deg C.
2. Humidity: Less than 90 percent (noncondensing).
3. Altitude: Not exceeding 1000 feet.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.8 COORDINATION

A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate features of VFCs, installed units, and accessory devices with pilot devices and control circuits to which they connect.

C. Coordinate features, accessories, and functions of each VFC and each installed unit with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Danfoss Inc.; Danfoss Electronic Drives Div.
4. Siemens Energy and Automation; Industrial Products Division.
5. Square D.
2.2 VARIABLE FREQUENCY CONTROLLERS

A. Description: NEMA ICS 2, IGBT, PWM, VFC; listed and labeled as a complete unit and arranged to provide variable speed of an NEMA MG 1, Design B, 3-phase induction motor by adjusting output voltage and frequency.

1. Provide unit suitable for operation of premium-efficiency motor as defined by NEMA MG 1.

B. Design and Rating: Match load type such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

C. Output Rating: 3-phase; 6 to 60 Hz, with voltage proportional to frequency throughout voltage range.

D. Unit Operating Requirements:

1. Input ac voltage tolerance of 380 to 500 V, plus or minus 10 percent.
2. Input frequency tolerance of 50/60 Hz, plus or minus 6 percent.
3. Minimum Efficiency: 96 percent at 60 Hz, full load.
5. Overload Capability: 1.1 times the base load current for 60 seconds; 2.0 times the base load current for 3 seconds.
6. Starting Torque: 100 percent of rated torque or as indicated.
7. Speed Regulation: Plus or minus 1 percent.

E. Isolated control interface to allow controller to follow control signal over an 11:1 speed range.

1. Electrical Signal: 4 to 20 mA at 24 V.
2. Pneumatic Signal: 3 to 15 psig.

F. Internal Adjustability Capabilities:

1. Minimum Speed: 5 to 25 percent of maximum rpm.
2. Maximum Speed: 80 to 100 percent of maximum rpm.
3. Acceleration: 2 to a minimum of 22 seconds.
4. Deceleration: 2 to a minimum of 22 seconds.
5. Current Limit: 50 to a minimum of 110 percent of maximum rating.

G. Self-Protection and Reliability Features:

1. Input transient protection by means of surge suppressors.
2. Under- and overvoltage trips; inverter overtemperature, overload, and overcurrent trips.
5. Instantaneous line-to-line and line-to-ground overcurrent trips.
7. Reverse-phase protection.
8. Short-circuit protection.
H. Multiple-Motor Capability: Controller suitable for service to multiple motors and having a separate overload relay and protection for each controlled motor. Overload relay shall shut off controller and motors served by it when overload relay is tripped.

I. Automatic Reset/Restart: Attempts three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Bidirectional autospeed search shall be capable of starting into rotating loads spinning in either direction and returning motor to set speed in proper direction, without damage to controller, motor, or load.

J. Power- Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped.

K. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

L. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

M. Status Lights: Door-mounted LED indicators shall indicate the following conditions:

1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.

O. Indicating Devices: Meters or digital readout devices and selector switch, mounted flush in controller door and connected to indicate the following controller parameters:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (VDC).
9. Set-point frequency (Hz).
10. Motor output voltage (V).

P. Control Signal Interface:

1. Electric Input Signal Interface: A minimum of 2 analog inputs (0 to 10 V or 0/4-20 mA) and 6 programmable digital inputs.
2. Pneumatic Input Signal Interface: 3 to 15 psig.
3. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BMS or other control systems:
 a. 0 to 10-V dc.
b. 0-20 or 4-20 mA.
c. Potentiometer using up/down digital inputs.
d. Fixed frequencies using digital inputs.
e. RS485.
f. Keypad display for local hand operation.

4. Output Signal Interface:
 a. A minimum of 1 analog output signal (0/4-20 mA), which can be programmed to any of the following:
 1) Output frequency (Hz).
 2) Output current (load).
 3) DC-link voltage (VDC).
 4) Motor torque (percent).
 5) Motor speed (rpm).
 6) Set-point frequency (Hz).

5. Remote Indication Interface: A minimum of 2 dry circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 a. Motor running.
 b. Set-point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
 d. PID high- or low-speed limits reached.

Q. Communications: Provide an RS485 interface allowing VFC to be used with an external system within a multidrop LAN configuration. Interface shall allow all parameter settings of VFC to be programmed via BMS control. Provide capability for VFC to retain these settings within the nonvolatile memory.

R. Integral Disconnecting Means: NEMA AB 1, instantaneous-trip circuit breaker with lockable handle.

S. Isolating Switch: Non-load-break switch arranged to isolate VFC and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.

T. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.

2.3 ACCESSORIES

A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.

C. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.

D. Control Relays: Auxiliary and adjustable time-delay relays.

E. Standard Displays:
1. Output frequency (Hz).
2. Set-point frequency (Hz).
4. DC-link voltage (VDC).
5. Motor torque (percent).
7. Motor output voltage (V).

F. Historical Logging Information and Displays:
 1. Real-time clock with current time and date.
 2. Running log of total power versus time.
 3. Total run time.
 4. Fault log, maintaining last four faults with time and date stamp for each.

G. Current-Sensing, Phase-Failure Relays for Bypass Controller: Solid-state sensing circuit with isolated output contacts for hard-wired connection; arranged to operate on phase failure, phase reversal, current unbalance of from 30 to 40 percent, or loss of supply voltage; with adjustable response delay.

2.4 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested VFCs before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs for compliance with requirements, installation tolerances, and other conditions affecting performance.

B. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Select features of each VFC to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; and duty cycle of motor, controller, and load.

B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION

A. Anchor each VFC assembly to steel-channel sills arranged and sized according to manufacturer's written instructions. Attach by bolting. Level and grout sills flush with mounting surface.
B. Install VFCs on concrete bases.

C. Comply with mounting and anchoring requirements specified in Section 260529 "Hangers and Supports for Electrical Systems."

D. Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Section 262813 "Fuses."

3.4 IDENTIFICATION

A. Identify VFCs, components, and control wiring according to Section 230553 "Identification for HVAC Piping and Equipment".

B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect hand-off-automatic switch and other automatic-control devices where applicable.

 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 2. Connect selector switches with control circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.6 CONNECTIONS

A. Conduit installation requirements are specified in Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:

 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following:
1. Inspect controllers, wiring, components, connections, and equipment installation.
2. Assist in field testing of equipment including pretesting and adjusting of solid-state controllers.

C. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

D. Perform the following field tests and inspections and prepare test reports:

1. Perform each electrical test and visual and mechanical inspection, except optional tests, stated in NETA ATS. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.8 COMMISSIONING

A. Fully test all aspects of the Variable-Frequency Motor Controllers work.

B. Acceptance Check Sheet:

1. Prepare a check sheet that includes all points for all functions of the Variable-Frequency Motor Controllers as indicate on the point list included in the contract documents.
2. Submit the check sheet to the Engineer for approval.
3. The Engineer will use the check sheet or other means as the basis for acceptance of the Variable-Frequency Motor Controllers system.

C. Promptly rectify all listed deficiencies and submit to the Engineer that this has been done.

D. Coordination with project commissioning professional:

1. Provide allowance for assistance with project professional.

3.9 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain variable frequency controllers.

END OF SECTION 239100
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Electrical equipment coordination and installation.
2. Sleeves for raceways and cables.
3. Sleeve seals.
5. Coordination drawings.
6. Project record drawings.
7. Trenching, excavating and backfilling.
8. Electrical demolition.
9. Common electrical installation requirements.

1.3 SUBMITTALS

A. Product Data: For sleeve seals.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

C. Equipment Selection: Equipment of larger physical dimensions, higher capacities or ratings may be furnished provided such proposed equipment is approved in writing and connecting mechanical/electrical services are appropriately modified. Any additional costs as a result of these modifications shall be borne by the Contractor.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver raceways in clean condition. Store to prevent entrance of dirt, debris and moisture.

B. Protect stored raceways, wires, and connectors from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor, if stored inside.
1.6 INTERPRETATION OF THE DRAWINGS

A. The drawings indicate diagrammatically the conduit runs and the apparatus served in a general way. No attempt has been made to show exact location of every box, fitting or conduit offset. Such items are to be provided and all wiring connections and home runs are to be made as required. Where conduit runs are shown terminating in arrows, such conduit runs shall be extended to panels/boards or other equipment. Where equipment is specified to be wired, make connections as shown on approved equipment wiring diagrams. Consult equipment approved shop drawings for location of outlets and for miscellaneous controls. Where wire sizes are shown on drawings, the wire size for each circuit shall be for the entire circuit.

B. Where conduit is shown without wiring symbols, install one (1) hot (phase) wire, one (1) neutral wire, and one (1) ground wire.

C. Provide full size neutral for each circuit.

D. No more than three circuits shall be installed in a conduit.

1.7 TEMPORARY POWER

A. The contractor shall make all provisions for and furnish and install all necessary conduit, wire, and distribution equipment for a complete temporary wiring system for use during construction of the building. Temporary wiring shall include a system of temporary lights and power distribution. Refer to Division 01.

1.8 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames".

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

E. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.
F. Coordinate rough-in connections to pre-manufactured headwall systems including power for lighting, receptacles; connections for nurse call, voice/data outlets and TV interface.

1.9 LOCATION OF OUTLETS

A. Outlets are only approximately located on the construction drawings and great care must be used in the actual location of outlets by consulting architectural drawings and details and the various fixture drawings and by securing definite locations from the Architect.

B. The height of the center of outlets above the finished floor, if not otherwise specified or shown on drawings, shall be as follows:

<table>
<thead>
<tr>
<th>Outlet Type</th>
<th>Height Above Finished Floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Brackets</td>
<td>As indicated on drawings</td>
</tr>
<tr>
<td>Switch Outlets</td>
<td>3'-10" (1'-3" to centerline)</td>
</tr>
<tr>
<td>Convenience Receptacle</td>
<td>1'-6" (1'-3" to bottom of box) *</td>
</tr>
<tr>
<td>Telephone Outlet</td>
<td>1'-6" (1'-3" to bottom of box) *</td>
</tr>
<tr>
<td>Electrical Thermostats</td>
<td>4'-0"</td>
</tr>
<tr>
<td>Data Outlet</td>
<td>1'-6" (1'-3" to bottom of box) *</td>
</tr>
<tr>
<td>Wall Telephone Outlet</td>
<td>3'-10" to centerline **</td>
</tr>
<tr>
<td>Fire Alarm Manual Pull Stations</td>
<td>3'-10" to centerline</td>
</tr>
<tr>
<td>Audio /Visual Alarms</td>
<td>6'-8" to bottom of device ***</td>
</tr>
</tbody>
</table>

* Minimum height of 1'-3" to meet ADA Standards
** Mount at 5'-6" in Mechanical Rooms
*** Maximum of 6’ below finished ceiling whichever is least unless shown or indicated otherwise

Note: Where receptacles are shown on walls with counter tops, center outlets in splash back if splash back is over 6" high. If less than 6" high, set in wall over back splash by Owner's representative. See elevations on Architect’s drawings of equipment in each room for location of receptacles and special outlets.

C. At various places where outlets are shown below exposed pipes or ducts, Contractor shall set outlet box to clear same by at least 12”. Where outlets are installed over piping or ducts, outlets shall be moved so as to clear piping and ducts at no additional cost, using approved conduit and conduit fittings.

D. Switch outlets shall generally be located on lock side of door. Check the latest general drawings on job for door swings before roughing in for switches.

E. Check height of tile or similar wainscots and set switch outlet boxes so that same will clear top of wainscot or will come entirely within the wainscot.

F. Wall outlets installed flush shall be provided with device (plaster) covers set to come flush with the finished surface.

G. For electric water coolers, install box in accordance with manufacturer’s shop drawings so that receptacle will be concealed by unit housing.

H. For other equipment, provide electrical rough-in in accordance with the equipment installation instructions and architectural drawings.

I. Do not use through-the-wall and back-to-back boxes.
1.10 SCHEDULING AND PHASING

A. All Electrical work shall be scheduled to meet project completion date. Electrical work shall be phased for projects requiring phasing of work. Install additional conduit, junction-boxes, pull-boxes, wiring devices as required to support phasing. Refer to phasing schedule on drawings.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. GPT; a division of EnPro Industries.
 d. Metraflex Co.
 e. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

3. Pressure Plates: Carbon steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
2.4 COORDINATION DRAWINGS

A. The contractor shall prepare CAD generated drawings (min. ¼” scale) showing following systems/items as a minimum:

1. Electrical equipment locations and clearances required.
2. Routing of main feeders and conduits (3” dia. and larger), cable trays and bus ducts.
3. Locations of items in ceiling such as light fixtures.

B. The contractor shall submit the CAD generated drawings to the contractor for coordination with other trades. The drawings shall be submitted either in electronic format or printed copies as requested by the contractor.

C. The contractor shall participate in coordination meetings when requested by the contractor.

2.5 PROJECT RECORD DRAWINGS

A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at-least one hard copy prints.

1. Format: Same CAD program, version and operating system as the original contract documents.
2. Incorporate changes and additional information previously marked on record prints. Delete, redraw and add details and notations where applicable.

B. Identify and date each drawing and include the designation “PROJECT RECORD DRAWING” or “AS-BUILT DRAWING” in a prominent location.

PART 3 - EXECUTION

3.1 PERMITS

A. Secure and pay for all permits required in connection with the installation of the Electrical Work. Arrange with the various utility companies for the installation and connection of all required utilities for this facility and pay all charges associated therewith including connection charges and inspection fees, except where these services or fees are designated to be provided by others.

3.2 EXISTING UTILITIES

A. Schedule and coordinate with the Utility Company, Owner and with the Architect all connections to, relocation of, or discontinuation of normal utility services from any existing utility line. Include all premium time required for all such work in the Bid.

B. Repair all existing utilities damaged due to construction operations to the satisfaction of the owner or Utility Company without additional cost.

C. Do not leave utilities disconnected at the end of a workday or over a weekend unless authorized by representatives of the owner or Architect.
D. Make repairs and restoration of utilities before workmen leave the project at the end of the workday in which the interruption takes place.

E. Include in Bid the cost of furnishing temporary facilities to provide all services during interruption of normal utility service.

3.3 TRENCHING, EXCAVATING AND BACKFILLING

A. Excavate to required dimensions and depth. The trench excavation shall be in open cut from surface and shall be minimum width necessary to permit the placing of the pipe as required. Excess excavation shall be backfilled with crusher run rock. Such rocks shall be placed at the Contractor's expense. Lines shall be used to lay out trenches.

B. All excavations shall be properly protected by the necessary bracing and timbers, to prevent any cave-ins or injury to adjacent improvements. The sides of the excavations shall be securely held by bracing or sheathing, which bracing or sheathing shall not be removed until the level of the backfill has reached the point where such removal can be safely carried out. Where adjacent improvements might be injured by the removal of such bracing, the braces shall be left in place to prevent such injury. The thickness of the sheathing and the dimensions of the cross braces, shoes and miscellaneous supports to be used by the Contractor shall be of type required to properly protect the sides of the trench and to prevent injurious cave-ins or erosions.

C. The Contractor shall do all pumping and bailing necessary to keep all excavations free of water and shall provide for the uninterrupted flow of the surface water adjacent to the line of the work during the progress of the work. The Contractor shall inspect the ground where excavation is required to ascertain the structure of the soil. Additional consideration will not be allowed for encountering rock, stone, old foundations or other unfavorable excavating conditions.

D. In cases where existing sewer or other piping is encountered, they shall not be displaced or disturbed. All sewer lines damaged or disturbed in the construction shall be replaced or required at the Contractor's expense, unless, in the opinion of the Architect, such damage was caused through no fault of the Contractor.

E. Contractor shall provide all temporary steel plates, barricades, and such other signs and signals by day as shall be necessary to warn the public of and protect the workers from the danger caused by excavations and other obstructions, day and night.

F. The backfilling of trenches shall be carried out as rapidly as the testing and acceptance of the finished sections of the installation will permit. The trench shall be backfilled in layers of not to exceed eight inches (8") with good selected clean earth, thoroughly tamped with mechanical tamper to a 95% optimum compaction. Density shall be tested by an approved laboratory, using a standard method. Tests shall be made of each 2 ft. depth on the basis of one test per 1000 sq. ft. of fill area. Last 12" of backfill shall be made with good clean top soil. Contractor shall obtain and pay for tests. Submit five (5) copies of tests for approval. Note: Broken stones, cinders, wood and rubbish are not acceptable for backfilling. Backfill all street cuts in a manner meeting the approval of the Architect.

G. In spaces between walls and line of excavation, fill with thin layers of selected clean earth; thoroughly tamp in eight inches (8") thick layers and bring up to a finished level of established grades. All wood and foreign material shall be removed from excavation prior to backfilling.

H. After backfilling, all surplus excavated materials shall be removed from the property.
I. The work shall be executed so that any existing permanent structure along and adjacent to the new work are properly protected. Any damage occurring to these structures shall be repaired by the Contractor at his own expense.

J. The Contractor shall make field inspection of the location along which the underground conduit is to be routed, and note all obstructions and improvements at the surface which may affect the method of operation in the construction of these conduits. Such underground pipes or conduits which may exist, or which may be encountered, shall be protected by the Contractor during this construction. Any expense or inconvenience caused by their existence and the necessary protection for utilities adjacent thereto shall be considered as covered and included in the contact, without additional cost to the Owner.

3.4 ELECTRICAL DEMOLITION

A. Refer to Division 01 Section “Cutting and Patching” and Division 02 Section “Selective Demolition” for general demolition requirements and procedures.

B. Disconnect, demolish, and remove electrical systems, fixtures, devices, and components indicated to be removed. In general, remove all fixtures, raceways, cables, junction boxes, and equipment not utilized in new construction. For circuits disconnects, remove raceways and cables all way to the source. Label breakers switches from where circuits have been removed as “SPARE”.

C. Protect existing electrical equipment and installation indicated to remain. If damaged or disturbed in the course of the Work, remove damaged portions and install new products of equal capacity, quality, and functionality.

D. Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety.

E. Abandoned Work: Cut and remove buried raceway and wiring, indicated to be abandoned in place, 2 inches below the surface of adjacent construction. Cap raceways and patch surface to match existing finish. Raceways shall not be abandoned within walls.

F. Remove demolished material from Project site.

G. Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.

H. Remove equipment to be salvaged, disconnect from power, and deliver to Owner as directed.

3.5 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

F. In general, install raceways and boxes minimum 8" above hung ceiling. All raceways, boxes and equipment shall be independently supported from structure. Do not support from ductwork or piping.

G. Where new devices are added to existing circuits, take readings prior to adding new devices, and submit to Architect for review. Do not proceed with new work until approved by Architect.

H. All low voltage devices (including but not limited to voice/data communication; master antenna television, etc.) that are installed shall have their conduit extended out to above accessible ceiling space in adjacent corridor. Terminate conduit with a bushing.

3.6 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry

1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants".

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping".
K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.7 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.8 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping".

3.9 CLEANING

A. Remove dirt and refuse, resulting from the performance of the Work, from the premises as required to prevent accumulation. Cooperate in maintaining reasonably clean premises at all times.

B. Immediately prior to final inspection, make a final cleanup of dirt and refuse resulting from Work and assist in making the premises broom clean. Clean all material and equipment installed under this Division.

C. Remove dirt, dust, plaster, stains, and foreign matter from all surfaces.

D. Touch up and restore damaged finishes to their original condition.

3.10 ADJUSTING, ALIGNING AND TESTING

A. Adjust, align and test all electrical equipment furnished and/or installed under this Division.

B. Check motors for alignment with drive and proper rotation, and adjust as required.

C. Check and test protective devices for specified and required application, and adjust as required.

D. Check, test and adjust adjustable parts of all light fixtures and electrical equipment as required to produce the intended performance.
E. Verify that completed wiring system is free from short circuits, unintentional grounds, low insulation impedances, and unintentional open circuits.

F. After completion, perform tests for continuity, unwanted grounds, and insulation resistance in accordance with the requirements of NFPA 70 and NETA.

G. Be responsible for the operation, service and maintenance of all new electrical equipment during construction and prior to acceptance by the Owner of the complete project under this Contract. Maintain all electrical equipment in the best operating condition including proper lubrication.

H. Notify the Architect immediately of all operational failures caused by defective material, labor or both.

I. Maintain service and equipment for all testing of electrical equipment and systems until all Work is approved and accepted by the Owner.

J. Keep a calibrated voltmeter and ammeter (true RMS type) available at all times. Provide service for test readings when and as required.

K. Refer to individual Sections for additional and specific requirements.

3.11 START-UP OF SYSTEMS

A. Prior to start-up of electrical systems, check all components and devices, lubricate items appropriately, and tighten all screwed and bolted connections to manufacturers’ recommended torque values using appropriate torque tools.

B. Each power, lighting and control circuit shall be energized, tested and proved free of breaks, short-circuits and unwanted grounds.

C. Adjust taps on each transformer for rated secondary voltages.

D. Balance all single phase loads at each panelboard, redistributing branch circuit connections until balance is achieved to plus or minus 10 percent.

E. Replace all burned-out lamps. Replace the lamps of all light fixtures that use incandescent, halogen or quartz lamp sources that are installed as part of the finished building, but are used by the Contractor during construction, with new lamps of appropriate type and wattage prior to turning the facility over to the Owner or Tenant.

F. After all systems have been inspected and adjusted, confirm all operating features required by the Drawings and Specifications and make final adjustments as necessary.

G. Demonstrate that all equipment and systems perform properly as designed per Drawings and Specifications.

H. At the time of final review and tests of the power and lighting systems, all equipment and system components shall be in place and all connections at panelboards, switches, circuit breakers, and the like, shall be complete. All fuses shall be in place, and all circuits shall be continuous from point of service connections to all switches, receptacles, outlets, and the like.
3.12 TEST REPORTS

A. Perform tests as required by these Specifications and submit the results in the operations and maintenance manuals. The tests shall establish the adequacy, quality, safety, and reliability for each electrical system installed. Notify the Architect and Engineer two working days prior to each test.

B. For specific testing requirements of special systems, refer to the Specification section that describes that system.

C. Upon completing each test, record the results, date and time of each test and the conditions under which the test was conducted. Submit to the Architect, for Engineer’s review, in duplicate, the test results for the following electrical items:

1. Building service entrance voltage and amperes at each phase.
2. Electrical service grounding conditions and grounding resistance.
3. Proper phasing throughout the entire system.
4. Voltages (phase-to-phase and phase-to-neutral) and amperes at each phase for each panelboard, switchboard, and the like.
5. Phase voltages and amperes at each three-phase motor.
6. Test all wiring devices for electrical continuity and proper polarity of connections.

D. Promptly correct all failures or deficiencies revealed by these tests as determined by the Engineer.

3.13 SUBSTANTIAL COMPLETION REVIEW

A. Prior to requesting a site observation for “CERTIFICATION OF SUBSTANTIAL COMPLETION”, complete the following items:

1. Submit complete Operation and Maintenance Data.
2. Submit complete Record Drawings.
3. Perform all required training of Owner’s personnel.
4. Turn over all spares and extra materials to the Owner, along with a complete inventory of spares and extra materials being turned over.
5. Perform start-up tests of all systems.
6. Remove all temporary facilities from the site.
7. Comply with all requirements for Substantial Completion in the Division 01 and General Conditions.

B. Request in writing a review for Substantial Completion. Give the Architect at least seven (7) days’ notice prior to the review.

C. State in the written request that the Contractor has complied with the requirements for Substantial Completion.

D. Upon receipt of a request for review, the Architect will either proceed with the review or advise the Contractor of unfilled requirements.

E. If the Contractor requests a site visit for Substantial Completion review prior to completing the above-mentioned items, he shall reimburse the Architect and Engineer for time and expenses incurred for the visit.
F. Upon completion of the review, the Architect and Engineer will prepare a “final list” of outstanding items to be completed or corrected for final acceptance.

G. Omissions of the “final list” shall not relieve the Contractor from the requirements of the Contract Documents.

H. Prior to requesting a final review, submit a copy of the final list of items to be completed or corrected. State in writing that each item has been completed, resolved for acceptance or the reason it has not been completed.

END OF SECTION 260500
SECTION 260504 – PROVISIONS FOR ELECTRICAL UTILITY SERVICE

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes:

B. Utility Service Voltage:
 1. 208Y/120 volts, three-phase, four-wire, 60Hz.
 2. As indicated on the Drawings.

C. Utility Service Ampacity: As indicated on the Drawings.

D. The extent of Work for the secondary electrical service includes providing the following:
 1. Raceways.
 3. Grounding and Bonding.
 4. Concrete pad for service transformer. Refer to Civil drawings and specifications.
 5. Primary Raceways: Refer to Civil drawings and specifications.

1.2 SUBMITTALS

A. General: Submit the following in accordance with Division 01 and Division 26 Section "Common Work Results for Electrical":
 1. Product data for the following products for:
 a. Meter bases.
 b. Current transformer cabinets.
 2. Shop drawings for:
 a. Utility Company prepared installation drawings.

B. Where equipment or materials are specified to comply with utility standards and are listed above as required submittals, obtain approval from the serving utility before submitting to the Architect.

C. Record Drawings: Submit Record Drawings as required by Division 01 and Division 26 Section "Common Work Results for Electrical":
 1. Accurately record actual routing of all exterior buried raceway and all interior conduits two inches and larger. Indicate dimensions from fixed structural elements.
1.3 QUALITY ASSURANCE

A. Perform all work in accordance with Utility Company installation drawings and service standards.

B. Maintain one copy of Utility Company installation drawings and service standards at the site.

C. Prior to commencing work in this Section, meet with the Utility Company representative to review service entrance requirements and details.

D. Verify that field measurements are as indicated on Utility Company drawings.

E. Electrical Components, Devices and Accessories:

 1. Listed and labeled as defined in NFPA 70, Article 100, by an NRTL as defined by OSHA in 29 CFR 1910.7, and that are acceptable to authorities having jurisdiction.
 2. Marked for intended use.

F. Comply with NFPA 70.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SECONDARY SERVICE ENTRANCE UNDERGROUND

A. Provide an underground secondary service lateral from the pad-mounted transformer in accordance with NFPA 70 Article 230 and the Utility Company standards. Reference the Drawings for service lateral conductor and raceway quantities, sizes, and types.

B. The Utility Company will provide the service transformer.

C. Provide a concrete pad, complying with the Utility Company standards, for transformer mounting, and set coated GRS conduit elbows and riser(s), with grounding bushing(s), to receive primary and secondary raceways. Where direct burial primary is used, set coated GRS conduit elbow(s) and riser(s), with grounding bushing(s), to receive primary cables. Coordinate requirements with Civil drawings and specifications.

D. Utility Company will provide primary conductors and terminal connections at both primary and secondary terminals. Electrical contractor to coordinate with Utility Company.

3.2 METERING

A. Provide a 1-1/4-inch empty GRS conduit, with pull cord, from the secondary compartment of the pad-mounted service transformer to the meter location shown on the Drawings, or as directed by Utility Company.

B. Provide a meter base complying with the Utility Company standards.

C. The Utility Company will provide the meter and meter wiring.
3.3 UTILITY SERVICE CHARGES

A. The Owner will pay all charges of the Utility Company for the electrical service. Coordinate with General Contractor regarding additional requirements needed by Electrical Contractor.

END OF SECTION 260504
SECTION 260505 – ELECTRICAL TESTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes general requirements for electrical field testing and inspecting. Detailed
 requirements are specified in each Section containing components that require testing. In
 addition to other requirements specified herein general requirements include the following:
 1. Suitability of test equipment.
 2. Calibration of test instruments.
 3. Coordination requirements for testing and inspecting.
 4. Reporting requirements for testing and inspecting.
 B. Emergency systems shall be tested as specified herein.

1.3 QUALITY ASSURANCE
 A. The Electrical Contractor shall completely test and inspect all systems in accordance with the
 specifications and drawings. The Electrical Contractor shall certify that all systems are in
 complete working order prior to turning over the Owner.
 B. Except as modified by governing codes and by the contract documents, comply with the latest
 applicable provisions and latest recommendations of the following:
 1. NFPA.
 2. NEMA.
 3. NEC.
 4. IEEE.
 5. IPCEA.
 6. ANSI.
 7. UL.
 8. NECA.
 9. Local Fire Department.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 GENERAL TESTING

A. It shall be the responsibility of this Contractor to furnish all testing instruments/equipment, materials and labor necessary to perform the following tests.

1. After wires or cables are in place, but before being connected to devices and equipment, the system shall be tested for shorts, opens, intentional and unintentional grounds by means of wires in conduit that are shorted or unintentionally grounded shall be replaced.
2. Voltage drops for panel and large feeders shall not exceed 3% hence the total voltage drop for a feeder and any branch circuit shall not exceed 5% of the service voltage. The test shall be made under design load or its’ equal.
3. Any wiring device or electrical apparatus in this contract, if grounded or shorted on an integral "line" part, shall be removed and the problem rectified.
4. When required, complete test and inspection records shall be made and incorporated into a report for each piece of equipment tested. All readings taken shall be recorded. Four (4) copies shall be submitted to the Architect for approval.
5. Notify the Architect, with minimum seven (7) days notice, about testing schedule.

3.2 WIRING TEST

A. The wiring and cable tests shall be made before any circuits, main switches, motors, transformers or feeders are energized.

B. Tests shall be made for continuity, identification and absence of shorts and grounds for each conductor. Both ends of a given conductor shall be identified alike. Before circuit terminal connections are made, continuity and identification of wiring shall be checked by means of a DC test device using a bell, light, meter, or buzzer.

C. Insulation Resistance (IR) test shall be made using meggers at the following values:

1. 208Y/120 Volt wiring at 500 Volts DC.

D. Insulation resistance between phase conductors and neutral, phase conductors and ground shall not be less than the minimum requirements of 2000 meg-ohms.

1. Wire terminations shall not be made to equipment (motors, MCCs, but ducts, etc.), until that piece of equipment has been tested and verified as specified in this section.
2. Test motor feeders with motors disconnected, but with circuit breakers, switches or starters in the circuit opened so as to include only that portion of the feeder, required to be tested.
3. Test lighting feeders with the circuit breakers and panelboards connected but with lighting branch circuit breakers or switches open so as to include only the branch circuit to be tested.
4. Contractor shall correct or replace any circuit which is defective or grounded and shall correct all other problems encountered by these tests. All defects whether due to faulty workmanship or material furnished by the Contractor shall be corrected under this section at the Contractor’s expense.
3.3 LIGHTING TEST

A. Check all lighting fixtures for proper operation. All Contractor supplied fixtures shall be 100% operable at no additional cost to the Owner. Repair cost to Owner-supplied fixtures shall not be the responsibility of the Contractor unless otherwise stated.

B. Verify operation of Lighting Control Systems. Program time clocks per client’s requirements, including holiday setbacks.

3.4 MOTOR TEST

A. Perform motor tests in coordination with fire suppression, plumbing and HVAC contractors for motors furnished with their equipment.

B. All 460-volt motors shall be individually “spot tested” for insulation resistance using 1000V DC. All 208/120V motors shall be “spot tested” with 500V DC in a similar manner. The minimum resistance to ground shall be 2000 meg-ohm (corrected to 20 degrees C). The Contractor shall record the ambient temperature of the motor and submit this value along with insulation resistance value. For motors from 7-½ to 20 HP, Contractor shall submit Dielectric Absorption Ratios. For motor above 20 HP, the Polarization Indexes of the motor shall also be submitted.

C. Make the following checks on all motors prior to start up.
 1. Check motor nameplates for HP, speed, phase and voltages. Verify proper voltage available for terminal wiring.
 2. Check shaft for freedom of rotation.
 3. Verify that the motor is properly lubricated prior to energizing.

D. Contractor shall furnish a proper sized heater for each overload relay.

E. Make the following tests on all motors during or immediately after start-up:
 1. Check for proper shaft rotation.
 2. Check motor for smooth operation (vibration).
 3. Take a current reading using a clamp-on ammeter. (Record no-load readings and loaded readings).

3.5 PANELBOARD TEST

A. Test all equipment to be operated on the 208/120V system at 500V DC prior to connecting feeders. A minimum insulation resistance of 2000 meg-ohms shall be obtained between all phases and between phase and neutral, and phase and ground.

3.6 SPOT TEST

A. “Spot Test” mentioned in this section shall be interpreted as the specific test method of obtaining insulation resistance by applying indicated test voltage for 60 seconds to the equipment or wiring being tested.
3.7 CONTROL WIRING/OUTLET TEST

A. Control wiring shall perform the function as noted in operation methods and/or included schematics and single line diagrams.

END OF SECTION 260505
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Qualification Data: For testing agency.

C. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.
D. All conductors and cables shall be UL labeled.

1.6 COORDINATION
 A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
 B. Coordinate layout and installation of conductors and cables with other trades.

1.7 DELIVERY, STORAGE AND HANDLING
 A. Delivery conductors and cables according to NEMA WC 26.
 B. Protect stored conductors and cables from moisture and dirt. Do not store outside, exposed to elements. Elevate above grade. Do not exceed structural capacity of floor, when stored inside.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
 A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Southwire Company.
 2. Cerro Wire.
 3. General Cable.
 4. Encore Wire and Cable.
 B. Copper Conductors: Comply with NEMA WC 70.
 C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN and XHHW.
 D. Multiconductor Cable: Comply with NEMA WC 70 for metal-clad cable, Type MC or mineral-insulated, metal-sheathed cable, Type MI with ground wire.

2.2 CONNECTORS AND SPLICES
 A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMP Incorporated/Tyco International.
 2. 3M; Electrical Products Division.
 3. Panduit Corporation.
 4. NSI Industries.
 B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

2.4 SLEEVE SEALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Carbon steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL AND SIZE APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

C. Conductors smaller than No. 12 AWG shall not be utilized anywhere, unless specifically noted on drawings.

D. The minimum conductor size for branch circuits shall be #12 AWG copper. To compensate for voltage drop, where branch circuit lengths are between 100 and 150 feet, use #10 AWG copper. For branch circuit lengths exceeding 150 feet, use #8 AWG copper.

E. Wire size ampacity shall equal or exceed its overload protective device. Where wire sizes shown on the drawings are greater than the apparent ampacity requirements, the size shown
shall prevail to compensate for voltage drop. In no instance shall conductors be installed that are less than required by NEC.

3.2 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems".

F. Identify and factory color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems".

3.3 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.
E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants".

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping".

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.5 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping".

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
B. Perform tests and inspections and prepare test reports.

C. Tests and Inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and branch circuit conductors for compliance with requirements.

3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.

 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of final acceptance.

 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

D. Test Reports: Prepare a written report to record the following:

 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment.

B. This Section includes grounding of electrical systems and equipment and basic requirements for grounding for protection of life, equipment, circuits, and systems. Grounding requirements specified in this Section may be supplemented in other Sections of these Specifications.

C. Related Sections include the following:
1. Division 26 Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for requirements for grounding conductors.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in Part 3 "Field Quality Control" Article, including the following:
1. Ground rods.
2. Grounding arrangements and connections for separately derived systems.

C. Qualification Data: For testing agency and testing agency's field supervisor.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals:
1. Instructions for periodic testing and inspection of grounding features at grounding connections for separately derived systems based on NFPA 70B.
 a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not.
 b. Include recommended testing intervals.
1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Bare Grounding Conductor and Conductor Protector for Wood Poles:

1. No. 4 AWG minimum, soft-drawn copper.
2. Conductor Protector: Half-round PVC or wood molding. If wood, use pressure-treated fir or cypress or cedar.

D. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4-inch diameter by 10 feet in length.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger, unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Grounding Bus: Install in electrical and telecommunication equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 1 inch, minimum, from wall 6 inches above finished floor, unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.

E. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.
B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

3.3 INSTALLATION

A. Ground electrical systems and equipment according to NEC requirements, except where Drawings or Specifications exceed NEC requirements.

B. Electrical Room Grounding Bus: Space 1 inch (25 mm) from wall and support from wall 6 inches (150 mm) above finished floor except as otherwise indicated.

C. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

D. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

E. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.

 1. Inter-connect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.
 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

F. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.

 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
G. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

H. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

I. In addition to using the water service as a grounding electrode, effectively grounded building steel or rebar of reinforced concrete columns, driven ground rods outside or buried electrode shall be provided and inter connected.

J. Provide a copper ground cable from the above main service ground bus to building steel, driven ground rods outside or buried electrodes.

K. The Main service neutral shall be bonded to the main service ground. Main ground bars shall be 4-foot width x 12” height x ¼” thick.

L. Bond with a grounding conductor, minimum #4 copper all interior metallic water, gas and other metallic lines.

M. The complete metal conduit system shall be used for the equipment grounding system. Conduit systems and associated fittings and terminations shall be made mechanically tight to provide a continuous electrical path to ground and shall be safely grounded at all equipment by bonding all metallic conduit to the equipment enclosures with locknuts cutting thru paint of enclosures. Bond all conduits entering primary switchgear, unit substations and secondary switchboards with a ground wire connecting the grounding type bushings to the equipment ground bar. Conductors shall be sized per NEC.

N. In addition to using the conduit system for grounding, a complete auxiliary green wire equipment grounding system shall be installed, continuous from main ground, through distribution and branch circuit panelboards and paralleling all feeders and branch circuit wiring. The minimum size shall be #12 copper except #14 on control circuits. This shall apply to all circuits rated 100 volts or more above ground potential.

O. Bond all communications conduit systems to ground.

P. Connect ground terminal on wiring devices to auxiliary green wire equipment grounding system.

Q. Motor frames shall be bonded to the equipment grounding system by an independent green wire, sized as shown.
R. System neutral connections shall be insulated from metal enclosures except at the neutral of the service entrance equipment and on the neutral of a separately derived system. Connections to the main switchgear enclosure shall be by means of bonding jumpers.

S. The building neutral shall be identified throughout with white conductors. Where there are neutral conductors from a separately derived system (such as 120/208 volt, 3 phase, 4 wire where the main building service is 277/480 volt, 3 phase, 4 wire) the neutrals of the two systems shall be separately identifiable.

T. Metal covers on pull boxes and junction boxes shall be effectively grounded.

U. Connections to driven ground rods or other such electrodes shall be a minimum of three feet from the foundation wall or beyond the roof drip line, whichever is greater. Do not install ground rods in backfill.

V. The electrodes (driven ground rods) of the electrical grounding system shall not be used for the electrodes for the lightning protection system, and vice versa. However, these two systems shall be bonded together at one point.

W. Wiring devices shall be connected with grounding jumper from ground pole on device to grounding screw in the outlet box.

3.4 CONNECTIONS

A. General: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to assure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
3. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

B. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells. Complete with manufacturer’s written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

C. Equipment Grounding-Wire Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.

D. Noncontact Metal Raceway Terminations: Where metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically non-continuous conduits at both entrances and exits with grounding bushings and bare grounding conductors, except as otherwise indicated.

E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer’s published torque-tightening values. Where these requirements are not available, use those specified in UL 486A and UL 486B.
F. Compression-Type Connections: use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by manufacturer of connectors. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.

G. Moisture Protection: Where insulated grounding conductors are connected to grounding rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

B. Perform the following tests and inspections and prepare test reports:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.
2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms.
3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).

D. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Sections include the following:
 1. Division 26 Section "Vibration and Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with criteria.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. IMC: Intermediate metal conduit.

C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 SUBMITTALS

A. Product Data: For the following:
 1. Steel slotted support systems.
 2. Nonmetallic slotted support systems.
B. Shop Drawings: Show fabrication and installation details and include calculations for the following:

1. Trapeze hangers. Include Product Data for components.
2. Steel slotted channel systems. Include Product Data for components.
3. Nonmetallic slotted channel systems. Include Product Data for components.
4. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel".

B. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories".

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Arlington Industries.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. Thomas & Betts Corporation.
 e. Unistrut; Tyco International, Ltd.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
5. Channel Dimensions: Selected for applicable load criteria.
B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch-diameter holes at a maximum of 8 inches o.c., in at least 1 surface.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seasafe, Inc.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.

3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.

4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened Portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

2. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

5. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.

6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.

7. To Light Steel: Sheet metal screws.

8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete".

C. Anchor equipment to concrete base.

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

2. Install anchor bolts to elevations required for proper attachment to supported equipment.

3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
 B. Related Sections include the following:
 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS
 A. EMT: Electrical metallic tubing.
 B. ENT: Electrical nonmetallic tubing.
 C. FMC: Flexible metal conduit.
 D. IMC: Intermediate metal conduit.
 E. LFMC: Liquidtight flexible metal conduit.
 F. LFNC: Liquidtight flexible nonmetallic conduit.
 G. RNC: Rigid nonmetallic conduit.
 H. RMC: Rigid metal conduit (rigid steel conduit).

1.4 SUBMITTALS
 A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
 B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 1. Custom enclosures and cabinets.
 C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
1. Structural members in the paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

D. Source quality-control test reports.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Tube & Conduit; a Tyco International Ltd. Co.
2. Republic Conduit.
3. Western Tube and Conduit.
5. Sapa.

B. Rigid Steel Conduit: ANSI C80.1.

C. IMC: ANSI C80.6.

D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

E. EMT: ANSI C80.3.

F. FMC: Zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket.

H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.

2. Fittings for EMT: Steel or die-cast, set-screw or compression type.
3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.
I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
2. Anamet Electrical, Inc.; Anaconda Metal Hose.
3. CANTEX Inc.
4. Thomas & Betts Corporation.
5. Southwire.

B. ENT: NEMA TC 13.

C. RNC: NEMA TC 2, Type EPC-40-PVC and Type EPC-80-PVC, UL 651, unless otherwise indicated.

D. LFNC: UL 1660.

E. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.

F. Fittings for LFNC: UL 514B.

2.3 METAL WIREWAYS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper B-Line, Inc.
2. Hoffman.
4. Square D; Schneider Electric.

B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 3R, unless otherwise indicated.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type. Flanged-and-gasketed type where shown on drawings.

E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.
1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Thomas & Betts Corporation.
 c. Wiremold Company (The); Electrical Sales Division.

B. Surface Nonmetallic Raceways: Two-piece construction, manufactured of rigid PVC with texture and color selected by Architect from manufacturer’s standard colors.

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Butler Manufacturing Company; Walker Division.
 b. Enduro Systems, Inc.; Composite Products Division.
 c. Hubbell Incorporated; Wiring Device-Kellems Division.
 d. Lamson & Sessions; Carlon Electrical Products.
 e. Panduit Corp.
 g. Wiremold Company (The); Electrical Sales Division.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
2. EGS/Appleton Electric.
3. Hoffman.
5. RACO; a Hubbell Company.

B. Pull and junction boxes shall be minimum 4” x 4”.

C. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

D. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

F. Metal Floor Boxes: Cast or sheet metal, fully adjustable, rectangular.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, with gasketed cover.

I. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.

 1. Metal Enclosures: Steel, finished inside and out with manufacturer’s standard enamel.
J. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

2.6 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

2.7 SLEEVE SEALS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Carbon steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed Conduit: Rigid steel conduit or IMC.
2. Concealed Conduit, Aboveground: Rigid steel conduit or IMC or RNC, Type EPC-40-PVC.
3. Underground Conduit: RNC, Type EPC-80-PVC, direct buried.
4. Within Underground Duct Banks: IMC or RNC, Type EPC-40-PVC.
5. Underground Conduit: RNC, Type EPC-40-PVC, when encased in minimum 3” thick concrete.
6. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
7. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Comply with the following indoor applications, unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed and Subject to Severe Physical Damage: Rigid steel conduit or IMC. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d. Electrical rooms.
 e. Stairwells.
 f. Within block or masonry walls.
3. Concealed Above Hung Ceilings and Within Interior Sheet Rock Walls and Partitions: EMT.
4. Underground Conduit: Rigid steel conduit or IMC or RNC, Type EPC-40-PVC, below concrete.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations. Length not to exceed 6 ft.
6. Damp or Wet Locations: Rigid steel conduit.
7. Connection to Kitchen Equipment: LFMC/LFNC from disconnecting switch. Length not to exceed 6 ft.
8. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway or EMT.
9. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: EMT.
10. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, nonmetallic in damp or wet locations.

C. Concealed: FMC ½” inch – only in specific locations, in existing areas, within existing walls to remain. Utilize only between box in wall to junction box above ceiling. Junction box shall be located within 12” above hung ceiling. FMC, within walls, not acceptable in other locations.

D. Minimum Raceway Size: 3/4-inch trade size.

E. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
F. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

G. Install raceways underground or below floor only for locations indicated on drawings.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping. Do not install horizontal raceway directly and parallel under cold water or chilled water pipes. In general, install raceways as high as possible, closer to underside of structure. Install horizontal raceways minimum 8 inches above ceilings.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Install temporary closures to prevent foreign matter entering the raceways.

F. Arrange stub-ups so curved portions of bends are not visible above the finished slab.

G. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

H. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

I. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.

1. Run parallel or banked raceways together on common supports.
2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.

J. Join raceways with fittings designed and approved for that purpose and make joints tight.

1. Use insulating bushings to protect conductors.

K. Utilize compression fittings only with suitable tools.

L. Raceways Embedded in Slabs:

1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
M. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

N. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

O. Terminations: Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against the box. Where terminations are not secure with one (1) locknut, use two (2) locknuts: One (1) inside and one (1) outside the box.

P. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into the hub so the end bears against the wire protection shoulder. Where chase nipples are used, align raceways so the coupling is square to the box and tighten the chase nipple so no threads are exposed.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

R. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:

1. 3/4-Inch Trade Size and Smaller: Install raceways in maximum lengths of 50 feet.
2. 1-Inch Trade Size and Larger: Install raceways in maximum lengths of 75 feet.
3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

S. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

T. Expansion-Joint Fittings: Install UL approved expansion fittings in each run of aboveground conduit that is located at building expansion joint. Length of fittings shall not exceed 6 inches.

U. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit from junction boxes to recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Flexible conduit from light fixture to lighting fixture not allowed.

V. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

W. Set metal floor boxes level and flush with finished floor surface.

X. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
Y. All raceways terminating at junction boxes, located above ceiling shall be provided with color coded vinyl tape indicating the service. Color coding tape shall be applied next to the junction box. Tape color shall match junction box cover color.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section “Common Work Results for Electrical”.
2. Install backfill as specified in Section “Common Work Result for Electrical”.
3. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.
4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.

 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:

 1. For sleeve cross-section rectangle perimeter, less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve cross-section rectangle perimeter, equal to, or greater than 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed.
I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping".

3.5 SLEEVE-SEAL INSTALLATION

A. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping".

3.7 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.8 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes. Remove burrs, dirt, and construction debris.

END OF SECTION 260533
SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Conduit, ducts, and duct accessories for direct-buried and concrete-encased duct banks.
2. Handholes and boxes.

1.3 DEFINITION

A. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Duct-bank materials, including separators and miscellaneous components.
2. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Accessories for manholes, handholes, boxes, and other utility structures.
4. Warning tape.

B. Shop Drawings for Precast or Factory-Fabricated Underground Utility Structures: Include plans, elevations, sections, details, attachments to other work, and accessories, including the following:

1. Duct entry provisions, including locations and duct sizes.
2. Reinforcement details.
3. Frame and cover design and manhole frame support rings.
4. Ladder/Step details.
5. Grounding details.
6. Dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
7. Joint details.

C. Shop Drawings for Factory-Fabricated Handholes and Boxes Other Than Precast Concrete: Include dimensioned plans, sections, and elevations, and fabrication and installation details, including the following:

1. Duct entry provisions, including locations and duct sizes.
2. Cover design.
4. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

D. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.

E. Source quality-control test reports.
F. Field quality-control test reports.

1.5 QUALITY ASSURANCE
A. Comply with ANSI C2.
B. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.
B. Store precast concrete and other factory-fabricated underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.
C. Lift and support precast concrete units only at designated lifting or supporting points.

1.7 PROJECT CONDITIONS
A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 1. Notify Architect no fewer than seven days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Architect's written permission.

1.8 COORDINATION
A. Coordinate layout and installation of ducts, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.
B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations
from those indicated as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

PART 2 - PRODUCTS

2.1 CONDUIT

B. RNC: NEMA TC 2, Type EPC-40-PVC and Type EPC-80-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.2 NONMETALLIC DUCTS AND DUCT ACCESSORIES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cantex, Inc.
2. Electri-Flex Company.
3. Prime.
4. Allied.

B. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type DB-60-PVC and Type DB-120-PVC, ASTM F 512, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.

C. Duct Accessories:

1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and sizes of ducts with which used, and selected to provide minimum duct spacings indicated while supporting ducts during concreting or backfilling.

2. Warning Tape: Underground-line warning tape specified in Division 26 Section "Identification for Electrical Systems".

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION

A. Ducts for Electrical Cables over 600 V: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

B. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

C. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank, unless otherwise indicated.

D. Underground Ducts for Telephone, Communications, or Data Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank, unless otherwise indicated.
3.2 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less, Including Telephone, Communications, and Data Wiring:

1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-10 structural load rating.
2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 or Polymer concrete, SCTE 77, Tier 15 or Fiberglass enclosures with polymer concrete frame and cover, SCTE 77, Tier 15 structural load rating.
3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Precast concrete, AASHTO HB 17, H-10 Polymer concrete units, SCTE 77, Tier 8 or Heavy-duty fiberglass units with polymer concrete frame and cover, SCTE 77, Tier 8 structural load rating.
4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf vertical loading.

3.3 EARTHWORK

A. Excavation and Backfill: Comply with Division 26 Section "Trenching, Excavating and Backfilling", but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restore surface features at areas disturbed by excavation and reestablish original grades, unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Division 32 Sections "Turf and Grasses" and "Plants".

D. Cut and patch existing pavement in the path of underground ducts and utility structures according to Division 01 Section "Cutting and Patching".

3.4 DUCT INSTALLATION

A. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes to drain in both directions.

B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations, unless otherwise indicated.

C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.
D. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.
2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole.
3. Grout end bells into structure walls from both sides to provide watertight entrances.

E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet outside the building wall without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Division 26 Section "Common Work Results for Electrical".

F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

G. Pulling Cord: Install minimum 200-lbf-test nylon cord in ducts, including spares. A minimum of 5-feet shall be coiled and secured at each conduit end in such a manner as to prevent it from being accidently pulled back into the duct.

H. Tracer Wire:

1. Install in a minimum of one conduit of every underground conduit run, including duct banks, an insulated, single strand, copper, minimum 12 AWG tracer wire coated with a minimum 30-mm PE jacket designed specifically for buried use.
2. In duct banks, tracer wire shall be installed in one of center-most conduits.
3. In multi-level duct banks, tracer wire shall be installed in top-most level, in one of center-most conduits.

I. Direct-buried Ducts: Install at minimum 24-inches below grade.

J. Concrete-Encased Ducts: Support ducts on duct separators.

1. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
2. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing rod dowels extending 18 inches into concrete on both sides of joint near corners of envelope.
3. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

4. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

5. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

6. Minimum Space between Ducts: 3 inches between ducts and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and signal ducts.

7. Depth: Install top of duct bank at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles, unless otherwise indicated.

8. Stub-Ups: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

9. Warning Tape: Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of the centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

K. Direct-Buried Duct Banks:

1. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.

2. Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches between tiers.

3. Excavate trench bottom to provide firm and uniform support for duct bank.

4. Install backfill as specified in Division 31 Section "Trenching, Excavating and Backfilling".

5. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand-place backfill to 4 inches over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction.

6. Install ducts with a minimum of 3 inches between ducts for like services and 6 inches between power and signal ducts.

7. Depth: Install top of duct bank at least 36 inches below finished grade, unless otherwise indicated.

8. Set elevation of bottom of duct bank below the frost line.

9. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

10. Warning Planks: Bury warning planks approximately 12 inches above direct-buried ducts and duct banks, placing them 24 inches o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.

3.5 GROUNDING

A. Ground underground ducts and utility structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.

2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.

3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Division 26 Section "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.7 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION 260543
SECTION 260548 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Isolation pads.
2. Spring isolators.
3. Restrained spring isolators.
4. Channel support systems.
5. Restraint cables.
6. Hanger rod stiffeners.
7. Anchorage bushings and washers.

B. Related Sections include the following:

1. Division 26 Section "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 SUBMITTALS

A. Product Data: For the following:

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data.
1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints.
 a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other Division 26 Sections for equipment mounted outdoors.

2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices.

3. Field-fabricated supports.

4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

C. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.

D. Welding certificates.

E. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel".

C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Amber/Booth Company, Inc.
3. Mason Industries.
4. Vibration Eliminator Co., Inc.
5. Vibration Isolation.
6. Vibration Mountings & Controls, Inc.

B. Pads Type - A.1: Arrange in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene or rubber.

C. Spring Isolators - Type B.1: Freestanding, laterally stable, open-spring isolators.

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

D. Restrained Spring Isolators - Type B.2: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.

1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Restraint: Seismic or limit-stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

E. Elastomeric Hangers - Type B.4: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

2.2 SEISMIC-RESTRAINT DEVICES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
2. Cooper B-Line, Inc.; a division of Cooper Industries.
3. Hilti Inc.
5. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be acceptable to authorities having jurisdiction.

1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.

E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod. Do not weld stiffeners to rods.

F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.3 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanized metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment and Hanger Restraints:
 1. Install restrained isolators on electrical equipment.
 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Remove and replace malfunctioning units and retest as specified above.
C. Prepare test and inspection reports.

3.5 ADJUSTING
A. Adjust isolators after isolated equipment is at operating weight.
B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
C. Adjust active height of spring isolators.
D. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.6 VIBRATION ISOLATOR AND SEISMIC-RESTRAINT SCHEDULE FOR SLAB ON GRADE LOCATED EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator sets (with internally isolated engine and generator)</td>
<td>Floor</td>
<td>All sizes</td>
<td>-</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td>Remote Radiators</td>
<td>Floor</td>
<td>All sizes</td>
<td>-</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td>Transformers</td>
<td>Floor</td>
<td>All sizes</td>
<td>-</td>
<td>A.1</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>-</td>
<td>B.4</td>
<td>0.25"</td>
</tr>
</tbody>
</table>

Notes: 1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.
3.7 VIBRATION ISOLATOR AND SEISMIC – RESTRAINT SCHEDULE FOR EQUIPMENT LOCATED ABOVE GRADE

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Mounting</th>
<th>Size</th>
<th>Base Type</th>
<th>Isol. Type</th>
<th>Static Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator sets (with internally isolated engine and generator)</td>
<td>Floor</td>
<td>Up to 300 KW</td>
<td>E.1</td>
<td>B.1</td>
<td>1.0”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350 KW and higher</td>
<td>E.2</td>
<td>B.2</td>
<td>1.0”</td>
</tr>
<tr>
<td>Remote Radiators</td>
<td>Roof</td>
<td>All sizes</td>
<td>-</td>
<td>B.1</td>
<td>1.0”</td>
</tr>
<tr>
<td>Transformers</td>
<td>Floor</td>
<td>All sizes</td>
<td>-</td>
<td>A.1</td>
<td>0.25”</td>
</tr>
<tr>
<td></td>
<td>Suspended</td>
<td>All sizes</td>
<td>-</td>
<td>B.4</td>
<td>0.25”</td>
</tr>
</tbody>
</table>

Notes:
1. The table indicates minimum static deflection for the isolator. The Contractor shall provide isolators with proper deflection, for equipment furnished, as recommended by the isolator manufacturer.
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels.
8. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.
B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

A. Comply with ANSI A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding of Conductor Tape: All service, feeder and branch circuit conductors, rated for 600V or less shall be factory color-coded as specified herein. Field applied labels, tapes or bands not acceptable.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.2 UNDERGROUND-LINE WARNING TAPE

A. Tape:
 1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical utility lines.
 2. Printing on tape shall be permanent and shall not be damaged by burial operations.
 3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:
 1. Comply with ANSI Z535.1 through ANSI Z535.5.
 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
 3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.
2.3 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 10 by 14 inches.

E. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES".
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES".

2.4 EQUIPMENT IDENTIFICATION LABELS

A. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Minimum 0.0625 inch thick adhesive backed, with white letters on a black background. Minimum letter height shall be 3/8 inch.

B. Engraved, Laminated Acrylic or Melamine Label: Minimum 0.0625 inch thick punched or drilled for screw mounting. White letters on a black background. Minimum letter height shall be 3/8 inch.

2.5 JUNCTION/PULL BOX COVER IDENTIFICATION

A. Paint all junction and pull box covers to identify service and voltage as follows:
 1. 120V Normal power – Green.

B. All covers shall identify circuit numbers, panel designation, voltage and service. Identification shall be done by black magic markers.

C. .
2.6 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas, within mechanical rooms, chiller rooms and boiler rooms.
G. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

I. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

J. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch-wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch-high black letters on 20-inch centers. Stop stripes at legends. Apply to the following finished surfaces:
 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 2. Wall surfaces directly external to raceways concealed within wall.
 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

B. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive vinyl or Snap-around labels. Install labels at 10-foot maximum intervals.

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for All Service, All Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label or self-adhesive vinyl tape applied in bands. Install labels at 20-foot maximum intervals. The identification will include source board/panel and target board/panel. Use black letters on orange background.

D. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box as specified herein.

E. Power-Circuit Conductor Identification, 600 V or Less: Factory color-code conductors as listed below:
 1. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 e. Ground: Green.
 f. Switch Legs: Pink.
F. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic plastic tag holder with adhesive-backed phase tags, and a separate tag with the circuit designation.

G. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

H. Conductors to be Extended in the Future: Attach marker tape to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

J. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

K. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

L. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels or Baked-enamel warning signs or Metal-backed, butyrate warning signs.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

M. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

N. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
1. **Labeling Instructions:**

a. **Indoor Equipment:** Self-adhesive, engraved, laminated acrylic or melamine label or Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

b. **Outdoor Equipment:** Engraved, laminated acrylic or melamine label 4 inches high.

c. **Elevated Components:** Increase sizes of labels and letters to those appropriate for viewing from the floor.

d. Unless provided with self-adhesive means of attachment, fasten labels with

e. Use appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

f. Equipment served by emergency power shall be provided with labels incorporating red background and white letters. All other equipment labels shall be white letters on black background.

g. The label shall include voltage, phases, number of wires, and board/switchgear/equipment served from. (Example: Panelboard BL-20-LN; 120/208 volts, 3 phase, 4 wire, served from board DP-B1-HN).

2. **Equipment to be Labeled:**

a. **Panelboards:** Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.

b. **Enclosures and electrical cabinets.**

c. **Access doors and panels for concealed electrical items.**

d. **Switchboards.**

e. **Enclosed switches.**

f. **Enclosed circuit breakers.**

g. **Enclosed controllers.**

h. **Push-button stations.**

i. **Contactors.**

j. **Monitoring and control equipment.**

END OF SECTION 260553
OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT, COORDINATION, ARC-FLASH STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study. The study shall include short circuit evaluation, device evaluation, device coordination and arc flash evaluation.

B. The Owner shall be furnished the study as hereinafter specified as prepared by contractor.

C. Contractor shall furnish an Arc Flash Hazard Analysis Study per the requirements set forth in the current issue of NFPA 70E – Standard for Electrical Safety in the Workplace. The arc flash hazard analysis shall be performed according to the IEEE Standard 1584 – 2002, the IEEE Guide for Performing Arc-Flash Calculations.

D. The scope of the study as hereinafter specified shall include all the equipment included with this project and as shown on the plans.

1.3 SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.

C. Qualification Data: For coordination-study specialist.

D. The studies shall be submitted to the Owner and Engineer for review and approval prior to final completion.

E. A preliminary study with estimated circuit lengths shall be submitted to the Owner’s Representative and Engineer with electrical equipment submittals. Equipment submittals will not be reviewed without the study specified herein. The final study shall be submitted once actual circuit lengths are known.

F. The results of the short-circuit, protective device coordination and arc flash hazard analysis studies shall be summarized in a final report. A minimum of two (2) bound color copies of the complete final report shall be submitted. Electronic PDF copies of the report shall be provided. Two (2) CDs containing all study files, including all device curves shall be provided (use the SKM “Project-Backup” command).
G. The report shall include the following sections:

1. Executive Summary including introduction, Scope of Work and Results/Recommendations.
2. Short-Circuit Methodology, Analysis Results and Recommendations.
3. Short-Circuit Device Evaluation Table.
4. Protective Device Coordination Methodology Analysis Results and Recommendations.
5. Protective Device Settings Table.
7. Arc Flash Hazard Methodology Analysis Results and Recommendations including the details of the incident energy and flash protection boundary calculations, along with Arc Flash boundary distances, working distances, Incident Energy levels and Personal Protection Equipment levels.
8. Arc Flashing Labeling section showing types of labels to be provided. Section will contain descriptive information as well as typical label images.
9. One-line system diagram that shall be computer generated and will clearly identify individual equipment buses, bus numbers used in the short-circuit analysis, cable and bus connections between the equipment, calculated maximum short-circuit current at each bus location, devices numbers used in the time-current coordination analysis, and other information pertinent to the computer analysis.

H. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals shall be in digital form.

1. Coordination-study input data, including completed computer program input data sheets.
2. Study and Equipment Evaluation Reports.
4. Setting report.
5. Arc flash calculations and report.

1.4 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.

B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. Professional engineer, licensed in the state where Project is located, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.

C. The Registered Professional Electrical Engineer shall be an employee of the approved firm providing the study.

D. The Registered Professional Electrical Engineer shall have a minimum of five (5) years of experience in performing power system studies.

E. The approved firm shall demonstrate experience with Arc Flash Hazard Analysis by submitting names of at least ten actual arc flash hazard analyses it has performed in the past year.
F. The engineering firm shall have a minimum of ten (10) years of experience in performing power system studies.

G. The study shall include the stamp or seal and signature of the preparing engineer and shall be reviewed and approved by the Engineer of Record.

H. Comply with IEEE 242 for short-circuit currents and coordination time intervals.

I. Comply with IEEE 399 for general study procedures.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Acceptable Computer Software Developers: Subject to compliance with requirements, provide products by SKM Systems Analysis, Inc. only. The study shall be performed using SKM Systems Analysis Power Tools of Windows (PTW 32).

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory", "very desirable", and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance.

B. Proceed with coordination study only after relevant equipment submittals have been assembled.
3.2 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:

1. Product Data for overcurrent protective devices specified in other Division 26 Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Impedance of utility service entrance.

3. Electrical Distribution System Diagram: In two (2) hard-copy and two (2) CD electronic-copy formats, PDF submittals, showing the following (use SKM “project Backup” command):
 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 e. Motor horsepower and code letter designation according to NEMA MG 1.

4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Ratings, types, and settings of utility company's overcurrent protective devices.
 e. Special overcurrent protective device settings or types stipulated by utility company.
 f. Time-current-characteristic curves of devices indicated to be coordinated.
 g. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 h. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 i. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:

1. Switchgear and switchboard bus.
2. Motor-control center and starters.
3. Distribution panelboard.

B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Utilize approved computer software program. Include studies of system-switching configurations and alternate operations that could result in maximum fault including arcing fault conditions.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.

D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 141 and IEEE 242.

1. Transformers:
 a. ANSI C57.12.10.
 b. ANSI C57.12.22.
 c. ANSI C57.12.40.
 d. IEEE C57.12.00.
 e. IEEE C57.96.

4. Low-Voltage Fuses: IEEE C37.46.

E. Study Report:

1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.
2. Show momentary (1/2 cycle), interrupting (5-cycle), 30-cycle fault-current values for 3-phase, 2-phase and phase-to-ground faults and time-delayed currents (6 cycles and above) on medium-voltage breakers as needed to set relays and assess the sensitivity of overcurrent relays.

F. Equipment Evaluation Report:

1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) short-circuit currents.
3. Calculate the maximum and minimum ground-fault currents.

B. Protective device coordination time-current curves (TCC) shall be displayed on log-log scale graphs.

C. Include on each TCC graph, a complete title with descriptive device names.

D. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.

E. Identify the device associated with each curve by manufacturer type, function, and if applicable, tap, time delay, and instantaneous settings recommended.

F. Plot the following characteristics on the TCC graphs, where applicable.
 1. Electric utility’s overcurrent protective device.
 2. Low voltage fuses including manufacturer’s minimum melt, total clearing, tolerance, and damage bands.
 3. Low voltage equipment circuit breaker trip devices, including manufacturer’s tolerance bands.
 4. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 5. Ground fault protective devices, as applicable.
 6. Pertinent motor starting characteristics and motor damage points, where applicable.
 7. The largest feeder circuit breaker in each motor control center and applicable panelboard.

G. Provide adequate time margins between device characteristics such that selective operation is provided, while providing proper protection.

H. Provide the following:
 1. A one-line diagram shall be provided which clearly identified individual equipment buses, bus numbers, device identification numbers and the maximum available short-circuit current at each bus.
 2. A sufficient number of log-log plots shall be provided to indicate the degree of system protection and coordination by displaying the time-current characteristics of series connected overcurrent devices and other pertinent system parameters.
 3. Computer printouts shall accompany the log-log plots and will contain descriptions for each of the devices shown, settings of the adjustable devices, and device identification numbers to aid in locating the devices on the log-log plots and the system one-line diagram.
 4. The study shall include a separate, tabular printout containing the recommended settings of all adjustable overcurrent protective devices, the equipment designation where the device is located, and the device number corresponding to the device on the system one-line diagram.
 5. A discussion section which evaluates the degree of system protection and service continuity with overcurrent devices, along with recommendations as required for addressing system protection or device coordination deficiencies.
 6. Contractor shall notify Owner in writing of any significant deficiencies in protection and/or coordination. Provide recommendations for improvements.

I. Comply with IEEE 141 and IEEE 242 recommendations for fault currents and time intervals.
J. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

K. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

L. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:

1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 d. Fuse-current rating and type.
 e. Ground-fault relay-pickup and time-delay settings.

2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 a. Device tag.
 b. Voltage and current ratio for curves.
 c. Three-phase and single-phase damage points for each transformer.
 d. No damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum fault-current cutoff point.

M. Completed data sheets for setting of overcurrent protective devices.

N. Main service entrance switch shall be set to coordinate with utility company.
3.5 OVERCURRENT PROTECTIVE DEVICE SETTING

A. Manufacturer’s Field Service: Engage a factory-authorized service representative, of electrical distribution equipment being set and adjusted, to assist in setting of overcurrent protective devices within equipment.

B. Testing: Perform the following device setting and prepare reports:

1. After installing overcurrent protective devices and during energizing process of electrical distribution system, perform the following:
 a. Verify that overcurrent protective devices meet parameters used in studies.
 b. Adjust devices to values listed in study results.

2. Adjust devices according to recommendations in Chapter 7, “Inspection and Test Procedures”, and Tables 10.7 and 10.8 in NETA ATS.

3.6 ARC FLASH HAZARD ANALYSIS

A. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA 70E-2009, Annex D. The arc flash hazard analysis shall be performed in conjunction with the short-circuit analysis and the protective device time-current coordination analysis.

B. The flash protection boundary and the incident energy shall be calculated at significant locations in the electrical distribution system (switchboards, switchgear, motor-control centers, starters, panelboards) where work could be performed on energized parts.

C. The analysis shall be based on the specific devices installed and include (but not be limited to) the following:

1. Service Entrance Equipment:
 a. All overcurrent protective devices installed in service entrance panels.

2. Feeder Circuits:
 a. All three (3) phase feeder circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.

3. Branch Circuits:
 a. All three (3) phase feeder circuit overcurrent protective devices installed with a rating equal to or greater than 30 amps.
 b. All motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.

4. Motor Control Centers:
 a. All motor circuit overcurrent protective devices for motors with a rating equal to or greater than 10 horsepower.
D. Working distances shall be based on IEEE 1685. The calculated arc flash protection boundary shall be determined using those working distances.

E. When appropriate, the short circuit calculations and the clearing times of the phase overcurrent devices will be retrieved from the short-circuit and coordination study model. Ground overcurrent relays should not be taken into consideration when determining the clearing time when performing incident energy calculations.

F. The short-circuited calculations and the corresponding incident energy calculations for multiple system scenarios must be compared and the greatest incident energy must be uniquely reported for each equipment location in a single table. Calculations must be performed to represent the maximum and minimum contributions of fault current magnitude for normal and emergency operating conditions. The minimum calculation will assume that the utility contribution is at a minimum. Conversely, the maximum calculation will assume a maximum contribution from the utility. Calculations shall take into consideration the parallel operation of synchronous generators with the electric utility, where applicable as well as any stand-by generator applications.

1. The Arc-Flash Hazard Analysis shall be performed utilizing mutually agreed upon facility operational conditions, and the final report shall describe, when applicable, how these conditions differ from worst-case bolted fault conditions.

G. The incident energy calculations must consider the accumulation of energy over time when performing arc flash calculations on buses with multiple sources. Alternative calculations must take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault coordination from motors should be decremented as follows:

1. Fault contribution from induction motors should not be considered beyond 5 cycles.

H. For each piece of ANSI rated equipment with an enclosed main device, two calculations shall be made. A calculation shall be made for the main cubicle, sides, or rear, and shall be based on a device located upstream of the equipment to clear the arcing fault. A second calculation shall be made for the front cubicles and shall be based on the equipment’s main device to clear the arcing fault. For all other non-ANSI rated equipment, only one calculation shall be required and it shall be based on a device located upstream of the equipment to clear the arcing fault.

I. When performing incident energy calculations on the line side of a main breaker (as required per above), the line side and load side contributions must be included in the fault calculation.

J. Mis-coordination should be checked amongst all devices within the branch containing the immediate protective device upstream of the calculation location and the calculation should utilize the fastest device to complete the incident energy for the corresponding location.

K. Arc Flash calculations shall be based on actual overcurrent protective device clearing time. A maximum clearing time of 2 seconds will be used based on IEEE 1584-2002 Section B.1.2. Where it is not physically possible to move outside of the flash protection boundary in less than 2 seconds during an arc flash event, a maximum clearing time based on the specific location shall be utilized.

L. Provide the following:

1. Results of the Arc-Flash Hazard Analysis shall be submitted in tabular form, and shall include device or bus name, bolted and arcing fault current levels, flash protection
boundary distances, working distances, personal-protective equipment classes and AFIE (Arc Flash Incident Energy) levels.

2. The Arc-Flash Hazard Analysis shall report incident energy values based on recommended device settings for equipment within the scope of the study.

3. The Arc-Flash Hazard Analysis may include recommendations to reduce AFIE levels and enhance worker safety.

3.7 FIELD ADJUSTMENT

A. The contractor shall adjust relay and protective device settings according to the recommended setting table provided by the coordination study.

B. The contractor shall make modifications to equipment as required to accomplish conformance with short circuit and protective device coordination studies.

C. The Arc Flash Hazard Analysis shall be reviewed and updated to reflect any changes and corrections to conductor length within one week of the final electrical walk through for punch list.

3.8 ARC FLASH LABELS

A. Contractor shall provide a 4.0 in. x 4.0 inc. thermal transfer type label of high adhesion polyester for each work location analyzed.

B. The labels shall be designated according to the following standards:

2. ANSI Z535.4 – Product Safety Signs and Labels.
3. NFPA 70 (National Electric Coe) – Article 110.16.

C. The label shall include the following information:

1. System Voltage:
 a. Flash protection boundary.
 b. Personal Protection Equipment category.
 c. Arc-Flash Incident energy value (cal/cm²).
 d. Limited, restricted and prohibited Approach Boundaries.

 1) Study report number and issue date.

D. Labels shall be printed by a thermal transfer type printer, with no field markings.

E. Arc flash labels shall be provided for equipment as identified in the study and the respective equipment access areas per the following:

1. Floor Standing Equipment: Labels shall be provided on the front of each individual section. Equipment requiring rear and/or side access shall have labels provided on each individual section access area. Equipment line-ups containing sections with multiple incident energy and flash protection boundaries shall be labeled as identified in the Arc Flash Analysis table.

2. Wall Mounted Equipment: Labels shall be provided on the front cover or a nearby adjacent surface, depending upon equipment configuration.
a. General Use Safety labels shall be installed on equipment in coordination with the Arc Flash labels. The General Use Safety labels shall warn of general electrical hazards associated with shock, arc flash, and explosions, and instruct workers to turn off power prior to work.

F. Owner and engineer approved Arc Flash Hazard warning labels shall be furnished and installed prior to project completion.

3.9 ARC FLASH SAFETY TRAINING

A. Provide a minimum of eight (8) hours of safety training for the Owner and their designated employees/contractors. Safety training shall cover all relevant parts of NFPA 70E and shall include demonstration of proper PPE with regard to specified arc flash labels that will be encountered on the Owner’s premises.

END OF SECTION 260573
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following lighting control devices:

1. Time switches.
2. Outdoor and indoor photoelectric switches.
3. Indoor occupancy sensors.
4. Outdoor motion sensors.
5. Lighting contactors.

1.3 DEFINITIONS

A. LED: Light-emitting diode.
B. PIR: Passive infrared.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 1. Interconnection diagrams showing field-installed wiring.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
1.6 COORDINATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Area Lighting Research, Inc.; Tyco Electronics.
2. Grasslin Controls Corporation; a GE Industrial Systems Company.
3. Intermatic, Inc.
5. Lightolier Controls; a Genlyte Company.
6. Lithonia Lighting; Acuity Lighting Group, Inc.
8. Square D; Schneider Electric.
9. TORK.
10. Touch-Plate, Inc.
11. Watt Stopper (The).

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Area Lighting Research, Inc.; Tyco Electronics.
2. Grasslin Controls Corporation; a GE Industrial Systems Company.
3. Intermatic, Inc.
4. Lithonia Lighting; Acuity Lighting Group, Inc.
5. Paragon Electric Co.; Invensys Climate Controls.
6. Square D; Schneider Electric.
7. TORK.
8. Touch-Plate, Inc.
9. Watt Stopper (The).

B. Description: Solid state, with SPST or DPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.

1. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of photocell to prevent fixed light sources from causing turn-off.
2. Time Delay: 15-second minimum, to prevent false operation.
4. **Mounting**: Twist lock complying with IEEE C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.3 INDOOR PHOTOELECTRIC SWITCHES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Eaton Electrical Inc; Cutler-Hammer Products.
5. Intermatic, Inc.
6. Lithonia Lighting; Acuity Lighting Group, Inc.
9. Square D; Schneider Electric.
10. TORK.
11. Watt Stopper (The).

B. Ceiling-Mounted Photoelectric Switch: Solid-state, light-level sensor unit, with separate relay unit mounted on luminaire, to detect changes in lighting levels that are perceived by the eye. Cadmium sulfide photoresistors are not acceptable.

1. **Sensor Output**: Contacts rated to operate the associated relay, complying with UL 773A. Sensor shall be powered from the relay unit.
2. **Relay Unit**: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
3. **Light-Level Monitoring Range**: 10 to 200 fc, with an adjustment for turn-on and turn-off levels within that range.
4. **Time Delay**: Adjustable from 5 to 300 seconds to prevent cycling, with deadband adjustment.
5. **Indicator**: Two LEDs to indicate the beginning of on-off cycles.

2.4 INDOOR OCCUPANCY SENSORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hubbell Lighting.
3. Lithonia Lighting; Acuity Lighting Group, Inc.
4. Novitas, Inc.
5. RAB Lighting, Inc.
6. Sensor Switch, Inc.
7. TORK.
8. Watt Stopper (The).

B. General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit.
1. **Operation:** Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.

2. **Sensor Output:** Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.

3. **Relay Unit:** Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.

4. **Mounting:**
 a. **Sensor:** Suitable for mounting in any position on a standard outlet box.
 b. **Relay:** Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. **Time-Delay and Sensitivity Adjustments:** Recessed and concealed behind hinged door.

5. **Indicator:** LED, to show when motion is being detected during testing and normal operation of the sensor.

6. **Bypass Switch:** Override the on function in case of sensor failure.

7. **Automatic Light-Level Sensor:** Adjustable from 2 to 200 fc; keep lighting off when selected lighting level is present.

C. PIR Type: Ceiling mounting; detect occupancy by sensing a combination of heat and movement in area of coverage.

 1. **Detector Sensitivity:** Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.
 2. **Detection Coverage (Room):** Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
 3. **Detection Coverage (Corridor):** Detect occupancy within 90 feet when mounted on a 10-foot-high ceiling.

D. Ultrasonic Type: Ceiling mounting; detect occupancy by sensing a change in pattern of reflected ultrasonic energy in area of coverage.

 1. **Detector Sensitivity:** Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 2. **Detection Coverage (Small Room):** Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch-high ceiling.
 3. **Detection Coverage (Standard Room):** Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
 4. **Detection Coverage (Large Room):** Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on a 96-inch-high ceiling.
 5. **Detection Coverage (Corridor):** Detect occupancy anywhere within 90 feet when mounted on a 10-foot-high ceiling in a corridor not wider than 14 feet.

E. Dual-Technology Type: Ceiling mounting; detect occupancy by using a combination of PIR and ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit.

 1. **Sensitivity Adjustment:** Separate for each sensing technology.
 2. **Detector Sensitivity:** Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of
average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.

3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.

2.5 OUTDOOR MOTION SENSORS (PIR)

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bryant Electric; a Hubbell Company.
2. Hubbell Lighting.
3. Lithonia Lighting; Acuity Lighting Group, Inc.
5. RAB Lighting, Inc.
6. TORK.
7. Watt Stopper (The).

B. Performance Requirements: Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F, rated as raintight according to UL 773A.

1. Operation: Turn lights on when sensing infrared energy changes between background and moving body in area of coverage; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
2. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outdoor junction box.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
3. Bypass Switch: Override the on function in case of sensor failure.
4. Automatic Light-Level Sensor: Adjustable from 1 to 20 fc; keep lighting off during daylight hours.

C. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.

D. Detection Coverage: Up to 35 feet, with a field of view of 90 degrees.

E. Lighting Fixture Mounted Sensor: Suitable for switching 300 W of tungsten load at 120- or 277-V ac.

F. Individually Mounted Sensor: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.

1. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
2. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
2.6 LIGHTING CONTACTORS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
4. GE Industrial Systems; Total Lighting Control.
5. Grasslin Controls Corporation; a GE Industrial Systems Company.
6. Hubbell Lighting.
7. Lithonia Lighting; Acuity Lighting Group, Inc.
9. Square D; Schneider Electric.
10. TORK.
11. Touch-Plate, Inc.
12. Watt Stopper (The).

B. Description: Electrically operated and mechanically held, combination type with nonfused disconnect, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

C. BAS Interface: Provide hardware interface to enable the BAS to monitor and control lighting contactors.

2. Control: On-off operation.

2.7 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
PART 3 - EXECUTION

3.1 SENSOR INSTALLATION
 A. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 CONTACTOR INSTALLATION
 A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.3 WIRING INSTALLATION
 A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables". Minimum conduit size shall be 3/4 inch.
 B. Wiring within Enclosures: Comply with NEC 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
 C. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated.
 D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION
 A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems".
 1. Identify controlled circuits in lighting contactors.
 2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor.
 B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL
 A. Perform the following field tests and inspections and prepare test reports:
 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.
 2. Operational Test: Verify operation of each lighting control device, and adjust time delays.
 B. Lighting control devices that fail tests and inspections are defective work.
3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of final acceptance by Owner, provide on-site assistance in adjusting sensors to suit occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.7 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control system specified in Division 26 Section "Network Lighting Controls".

B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices. Refer to Division 01 Section "Demonstration and Training".

END OF SECTION 260923
SECTION 262413 – GROUP MOUNTED CIRCUIT BREAKER DISTRIBUTION SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Service and distribution switchboards rated 600 V and less.
2. Transient voltage suppression devices.
3. Disconnecting and overcurrent protective devices.
4. Instrumentation.
5. Control power.
6. Accessory components and features.
7. Identification.
8. Mimic bus.

1.3 SUBMITTALS

A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

B. Shop Drawings: For each switchboard and related equipment.

1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
2. Detail enclosure types for types other than NEMA 250, Type 1.
3. Detail bus configuration, current, and voltage ratings.
5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
8. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.
9. Include diagram and details of proposed mimic bus.
10. Include schematic and wiring diagrams for power, signal, and control wiring.

C. Qualification Data: For qualified Installer.
D. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section “Operation and Maintenance Data,” include the following:
 1. Routine maintenance requirements for switchboards and all installed components.
 2. Manufacturer’s written instructions for testing and adjusting overcurrent protective devices.
 3. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.

F. Equipment specified in this section will not be reviewed without the preliminary study specified in Section 260573 Overcurrent Protective Device Short Circuit-Circuit, Coordination, Arc-Flash Study.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.
B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
E. Comply with NEMA PB 2.
F. Comply with NFPA 70.
G. Comply with UL 891.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.
B. Remove loose packing and flammable materials from inside switchboards to prevent condensation. Switchboards shall not be stored outdoors, subjected to weather.
C. Handle and prepare switchboards for installation according to NEMA PB 2.1.
1.6 PROJECT CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations:
 1. Do not deliver or install switchboards until spaces are enclosed and weather tight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

C. Service Conditions: NEMA PB 2, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Architect's written permission.
 4. Comply with NFPA 70E.

1.7 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five (5) years from date of final acceptance by Owner.
PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. The switchboard shall be Cutler-Hammer type Power-R-Line C utilizing the components herein specified and as shown on the drawings. Equivalent switchboards supplied by manufacturers listed herein will be acceptable. The assembly shall be rated to withstand mechanical forces exerted during short circuit conditions when connected directly to a power source having a minimum available fault current of 65,000 amperes symmetrical at rated voltage. Higher short circuit ratings may be required. Refer to drawings for equal or greater short circuit current ratings and provide UL listed equipment with rating shown.

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. GE/ABB.
4. Square D; a brand of Schneider Electric.

C. Front-Connected, Front-Accessible Switchboards:

1. Main Devices: Fixed, individually mounted.
3. Sections front and rear aligned.

D. Front- and Side-Accessible Switchboards:

1. Main Devices: Fixed, individually mounted.
3. Sections front and rear aligned.

E. Front- and Rear-Accessible Switchboards:

1. Main Devices: Fixed, individually mounted.
2. Branch Devices: Panel and fixed, individually mounted.
3. Sections front and rear aligned.

F. Nominal System Voltage: As indicated on drawings.

G. Main-Bus Continuous: Capacity as indicated on drawings.

H. Indoor Enclosures: Steel, NEMA 250, Type 1. All switchboards shall be minimum 90 inches tall.

I. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

J. Outdoor Enclosures: Type 3R.

1. Finish: Factory-applied finish in manufacturer's standard color; undersurfaces treated with corrosion-resistant undercoating.
2. Enclosure: Downward, rearward sloping roof; bolt-on rear covers for each section, with provisions for padlocking.

K. Barriers: Between adjacent switchboard sections.

L. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.

M. Utility Metering Compartment: Fabricated, barrier compartment and section complying with utility company's requirements; hinged sealed door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.

N. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

O. Removable, Hinged Rear Doors and Compartment Covers: Secured by captive thumb screws, for access to rear interior of switchboard.

P. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

Q. Pull Box on Top of Switchboard:
 1. Adequate ventilation to maintain temperature in pull box within same limits as switchboard.
 2. Set back from front to clear circuit-breaker removal mechanism.
 3. Removable covers shall form top, front, and sides. Top covers at rear shall be easily removable for drilling and cutting.
 4. Bottom shall be insulating, fire-resistive material with separate holes for cable drops into switchboard.
 5. Cable supports shall be arranged to facilitate cabling and adequate to support cables indicated, including those for future installation.

R. Buses and Connections: Three phase, four wire unless otherwise indicated.
 2. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with compression connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 3. Ground Bus: 1/4-by-2-inch- hard-drawn copper of 98 percent conductivity, equipped with compression connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
 4. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 5. Neutral Buses: 50 percent of the ampacity of phase buses unless otherwise indicated, equipped with compression connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
6. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with compression connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.

S. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

T. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.

U. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components including instruments and instrument transformers.

2.2 TRANSIENT VOLTAGE SUPPRESSION DEVICES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Surge Protection Device Description: IEEE C62.41-compliant, integrally mounted, wired-in, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the switchboard short-circuit rating, and with the following features and accessories:

1. Fuses, rated at 200-kA interrupting capacity.
2. Fabrication using bolted compression lugs for internal wiring.
3. Integral disconnect switch.
4. Redundant suppression circuits.
5. Redundant replaceable modules.
6. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
7. LED indicator lights for power and protection status.
8. Audible alarm, with silencing switch, to indicate when protection has failed.
9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
10. Four-digit, transient-event counter set to totalize transient surges.

C. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase.

D. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

E. Protection modes and UL 1449 SVR for grounded, three-phase, four-wire circuits shall be as follows:

1. Line to Neutral: 800 V for 480Y/277/400 V for 208Y/120.
2. Line to Ground: 800 V for 480Y/277/400 V for 208Y/120.
3. Neutral to Ground: 800 V for 480Y/277/400 V for 208Y/120.

F. Protection modes and UL 1449 SVR for 240/120-V, three-phase, four-wire circuits with high leg shall be as follows:
1. Line to Neutral: 400 V, 800 V from high leg.
2. Line to Ground: 400 V.
3. Neutral to Ground: 400 V.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I²t response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
6. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 f. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring and Control."
g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at [55] [75] percent of rated voltage.
h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
i. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
j. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

2.4 INSTRUMENTATION

A. Instrument Transformers: IEEE C57.13, NEMA EI 21.1, and the following:

1. Potential Transformers: IEEE C57.13; 120 V, 60 Hz, tapped secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.

2. Current Transformers: IEEE C57.13; 5 A, 60 Hz, secondary; bar or window type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.

3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:

 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Megawatts: Plus or minus 2 percent.
 e. Megavars: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent; accumulated values unaffected by power outages up to 72 hours.
 i. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from five to 60 minutes.
 j. Contact devices to operate remote impulse-totalizing demand meter.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

1. Meters: 4-inch diameter, flush or semiflush, with antiparallax 250-degree scales and external zero adjustment.
2. Voltmeters: Cover an expanded-scale range of nominal voltage plus 10 percent.
D. Instrument Switches: Rotary type with off position.
 1. Voltmeter Switches: Permit reading of all phase-to-phase voltages and, where a neutral is indicated, phase-to-neutral voltages.
 2. Ammeter Switches: Permit reading of current in each phase and maintain current-transformer secondaries in a closed-circuit condition at all times.

E. Feeder Ammeters: 2-1/2-inch minimum size with 90- or 120-degree scale. Meter and transfer device with off position, located on overcurrent device door for indicated feeder circuits only.

F. Watt-Hour Meters and Wattmeters:
 2. Three-phase induction type with two stators, each with current and potential coil, rated 5 A, 120 V, 60 Hz.
 3. Suitable for connection to three- and four-wire circuits.
 4. Potential indicating lamps.
 5. Adjustments for light and full load, phase balance, and power factor.
 6. Four-dial clock register.
 7. Integral demand indicator.
 8. Contact devices to operate remote impulse-totalizing demand meter.
 9. Ratchets to prevent reverse rotation.
 10. Removable meter with drawout test plug.
 11. Semiflush mounted case with matching cover.

G. Impulse-Totalizing Demand Meter:
 2. Suitable for use with switchboard watt-hour meter, including two-circuit totalizing relay.
 3. Cyclometer.
 4. Four-dial, totalizing kilowatt-hour register.
 5. Positive chart drive mechanism.
 6. Capillary pen holding a minimum of one month's ink supply.
 7. Roll chart with minimum 31-day capacity; appropriate multiplier tag.
 8. Capable of indicating and recording [five] [15] [30]-minute integrated demand of totalized system.

2.5 CONTROL POWER

A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer.

B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.
2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

C. Overhead Circuit-Breaker Lifting Device: Mounted at top front of switchboard, with hoist and lifting yokes matching each drawout circuit breaker.

D. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

2.7 IDENTIFICATION

A. Mimic Bus: Continuously integrated mimic bus factory applied to front of switchboard. Arrange in single-line diagram format, using symbols and letter designations consistent with final mimic-bus diagram.

B. Coordinate mimic-bus segments with devices in switchboard sections to which they are applied. Produce a concise visual presentation of principal switchboard components and connections.

C. Presentation Media: Painted graphics in color contrasting with background color to represent bus and components, complete with lettered designations.

D. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store switchboards according to NEMA PB 2.1.

B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.

C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install switchboards and accessories according to NECA 400 and NEMA PB 2.1.

B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Division 03 Section "Cast-in-Place Concrete".
1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to switchboards.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.

D. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems".

E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

F. Install filler plates in unused spaces of panel-mounted sections.

G. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
 1. Set field-adjustable switches and circuit-breaker trip ranges.

H. Install spare-fuse cabinet.

I. Comply with NECA 1.

3.3 CONNECTIONS

A. Comply with requirements for terminating feeder bus specified in Division 26 Section "Enclosed Bus Assemblies". Drawings indicate general arrangement of bus, fittings, and specialties.

B. Comply with requirements for terminating cable trays specified in Division 26 Section "Cable Trays for Electrical Systems". Drawings indicate general arrangement of cable trays, fittings, and specialties.

3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems".

B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems".

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with
requirements for identification specified in Division 26 Section "Identification for Electrical Systems".

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:
 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front and rear panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard eleven (11) months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

E. Switchboard will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study".

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories, and to use and reprogram microprocessor-based trip, monitoring, and communication units.

END OF SECTION 262413
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Lighting and appliance branch-circuit panelboards.
 2. Load centers.
 3. Electronic-grade panelboards.

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.

B. TVSS: Transient voltage surge suppressor.

1.4 SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.
 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

C. Field Quality-Control Reports:
 1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Panelboard Schedules: As indicated on drawings.

E. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section “Operation and Maintenance Data,” include the following:
 1. Manufacturer’s written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

F. Equipment specified in this section will not be reviewed without the preliminary study specified in Section 260573 Overcurrent Protective Device Short Circuit-Circuit, Coordination, Arc-Flash Study.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.7 PROJECT CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect no fewer than seven days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Architect's written permission.
 3. Comply with NFPA 70E.

1.8 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of final acceptance by Owner.

1.10 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Enclosures: Flush- and surface-mounted cabinets.
1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Kitchen and Wash-Down Areas: NEMA 250, Type 4X.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.

2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

6. Finishes:
 a. Panels and Trim: Steel or galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer’s standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Same finish as panels and trim.

B. Incoming Mains Location: Top or bottom.

C. Phase, Neutral, and Ground Buses:
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
 5. Split Bus: Vertical buses divided into individual vertical sections.

D. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Main and Neutral Lugs: Compression type.
 3. Ground Lugs and Bus-Configured Terminators: Compression type.
 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 7. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
E. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

F. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Panelboards rated 240 Vac or less shall be equipped with bolt on branch circuit breakers, panelboards shall have short circuit ratings as shown on the drawings or as herein scheduled, but not less than 10,000 amperes RMS symmetrical. Panelboards rated 480/277 Vac shall be equipped with bolt on branch circuit breakers, panelboards shall have short ratings as shown on the drawings or as hereinbefore scheduled, but not less than 14,000 amperes RMS symmetrical.

G. Size and location of panels shall be as shown on drawings. In general, all panelboards shall be 42 circuits capacity unless noted otherwise.

2.2 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

2.3 LOAD CENTERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Load Centers: Comply with UL 67.

C. Mains: Circuit breaker.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.
E. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

2.4 ELECTRONIC-GRADE PANELBOARDS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Current Technology; a subsidiary of Danahar Corporation.
2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Liebert Corporation.
5. Siemens Energy & Automation, Inc.
6. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1; with factory-installed, integral TVSS; labeled by an NRTL for compliance with UL 67 after installing TVSS.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

D. Main Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.

E. Branch Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.

F. Buses:

1. Copper phase and neutral buses; 200 percent capacity neutral bus and lugs.
2. Copper equipment and isolated ground buses.

G. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, bolt-on, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, short-circuit current rating complying with UL 1449, second edition, and matching or exceeding the panelboard short-circuit rating, redundant suppression circuits, with individually fused metal-oxide varistors.

1. Accessories:

 a. Fuses rated at 200-kA interrupting capacity.
 b. Fabrication using bolted compression lugs for internal wiring.
 c. Integral disconnect switch.
 d. Redundant suppression circuits.
 e. Redundant replaceable modules.
 f. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 g. LED indicator lights for power and protection status.
 h. Audible alarm, with silencing switch, to indicate when protection has failed.
 i. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.

a. Line to Neutral: 70,000 A.
b. Line to Ground: 70,000 A.
c. Neutral to Ground: 50,000 A.

4. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

5. Protection modes and UL 1449 SVR for grounded wye, three-phase, four-wire circuits shall be as follows:
 a. Line to Neutral: 800 V for 480Y/277/400 V for 208Y/120.
 b. Line to Ground: 800 V for 480Y/277/400 V for 208Y/120.
 c. Neutral to Ground: 800 V for 480Y/277/400 V for 208Y/120.

6. Protection modes and UL 1449 SVR for 240/120-V, single-phase, three-wire circuits shall be as follows:
 a. Line to Neutral: 400 V.
 b. Line to Ground: 400 V.
 c. Neutral to Ground: 400 V.

7. Protection modes and UL 1449 SVR for 240/120-V, three-phase, four-wire circuits with high leg shall be as follows:
 a. Line to Neutral: 400 V, 800 V from high leg.
 b. Line to Ground: 400 V.
 c. Neutral to Ground: 400 V.

8. Protection modes and UL 1449 SVR for 240-, 480-, or 600-V, three-phase, three-wire, delta circuits shall be as follows:
 a. Line to Line: 2000 V for 480 V/1000 V for 240 V.
 b. Line to Ground: 1500 V for 480 V/800 V for 240 V.

2.5 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.

B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems".

C. Mount top of trim 74 inches above finished floor unless otherwise indicated.

D. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

E. Install overcurrent protective devices and controllers not already factory installed.

 1. Set field-adjustable, circuit-breaker trip ranges.

F. Install filler plates in unused spaces.

G. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future.

H. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

I. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems".

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems".

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems".
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports; including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated in Division 26 Section "Overcurrent Protective Device Coordination Study".

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
1. Measure as directed during period of normal system loading.
2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Twist-locking receptacles.
3. Wall-box motion sensors.
4. Snap switches and wall-box dimmers.
5. Solid-state fan speed controls.
6. Wall-switch and exterior occupancy sensors.
7. Pendant cord-connector devices.
8. Cord and plug sets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing label warnings and instruction manuals that include labeling conditions.
1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1. Cord and Plug Sets: Match equipment requirements.

1.7 EXTRA MATERIALS

A. Furnish extra materials described in subparagraphs below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Outlet Assemblies: One for every 10 installed, but no fewer than one.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers’ Names: Subject to compliance with requirements, provide products by one of the following:

1. Wiring Devices (Receptacles, Switches):
 a. Cooper Wiring Devices.
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Mfg. Company Inc.
 d. Pass & Seymour/Legrand; Wiring Devices Div.

2. Wiring Devices for Hazardous (Classified) Locations:
 b. EGS/Appleton Electric Company.
 c. Killark Electric Manufacturing Co./Hubbell Incorporated.

3. Occupancy Sensors:
 a. Cooper Industries, Inc.
 b. Hubbell Incorporated.
2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, UL 498, and FS W-C-596.

1. Description: Grounding system shall be all brass and integral to the wrap around mounting strap (single-piece with no rivets or mechanical connections in the primary path between the point of ground wire termination and ground blades). NOTE: specific catalog numbers are not listed below. This product description (or similar verbiage) must be highlighted in the submittal documents to confirm this performance requirement has been satisfied.

B. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

1. Description: Labeled to comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A.

C. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with UL 498 Supplement SD.

2.4 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES

A. Comply with NEMA FB 11 and UL 1010.
2.5 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
 1. Description: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.6 PENDANT CORD-CONNECTOR DEVICES

A. Description: Matching, locking-type plug and receptacle body connector; NEMA WD 6 configurations L5-20P and L5-20R, heavy-duty grade.
 2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.7 CORD AND PLUG SETS

A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent.

2.8 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A.

C. Switches shall be heavy-duty, quiet type.

D. Pilot Light Switches, 20 A:
 1. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON".

E. Key-Operated Switches, 120/277 V, 20 A:
 1. Description: Single pole, with factory-supplied key in lieu of switch handle.
F. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.

G. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

2.9 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.

 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "OFF."

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.10 FAN SPEED CONTROLS

A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.

 1. Continuously adjustable rotary knob, 5 A.
 2. Three-speed adjustable rotary knob, 1.5 A.

2.11 OCCUPANCY SENSORS

A. Wall-Switch Sensors:

 1. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft.

B. Wall-Switch Sensors:

 1. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft.

C. Long-Range Wall-Switch Sensors:

 1. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, with a minimum coverage area of 1200 sq. ft.
1. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft.

E. Wide-Range Wall-Switch Sensors:

1. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft.

F. Exterior Occupancy Sensors:

1. Description: Passive-infrared type, 120/277 V, weatherproof, adjustable time delay up to 15 minutes, 180-degree field of view, and 110-foot detection range. Minimum switch rating: 1000-W incandescent, 500-VA fluorescent.

2.12 WALL PLATES

A. Single and combination types to match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: Smooth, high-impact thermoplastic or 0.035-inch-thick, satin-finished stainless steel or 0.04-inch-thick steel with chrome-plated finish.
4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations".

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover.

2.13 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Round, die-cast aluminum with satin finish.

D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Two modular, keyed, color-coded, RJ-45 Category 5e jacks for UTP cable.

2.14 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.

1. Wiring Devices Connected to Normal Power System: Ivory or White or As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.
PART 3 - EXECUTION

3.1 APPLICATION

A. Wiring devices, on emergency power circuits, shall be red in color.

B. Tamper resistant receptacles shall be utilized in all Pediatrics’ areas, children’s play areas, public waiting rooms and public toilet rooms.

C. Stainless steel wall plates shall be utilized for switches and receptacles, on normal power, located in critical areas (Surgery, PACU, Delivery, Nursery, ICU, Cath Lab, etc.) within Healthcare facilities.

D. All wall plates, serving normal power devices, within a room or area shall be same type – either thermoplastic or stainless steel. Mix matching of wall plates shall not be acceptable.

3.2 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:

1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.

2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.

3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.

4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.

2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.

3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

4. Existing Conductors:

 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:

1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtail that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtail for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
10. Install devices and assemblies level, plumb and square with building lines.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles at top, and on horizontally mounted receptacles to the right.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
3. Install ground pin of vertically mounted receptacles, located more than 60" above floor, at bottom.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

J. Install GFCI receptacles as shown on drawings and within 60 inches of water source.

3.3 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems".
1. Receptacles and Switch Wall Plates: Identify panelboard and circuit number from which served. Use engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.
3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

END OF SECTION 262726
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fusible disconnect switches.
2. Nonfusible disconnect switches.
3. Receptacle switches.
4. Shunt trip switches.
5. Molded-case circuit breakers (MCCBs).
7. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Include evidence of NRTL listing for series rating of installed devices.
5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
1. Wiring Diagrams: For power, signal, and control wiring.

C. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

E. Equipment specified in this section will not be reviewed without the preliminary study specified in Section 260573 Overcurrent Protective Device Short Circuit-Circuit, Coordination, Arc-Flash Study.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect no fewer than seven days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Architect's written permission.
4. Comply with NFPA 70E.

1.7 COORDINATION
A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than one of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Subject to compliance with requirements, provide products by one of the following:
2. General Electric Company.
4. Square D; Group of Schneider Electric.

2.2 FUSIBLE DISCONNECT SWITCHES
A. Type GD, General Duty, Single Throw, 240-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with cartridge fuse interiors to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
C. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
D. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper neutral conductors.
3. **Isolated Ground Kit**: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper neutral conductors.

4. **Class R Fuse Kit**: Provides rejection of other fuse types when Class R fuses are specified.

5. **Auxiliary Contact Kit**: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.

6. **Lugs**: Compression type, suitable for number, size, and conductor material.

7. **Service-Rated Switches**: Labeled for use as service equipment.

2.3 NONFUSIBLE DISCONNECT SWITCHES

A. Type GD, General Duty, Single Throw, 600 A and Smaller:
- UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller:
- UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller:
- UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Accessories:

1. **Equipment Ground Kit**: Internally mounted and labeled for copper ground conductors.
2. **Neutral Kit**: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper neutral conductors.
3. **Isolated Ground Kit**: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper neutral conductors.
4. **Auxiliary Contact Kit**: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
5. **Lugs**: Compression type, suitable for number, size, and conductor material.

2.4 MOLDED-CASE CIRCUIT BREAKERS

A. General Requirements:
- Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

B. Thermal-Magnetic Circuit Breakers:
- Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

C. Adjustable, Instantaneous-Trip Circuit Breakers:
- Magnetic trip element with front-mounted, field-adjustable trip setting.

D. Electronic Trip Circuit Breakers:
- Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. **Instantaneous trip.**
 2. **Long- and short-time pickup levels.**
 3. **Long- and short-time time adjustments.**
4. Ground-fault pickup level, time delay, and i^2t response.

E. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

F. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

I. Features and Accessories:

1. Standard frame sizes, trip ratings, and number of poles.
2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
6. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
7. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
8. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

2.5 MOLDED-CASE SWITCHES

A. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

B. Features and Accessories:

1. Standard frame sizes and number of poles.
2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.

2.6 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
3. Kitchen and Wash-Down Areas: NEMA 250, Type 4X.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems" Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

C. Install fuses in fusible devices.

D. Comply with NECA 1.

E. Circuit breakers and switches installed in existing switchgear and switchboard shall have interrupting capacity to match interrupting capacity of switchgear, switchboard, panelboard in which they are installed.

3.3 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker eleven (11) months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

E. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study".

END OF SECTION 262816
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes lightning protection for building elements.

1.3 DEFINITIONS
 A. LPI: Lightning Protection Institute.
 B. NRTL: National recognized testing laboratory.

1.4 SUBMITTALS
 A. Product Data: For air terminals and mounting accessories.
 B. Shop Drawings: Detail lightning protection system, including air-terminal locations, conductor routing and connections, and bonding and grounding provisions. Include indications for use of raceway, data on how concealment requirements will be met, and calculations required by NFPA 780 for bonding of grounded and isolated metal bodies.
 C. Qualification data for firms and persons specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include data on listing or certification by an NRTL or LPI.
 D. Certification, signed by Contractor, that roof adhesive for air terminals is approved by manufacturers of both the terminal assembly and the single-ply membrane roofing material.
 E. Field inspection reports indicating compliance with specified requirements.

1.5 QUALITY ASSURANCE
 A. Installer Qualifications: Engage an experienced installer who is an NRTL or who is certified by LPI as a Master Installer/Designer.
 B. Listing and Labeling: As defined in NFPA 780, "Definitions" Article.
 C. Provide UL Master label for the system.

SECTION 264113 - LIGHTNING PROTECTION FOR STRUCTURES
1.6 COORDINATION

A. Coordinate installation of lightning protection with installation of other building systems and components, including electrical wiring, supporting structures and building materials, metal bodies requiring bonding to lightning protection components, and building finishes.

B. Coordinate installation of air terminals attached to roof systems with roofing manufacturer and Installer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. A-C Lighting Co.
2. ERICO International Corporation.
4. Preferred Lighting Protection.
5. Robbins Lightning Inc.

2.2 LIGHTNING PROTECTION SYSTEM COMPONENTS

A. Comply with UL 96.

B. Roof-Mounting Air Terminals: NFPA Class I or II, aluminum or copper, solid, unless otherwise indicated.

C. Stack-Mounting Air Terminals: Stainless steel.

D. Ground Rods, Ground Loop Conductors, and Concrete-Encased Electrodes: Comply with Division 26 Section "Grounding and Bonding for Electrical Systems" and with standards referenced in this Section.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to UL 96A and NFPA 780.

B. Install conductors with direct paths from air terminals to ground connections. Avoid sharp bends and narrow loops.

C. Conceal the following conductors:
1. System conductors.
2. Down conductors.
3. Interior conductors.
4. Conductors within normal view from exterior locations at grade within 200 feet of building.
5. Notify Architect at least 48 hours in advance of inspection before concealing lightning protection components.

D. Cable Connections: Use approved exothermic-welded connections for all conductor splices and connections between conductors and other components, except those above single-ply membrane roofing.

E. Air Terminals on Single-Ply Membrane Roofing: Comply with adhesive manufacturer's written instructions.

F. Bond extremities of vertical metal bodies exceeding 60 feet in length to lightning protection components.

G. A counterpoise installation based on requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" may be used as a ground loop required by NFPA 780, provided counterpoise conductor meets or exceeds minimum requirements in NFPA 780.

1. Bond ground terminals to counterpoise conductor.
2. Bond grounded metal bodies on building within 12 feet of ground to counterpoise conductor.
3. Bond grounded metal bodies on building within 12 feet of roof to counterpoise conductor.

H. Bond lightning protection components with intermediate-level interconnection loop conductors to grounded metal bodies of building at 60-foot intervals.

3.2 CORROSION PROTECTION

A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.

B. Use conductors with protective coatings where conditions would cause deterioration or corrosion of conductors.

3.3 FIELD QUALITY CONTROL

A. UL Inspection: Provide inspections as required to obtain a UL Master Label for system.

B. Provide an inspection by an inspector certified by LPI to obtain an LPI certification.

END OF SECTION 264113
SECTION 264313 - TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes field-mounted TVSS for low-voltage (120 to 600 V) power distribution and control equipment.
 B. Related Sections:
 1. Division 26 Section "Switchboards" for factory-installed TVSS.

1.3 DEFINITIONS
 B. SVR: Suppressed voltage rating.
 C. TVSS: Transient voltage surge suppressor(s), both singular and plural; also, transient voltage surge suppression.

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated. Include rated capacities, operating weights, electrical characteristics, furnished specialties, and accessories.
 B. Product Certificates: For TVSS devices, from manufacturer.
 C. Field quality-control reports.
 D. Operation and Maintenance Data: For TVSS devices to include in emergency, operation, and maintenance manuals.
 E. Warranties: Sample of special warranties.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency, and marked for intended location and application.
B. Comply with IEEE C62.41.2 and test devices according to IEEE C62.45.

C. Comply with NEMA LS 1.

D. Comply with UL 1283 and UL 1449.

E. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Architect no fewer than seven in advance of proposed electrical service interruptions.
2. Do not proceed with interruption of electrical service without Architect's written permission.

B. Service Conditions: Rate TVSS devices for continuous operation under the following conditions unless otherwise indicated:

1. Maximum Continuous Operating Voltage: Not less than 115 percent of nominal system operating voltage.
2. Operating Temperature: 30 to 120 deg F.
3. Humidity: 0 to 85 percent, noncondensing.
4. Altitude: Less than 6,000 feet above sea level.

1.7 COORDINATION

A. Coordinate location of field-mounted TVSS devices to allow adequate clearances for maintenance.

B. Coordinate TVSS devices with Division 26 Section "Electrical Power Monitoring and Control".

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of final acceptance by Owner.

B. Special Warranty for Cord-Connected, Plug-in Surge Suppressors: Manufacturer's standard form in which manufacturer agrees to repair or replace electronic equipment connected to circuits protected by surge suppressors.
1.9 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB USA.

1.10 SERVICE ENTRANCE SUPPRESSORS

A. Surge Protection Devices:

1. Comply with UL 1449.
2. Modular design (with field-replaceable modules).
3. Fuses, rated at 200-kA interrupting capacity.
4. Fabrication using bolted compression lugs for internal wiring.
5. Integral disconnect switch.
6. Redundant suppression circuits.
7. Redundant replaceable modules.
8. Arrangement with copper bus bars and for bolted connections to phase buses, neutral bus, and ground bus.
9. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
10. LED indicator lights for power and protection status.
11. Audible alarm, with silencing switch, to indicate when protection has failed.
12. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
13. Four-digit transient-event counter set to totalize transient surges.

B. Peak Single-Impulse Surge Current Rating: 320 kA per mode/640 kA per phase.

C. Minimum single impulse current ratings, using 8-by-20-mic.sec waveform described in IEEE C62.41.2

1. Line to Neutral: 70,000 A.
2. Line to Ground: 70,000 A.
3. Neutral to Ground: 50,000 A.

D. Protection modes and UL 1449 SVR for grounded wye circuits with 480Y/277 V/208Y/120 V, 3-phase, 4-wire circuits shall be as follows:

1. Line to Neutral: 800 V for 480Y/277 V and 400 V for 208Y/120 V.
2. Line to Ground: 800 V for 480Y/277 V and 400 V for 208Y/120 V.
3. Neutral to Ground: 800 V for 480Y/277 V and 400 V for 208Y/120 V.

E. Protection modes and UL 1449 SVR for 240/120 V, single-phase, 3-wire circuits shall be as follows:

1. Line to Neutral: 400 V.
2. Line to Ground: 400 V.
3. Neutral to Ground: 400 V.

F. Protection modes and UL 1449 SVR for 240/120-V, 3-phase, 4-wire circuits with high leg shall be as follows:
 1. Line to Neutral: 400 V, 800 V from high leg.
 2. Line to Ground: 400 V.
 3. Neutral to Ground: 400 V.

G. Protection modes and UL 1449 SVR for 240 V, 480 V, or 600 V, 3-phase, 3-wire, delta circuits shall be as follows:
 1. Line to Line: 2000 V for 480 V and 1000 V for 240 V.
 2. Line to Ground: 2000 V for 480 V and 1000 V for 240 V.

1.11 ENCLOSURES

A. Indoor Enclosures: NEMA 250 Type 1.

B. Outdoor Enclosures: NEMA 250 Type 3R.

PART 2 - EXECUTION

2.1 INSTALLATION

A. Install TVSS devices at service entrance on load side, with ground lead bonded to service entrance ground.

2.2 APPLICATION

A. The TVSS applications covered under this section include distribution and branch panel locations and switchboard assemblies. Assemblies requiring TVSS units are indicated on equipment schedules. The branch panel located TVSS shall be tested and demonstrate they are suitable for ANSI/IEEE C62.41 Category C1 environments.

B. Switchboard Requirements:
 1. The TVSS application covered under this section is for switchboards. The TVSS units shall be tested and suitable for ANSI/IEEE C62.41 Category C3 environments.
 2. Switchboard suppressors shall be installed in the assembly by assembly manufacturer.
 3. Withstand: Each unit must be capable of surviving more than 2500 ANSI/IEEE C62.41 Category C1 transients without failure or degradation of UL 1449 Suppression voltage Rating.
 4. Locate suppressor on load side of main disconnect device, as close as possible to the phase conductors and ground/neutral bar.
 5. Provide a 60 amp disconnect. The disconnect shall be directly integrated to the suppressor and assembly bus using bolted bus bar connections.
 6. All mounting diagnostics features such as indicator lights, trouble alarms and surge counter shall be mounted on the front of the switchboard or switchgear.
2.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

1. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, "Surge Arresters, Low-Voltage Surge Protection Devices" Section. Certify compliance with test parameters.
2. After installing TVSS devices but before electrical circuitry has been energized, test for compliance with requirements.
3. Complete startup checks according to manufacturer's written instructions.

D. TVSS device will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

2.4 STARTUP SERVICE

A. Do not energize or connect switchboards or panelboards to their sources until TVSS devices are installed and connected.

B. Do not perform insulation resistance tests of the distribution wiring equipment with the TVSS installed. Disconnect before conducting insulation resistance tests, and reconnect immediately after the testing is over.

2.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to maintain TVSS devices.

END OF SECTION 264313
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Interior lighting fixtures, lamps, and ballasts.
2. Emergency lighting units.
3. Exit signs.
4. Lighting fixture supports.

1.3 DEFINITIONS

A. BF: Ballast factor.
B. CRI: Color-rendering index.
C. CU: Coefficient of utilization.
D. HID: High-intensity discharge.
E. LER: Luminaire efficacy rating.
F. Luminaire: Complete lighting fixture, including ballast housing if provided.
G. RCR: Room cavity ratio.

1.4 SUBMITTALS

A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:

1. Physical description of lighting fixture including dimensions.
2. Emergency lighting units including battery and charger.
5. Life, output, and energy-efficiency data for lamps.
6. Photometric data, in IESNA format, based on laboratory tests of each lighting fixture type, outfitted with lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
a. For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by the manufacturer.
b. Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program (NVLAP) for Energy Efficient Lighting Products.

B. Shop Drawings: Show details of nonstandard or custom lighting fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories.

C. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Lighting fixtures.
 2. Suspended ceiling components.
 3. Structural members to which suspension systems for lighting fixtures will be attached.

D. Samples for Verification: Interior lighting fixtures designated for sample submission in Interior Lighting Fixture Schedule. Each sample shall include the following:
 1. Lamps: Specified units installed.
 2. Accessories: Cords and plugs.

E. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, signed by product manufacturer.

F. Field quality-control test reports.

G. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.

H. Warranties: Special warranties specified in this Section.

1.5 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

D. FMG Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FMG.

E. Mockups: Provide interior lighting fixtures for room or module mockups, complete with power and control connections.
 1. Obtain Architect's approval of fixtures for mockups before starting installations.
2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
3. Approved fixtures in mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.7 WARRANTY

A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of final acceptance by Owner. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.

B. Special Warranty for Ballasts: Manufacturer's standard form in which ballast manufacturer agrees to repair or replace ballasts that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Electronic Ballasts: Five years from date of final acceptance by Owner.
2. Warranty Period for Electromagnetic Ballasts: Three years from date of final acceptance by Owner.

C. Special Warranty for T5 and T8 Fluorescent Lamps: Manufacturer's standard form, made out to Owner and signed by lamp manufacturer agreeing to replace lamps that fail in materials or workmanship, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.

1. Warranty Period: Two year(s) from date of final acceptance by Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

B. In Interior Lighting Fixture Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
2. **Troffers:**
 a. Columbia Lighting; Division of Hubbell Lighting.
 b. H.E. Williams, Inc.
 c. Lithonia Lighting.
 d. LSI Midwest Lighting.
 e. Metalux.

3. **Strip Fluorescent Fixtures:**
 a. Columbia Lighting; Division of Hubbell Lighting.
 b. H.E. Williams, Inc.
 c. Lithonia Lighting.
 d. LSI Midwest Lighting.
 e. Metalux.

4. **Under Cabinet Fixtures:**
 a. ALKCO; Division of JJI Lighting Group Co.
 b. Columbia Lighting.
 c. H.E. Williams, Inc.
 d. Lithonia Lighting.
 e. LSI Midwest Lighting.
 f. Metalux.
 g. Nulite Limited.

5. **Exit Signs and Emergency Lighting:**
 a. Dual-Lite; Division of Hubbell Lighting.
 b. Emergi-lite; Division of Thomas and Betts.
 c. Failsafe; Division of Cooper Lighting.
 d. Hubbell Lighting, Inc.
 e. Lithonia Lighting.
 f. Prescolite; Division of Hubbell Lighting.
 g. Surelite; division of Cooper Lighting.

6. **Downlighting (Recessed, Surface, HID):**
 a. Edison Price Lighting.
 b. Halo; Division of Cooper Lighting.
 c. Hubbell Lighting, Inc.
 d. Infinity Lighting.
 e. The Kirlin Company.
 f. Kurt Versen Co.
 g. Lithonia Lighting.
 h. Lightolier; Division of Genlyte Thomas Co.
 i. Prescolite; division of Hubbell Lighting.
 j. Rambusch Lighting.

C. In order to create a controlled, competitive bidding climate, the Lighting Fixture Schedule, as indicated on the drawings, was developed around the manufacturer listed in the schedule. Equal products from the manufacturers listed will be acceptable. In limited circumstances, for various reasons, certain fixtures were deemed to be proprietary. In these cases, the language, “No substitutions”, is intended to provide the electrical distributors bidding the job with the ability...
to assemble the most competitive lump sum price for the lighting fixture/lamp package. The electrical distributor, therefore, has the authority to require unit pricing from the manufacturer’s representatives for those products so specified.

D. Light Fixture Schedule as indicated on drawings.

E. Lamps: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2. Philips Electronics.
4. Osram Sylvania.
5. Westinghouse Corporation.

F. Ballasts: Subject to compliance with requirements, provide products by one of the manufacturers specified.

1. Advance; Division of Philips Electronics.
2. General Electric Company.
3. Lutron Products.
4. Osram Sylvania.
5. Universal.

2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS

A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.

B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.

C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.

D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.

E. Metal Parts: Free of burrs and sharp corners and edges.

F. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.

G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

H. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.
4. Laminated Silver Metallized Film: 90 percent.
I. Plastic Diffusers, Covers, and Globes:

1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inch minimum unless different thickness is indicated.
 b. UV stabilized.

2. Glass: Annealed crystal glass, unless otherwise indicated.

J. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagnetic-interference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.

2.3 EXIT SIGNS

A. Description: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:

1. Lamps for AC Operation: LEDs, 70,000 hours minimum rated lamp life.
2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 g. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and flashing red LED.

3. Master/Remote Sign Configurations:

 a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in LED power supply for power connection to remote unit.
 b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.
2.4 EMERGENCY LIGHTING UNITS

A. Description: Self-contained units complying with UL 924.

1. Battery: Sealed, maintenance-free, lead-acid type.
2. Charger: Fully automatic, solid-state type with sealed transfer relay.
3. Operation: Relay automatically turns lamp on when power supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
6. Wire Guard: Heavy-chrome-plated wire guard protects lamp heads or fixtures.
7. Integral Time-Delay Relay: Holds unit on for fixed interval of 15 minutes when power is restored after an outage.
8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and flashing red LED.

2.5 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.

C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.

E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.

F. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.

B. Support for Lighting Fixtures in or on Grid-Type Suspended Ceilings: Use grid as a support element.

1. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches from lighting fixture corners.
2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
4. Install at least two independent support rods or wires from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.

C. Suspended Lighting Fixture Support:

1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.

D. Adjust aimable lighting fixtures to provide required light intensities.

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables".

3.2 FIELD QUALITY CONTROL

A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.

B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

END OF SECTION 265100
SECTION 265600 - EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Exterior luminaires with lamps and ballasts.
 2. Luminaire-mounted photoelectric relays.

B. Related Sections include the following:
 1. Division 26 Section "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.3 DEFINITIONS

A. CRI: Color-rendering index.
B. HID: High-intensity discharge.
C. Luminaire: Complete lighting fixture, including ballast housing if provided.
D. Pole: Luminaire support structure, including tower used for large area illumination.
E. Standard: Same definition as "Pole" above.

1.4 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION

A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4.

B. Live Load: Single load of 500 lbf, distributed as stated in AASHTO LTS-4.

C. Ice Load: Load of 3 lbf/sq. ft., applied as stated in AASHTO LTS-4.

D. Wind Load: Pressure of wind on pole and luminaire, calculated and applied as stated in AASHTO LTS-4.
 1. Wind speed for calculating wind load for poles exceeding 50 feet in height is 70 mph.
 2. Wind speed for calculating wind load for poles 50 feet or less in height is 70 mph.
1.5 SUBMITTALS

A. Product Data: For each luminaire, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:

1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
2. Details of attaching luminaires and accessories.
3. Details of installation and construction.
4. Luminaire materials.
5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 a. For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 b. Photometric data shall be certified by manufacturer’s laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
6. Photoelectric relays.
7. Lamps, including life, output, and energy-efficiency data.
8. Materials, dimensions, and finishes of poles.
9. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
10. Anchor bolts for poles.
11. Manufactured pole foundations.

B. Shop Drawings:

C. Samples for Verification: For products designated for sample submission in Exterior Lighting Device Schedule. Each sample shall include lamps and ballasts.

D. Qualification Data: For agencies providing photometric data for lighting fixtures.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For luminaries and poles, luminaire lowering devices to include in emergency, operation, and maintenance manuals.

G. Warranty: Special warranty specified in this Section.

1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers’ laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with IEEE C2, "National Electrical Safety Code".
D. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Retain factory-applied pole wrappings on fiberglass and laminated wood poles until right before pole installation. Handle poles with web fabric straps.

1.8 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.

1. Warranty Period for Luminaires: Five (5) years from date of final acceptance by Owner.
2. Warranty Period for Metal Corrosion: Five (5) years from date of final acceptance by Owner.
3. Warranty Period for Color Retention: Five (5) years from date of final acceptance by Owner.
4. Warranty Period for Lamps: Replace lamps and fuses that fail within twelve (12) months from date of Substantial Completion; furnish replacement lamps and fuses that fail within the second twelve (12) months from date of final acceptance by Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

B. In Exterior Lighting Device Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection:

1. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 a. Antique Street Lighting.
 b. Architectural Arc Lighting.
 c. Bega/US.
 d. Beta Lighting.
 e. Devine Lighting; Division of Hubbell Lighting.
 f. Gurz Co.
 g. General Electric Lighting Systems, Inc.
 h. Hubbell Lighting Inc.
 i. Holophane.
 j. Kiln Lighting.
 k. Lithonia Lighting.
I. LSI Lighting Systems.

m. Lumec.

n. McGraw-Edison Co.

o. McPhiblen; division of Thomas Lighting.

q. Stremer.

2.2 LUMINAIRES, GENERAL REQUIREMENTS

A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.

B. Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.

C. Metal Parts: Free of burrs and sharp corners and edges.

D. Sheet Metal Components: Corrosion-resistant aluminum, unless otherwise indicated. Form and support to prevent warping and sagging.

E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.

F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.

G. Exposed Hardware Material: Stainless steel.

H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.

J. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.

K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning", to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning", or SSPC-SP 8, "Pickling".

2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.

 a. Color: As selected from manufacturer's standard catalog of colors.

N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM’s "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.

 a. Color: As selected by Architect.

2.3 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

A. Comply with UL 773 or UL 773A.

B. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15-second minimum time delay. Relay shall have directional lens in front of photocell to prevent artificial light sources from causing false turnoff.

 1. Relay with locking-type receptacle shall comply with NEMA C136.10.
 2. Adjustable window slide for adjusting on-off set points.

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION

A. Install lamps in each luminaire.

B. Fasten luminaire to indicated structural supports.

 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
C. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources.

3.2 GROUNDING

A. Ground support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems".
 1. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

B. Ground nonmetallic poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems".
 1. Install grounding electrode for each pole.
 2. Install grounding conductor and conductor protector.
 3. Ground metallic components of pole accessories and foundations.

3.3 FIELD QUALITY CONTROL

A. Inspect each installed fixture for damage. Replace damaged fixtures and components.

B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 1. Verify operation of photoelectric controls.
 a. IESNA LM-72, "Directional Positioning of Photometric Data".

C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices. Refer to Division 01 Section "Demonstration and Training".

END OF SECTION 265600
PART 1 - GENERAL

1.01 RELATED DOCUMENTS:
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and DIVISION 01 Specification Sections and DIVISION 26 Common Work Results, apply to this Section.

1.02 SUMMARY:
A. Section Includes:
1. Fire-alarm control unit.
3. System smoke detectors.
4. Non-system smoke detectors (HVAC).
5. Heat detectors.
7. Magnetic door holders.
8. Addressable interface device.
10. Digital alarm communicator transmitter.

1.03 DEFINITIONS:
A. LED: Light-emitting diode.

1.04 SYSTEM DESCRIPTION:
A. The fire alarm system shall comply with requirements of NFPA Standard 72 for Protected Premises Signaling Systems except as modified and supplemented by this specification. The system shall be electrically supervised and monitor the integrity of all conductors.
B. The fire alarm system shall be manufactured by an ISO 9001:2008 certified company and meet the requirements of BS EN9001: ANSI/ASQC Q9001-1994.
C. The FACU and peripheral devices shall be manufactured 100% by a single manufacturer (or division thereof).
D. The system and its components shall be Underwriters Laboratories, Inc. listed under the appropriate UL testing standard as listed herein for fire alarm applications and the installation shall be in compliance with the UL listing.
E. The installing company shall employ NICET (minimum Level III Fire Alarm Technology) technicians on site to guide the final checkout and to ensure the systems integrity.

1.05 PERFORMANCE REQUIREMENTS:
A. A new intelligent reporting, microprocessor-controlled fire detection system shall be installed in accordance to the project specifications and drawings.
B. Basic Performance:
1. Alarm signals arriving at the FACU shall not be lost following a primary power failure (or outage) until the alarm signal is processed and recorded.
2. Fire alarm notification appliances shall signal an alarm condition both visible and audible.

1.06 ACTION SUBMITTALS:
A. Product Data: For each type of product indicated.
B. Coordination Drawings: The contractor shall prepare BIM generated overall coordination drawings to coordinate fire alarm system installation with other trades.
C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
 2. Include voltage drop calculations for notification appliance circuits.
 3. Include battery-size calculations.
 4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.
 6. Include floor plans to indicate final locations of each addressable device. Show size and route of cable and conduits.
 7. Include conduit routing plans including sizes and supports for all fire alarm circuits.

D. General Submittal Requirements:
 1. Shop Drawings shall be prepared by persons with both the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. Professional engineering license in Fire Protection or related field.

1.07 INFORMATIONAL SUBMITTALS:
 A. Qualification Data: For qualified Installer.
 B. Field quality-control reports.

1.08 CLOSEOUT SUBMITTALS:
 A. Drawings shall be furnished in electronic-media (CD-Rewritable type) and at least one hard copy print.
 B. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in DIVISION 01 SECTION "OPERATION AND MAINTENANCE DATA" include the following:
 1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
 2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
 3. Record copy of site-specific software.
 4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.
 5. Manufacturer's required maintenance related to system warranty requirements.
 6. Abbreviated operating instructions for mounting at fire-alarm control unit.
 C. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.
1.09 MAINTENANCE MATERIAL SUBMITTALS:
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Lamps for Remote Indicating Lamp Units: Two of each type installed in the system.
2. Lamps for Strobe Units: Two of each type installed in the system.
3. Smoke Detectors, Fire Detectors: Two of each type installed in the system.
4. Detector Bases: Two of each type installed in the system.
5. Keys and Tools: One extra set for access to locked and tamper-proofed components.
6. Audible and Visual Notification Appliances: Two of each type installed in the system.
7. Fuses: Two of each type installed in the system.

1.10 QUALITY ASSURANCE:
A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project and certified by NICET as fire-alarm Level II technician.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.11 SOFTWARE SERVICE AGREEMENT:
A. Comply with UL 864.
B. Technical Support: Beginning with Substantial Completion, provide software support for two years.
C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.01 MANUFACTURERS:
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Fire-Lite Alarms ES-200X.

2.02 SYSTEMS OPERATIONAL DESCRIPTION:
A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
2. Heat detectors.
3. Linear Heat detection.
4. Smoke detectors.
5. Verified automatic alarm operation of smoke detectors.
6. Automatic sprinkler system water flow.
B. Fire-alarm signal shall initiate the following actions:
1. Continuously operate alarm notification appliances.
2. Identify alarm at fire-alarm control unit.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Release fire and smoke doors held open by magnetic door holders.
5. Activate notification system.
6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
8. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 1. Valve supervisory switch.
 2. Duct smoke detectors.
 3. Failure of battery charging.
 4. Abnormal position of any switch at fire-alarm control unit or annunciator.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 3. Loss of primary power at fire-alarm control unit.
 4. Ground or a single break in fire-alarm control unit internal circuits.
 5. Abnormal ac voltage at fire-alarm control unit.

E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit and remote annunciators. Record the event on system printer.

2.03 FIRE-ALARM CONTROL UNIT:

A. General Requirements for Fire-Alarm Control Unit:
 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.
 a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 2. Addressable initiation devices that communicate device identity and status.
 a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
 b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.
 3. Addressable control circuits for operation of mechanical equipment.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 1. Annunciator and Display: Liquid-crystal type, 2-line(s) of 40 characters, minimum.
 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

C. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 1. Pathway Class Designations: NFPA 72, Class B.
 2. Pathway Survivability: Level 0.

D. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory and print out the final adjusted values on system printer.
E. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

F. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals supervisory and digital alarm communicator transmitters and digital alarm radio transmitters shall be powered by 24-V dc source. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

H. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.04 CONDUIT & WIRING:
A. Conduit and fittings shall comply with UL 6, UL 1242 and UL 797.
B. The SLC wiring shall be fiber optic or solid copper cable in accordance with the manufacturer's requirements. Copper signaling line circuits and initiating device circuit field wiring shall be No. 18 AWG size twisted and shielded solid conductors at a minimum. Visual notification appliance circuit conductors that contain audible alarm appliances shall be solid copper No. 14 AWG size conductors at a minimum. Wire size shall be sufficient to prevent voltage drop problems.
C. Circuits operating at 24 VDC shall not operate at less than the UL listed voltages for the sensors and/or appliances. Power wiring, operating at 120 VAC minimum, shall be a minimum No. 12 AWG solid copper having similar insulation. Acceptable power-limited cables are FPL, FPLR or FPLP as appropriate with red colored covering. Non-power-limited cables shall comply with NFPA 70. All wiring will be in conduit.
D. Conductors shall be color coded. Conductors used for the same functions shall be similarly color coded. Wiring code color shall remain uniform throughout the circuit.

2.05 WIRELESS FIRE ALARM SYSTEM
A. W-Gate Swift Gateway – provides the bridge between the fire alarm control panel and wireless devices, or equal by others.
B. W-SD355 Photoelectric Smoke detectors, or equal by others.
C. W-H355 Heat Detectors, or equal by others.
D. W-BG12LX Pull Station, or equal by others.

2.06 MANUAL FIRE-ALARM BOXES:
A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 2. Station Reset: Key- or wrench-operated switch.
3. Manual pull stations should be provided within 5 feet at all building exit doors and at the entrance to exits (stair doors.) Manual pull stations are mounted at 48 inches to the center of the device.

2.07 SYSTEM SMOKE DETECTORS:
A. General Requirements for System Smoke Detectors:
1. Comply with UL 268; operating at 24-V dc, nominal.
2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
3. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.
6. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F (8 or 11 deg C) per minute.
 b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F (57 or 68 deg C).
 c. Provide multiple levels of detection sensitivity for each sensor.
B. Photoelectric Smoke Detectors:
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
2.08 **CARBON MONOXIDE DETECTORS:**
A. **General:** Carbon monoxide detector listed for connection to fire-alarm system.
 1. **Mounting:** Adapter plate for outlet box mounting.
 2. **Testable:** By introducing test carbon monoxide into the sensing cell.
 3. **Detector:** Shall provide alarm contacts and trouble contacts.
 4. **Detector:** Shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
 5. **Comply:** With UL 2075.
 6. **Locate, mount, and wire:** According to manufacturer's written instructions.
 7. **Provide means:** For addressable connection to fire-alarm system.
 8. **Test button:** Simulates an alarm condition.

2.09 **HEAT DETECTORS:**
A. **General Requirements for Heat Detectors:** Comply with UL 521.
B. **Heat Detector, Fixed-Temperature Type:** Actuated by temperature that exceeds a fixed temperature of 190 deg F (88 deg C).
 1. **Mounting:** Adapter plate for outlet box mounting. Twist-lock base interchangeable with smoke-detector bases.
 2. **Integral Addressable Module:** Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
C. **Heat Detector, Linear Type:** Actuated by temperature that exceeds a fixed temperature of 190 deg F (88 deg C).
 1. **Manufacturer:** Protectowire ® Fire Systems CTI™ Confirmed Temperature Initiation.
 2. **Mounting:** Adapter plate for outlet box mounting.
 3. **Integral Addressable Module:** Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit. CTM-530 Series Interface Module with confirmed temperature initiation (CTI™).
D. **Wiring style:** Class A to maintain circuit integrity.

2.10 **NOTIFICATION APPLIANCES:**
A. **General Requirements for Notification Appliances:** Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
 1. **Combination Devices:** Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
B. **Visible Notification Appliances:** Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- (25-mm-) high letters on the lens.
 1. **Mounting:** Wall or Ceiling mounted as indicated.
 2. **Flash:** Shall be in a temporal pattern, synchronized with other units.
 3. **Strobe Leads:** Factory connected to screw terminals.
 4. **Mounting Faceplate:** Factory finished, red.
C. **Audible Appliances:** Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464.

2.11 **MAGNETIC DOOR HOLDERS:**
A. **Description:** Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
 1. **Electromagnet:** Requires no more than 3 W to develop 25-lbf (111-N) holding force.
 2. **Wall-Mounted Units:** Flush mounted unless otherwise indicated.
3. Rating: 24-V ac or dc.

B. Material and Finish: Match door hardware.

2.12 ADDRESSABLE INTERFACE DEVICE:
 A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.
 B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.

2.13 DIGITAL ALARM COMMUNICATOR TRANSMITTER:
 A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.
 B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture one two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.
 C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 1. Verification that both telephone lines are available.
 2. Programming device.
 3. LED display.
 5. Communications failure with the central station or fire-alarm control unit.
 D. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the supervisory signal.
 3. Address of the trouble-initiating device.
 4. Loss of ac supply or loss of power.
 5. Low battery.
 6. Abnormal test signal.
 7. Communication bus failure.
 E. Secondary Power: Integral rechargeable battery and automatic charger.
 F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.
 G. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit or from its own internal sensors or controls and shall automatically transmit signal along with a unique code that identifies the transmitting station to the remote alarm receiving station. Transmitted messages shall correspond to standard designations for fire-reporting system to which the signal is being transmitted and shall include separately designated messages in response to the following events or conditions:
 1. Transmitter Low-Battery Condition: Sent when battery voltage is below 85 percent of rated value.
 2. System Test Message: Initiated manually by a test switch within the transmitter cabinet, or automatically at an optionally preselected time, once every 24 hours, with transmission time controlled by a programmed timing device integral to transmitter controls.
 3. Transmitter Trouble Message: Actuated by failure, in excess of one-minute duration, of the transmitter normal power source, derangement of the wiring of the transmitter, or any alarm input interface circuit or device connected to it.
 4. Local Fire-Alarm-System Trouble Message: Initiated by events or conditions that cause a trouble signal to be indicated on the building system.
5. Local Fire-Alarm-System Alarm Message: Actuated when the building system goes into an alarm state. Identifies device that initiated the alarm.

PART 3 - EXECUTION

3.01 EQUIPMENT INSTALLATION:
A. Comply with NFPA 72 for installation of fire-alarm equipment. Refer to Sheet FA502 for device mounting heights.
B. Install wall-mounted equipment, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.
C. Smoke- or Heat-Detector Spacing:
 1. HVAC: Locate detectors not closer than 3 feet (1 m) from air-supply diffuser or return-air opening.
 2. Lighting Fixtures: Locate detectors not closer than 12 inches (300 mm) from any part of a lighting fixture.
D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.
E. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install devices on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
F. Visible Alarm-Indicating Devices: Refer to plans.
G. Device Location-Indicating Lights: Locate in public space near the device they monitor.
H. Fire-Alarm Control Unit: Surface mounted, with tops of cabinets located per plans.

3.02 CONNECTIONS:
A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in DIVISION 08 SECTION "DOOR HARDWARE." Connect hardware and devices to fire-alarm system.
 1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.
B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet (1 m) from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 1. Smoke dampers in air ducts of designated air-conditioning duct systems.
 2. Supervisory connections at valve supervisory switches.

3.03 IDENTIFICATION:
A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in DIVISION 26 SECTION "IDENTIFICATION FOR ELECTRICAL SYSTEMS."
B. Install framed instructions in a location visible from fire-alarm control unit.

3.04 GROUNDING:
A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.05 FIELD QUALITY CONTROL:
A. Field tests shall be witnessed by authorities having jurisdiction.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.06 DEMONSTRATION:
 A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

3.07 GUARANTY:
 A. The fire alarm control panel and any head-end equipment shall have a manufacturer's warranty of a minimum of 3 years.

3.08 POST CONTRACT MAINTENANCE:
 A. Complete maintenance and repair service for the fire detection system shall be available from a factory trained authorized representative of the manufacturer of the major equipment for a period of five (5) years after expiration of the guaranty.
 B. As part of the bid/proposal, include a quote for a maintenance contract to provide all maintenance, required tests, and list pricing for any replacement products included on the bill of materials, along with the list pricing for products not on the bill of materials; if test and inspection rates are different than full service rates the bid/proposal shall include pricing for all levels for a
minimum period of five (5) years. Rates and costs shall be valid for the period of five (5) years after expiration of the guaranty.

C. Include also a quote for unscheduled maintenance/repairs, including hourly rates for technicians trained on this equipment, and response travel costs for each year of the maintenance period. Submittals that do not identify all post contract maintenance costs will not be accepted. Rates and costs shall be valid for the period of five (5) years after expiration of the guaranty.

END OF SECTION 28 31 11
SECTION 311000 – SITE CLEARING

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Work necessary to clear the site of existing vegetation and other items indicated within the limits of the proposed improvements.

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 BENCHMARKS AND CONTROL

A. Maintain and protect benchmarks, monuments, and other reference points.

B. If disturbed or destroyed, replace as directed by Owner’s Representative.

1.3 RELATED SECTIONS

A. Section 31 23 00 – Excavation and Fill

B. Section 31 23 33 – Trenching and Backfilling

PART 2 – PRODUCTS

2.1 BACKFILL

A. Backfill excavations resulting from removal in accordance with these specifications.

PART 3 – EXECUTION

3.1 CLEARING AND GRUBBING

A. Clearing shall consist of the satisfactory disposal of the vegetation in areas designated for construction.

B. Grubbing shall consist of the removal and disposal of roots larger than 3" in diameter, matted roots, and other organic material from the construction areas. Excavate and remove this material, together with other debris not suitable for foundation purposes, to a depth of not less than 18" below the level of paved surfaces.

3.2 CLEAN UP AND DISPOSAL

A. Removed materials shall be promptly disposed of off the site and not allowed to accumulate on the premises.

B. Remove and transport debris in a manner as to prevent spillage on streets or adjacent areas.

END OF SECTION 31 10 00
SECTION 312300 – EXCAVATION AND FILL

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Providing labor, materials, equipment, and supervision necessary to:
 1. Remove topsoil and stockpile on site for later use
 2. Grade subsoil and reform to grades, contours, and levels
 3. Rough grade (excavation and compaction) for roadways, walks, curbs, gutters, parking areas, and landscaped areas
 4. Cut Compact
 5. Finish grade subsoil
 6. Place, level, and compact topsoil

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS

A. Section 01 32 00 – Submittals

1.3 REFERENCES

A. Standards of construction shall conform to MoDOT 203.3 through 203.7 as modified herein.

1.4 DEFINITIONS

A. Subgrade: The uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.

B. Unstable Subgrade is subgrade softened, eroded by flooding or placement during unfavorable weather, or other Contractor controlled actions.

C. Unsuitable Subgrade is natural material that cannot be compacted to the requirements of this section.

D. Maximum Density: Maximum dry weight in pounds per cubic foot of a specific material, as determined by ASTM D698, Standard Proctor Density

E. Optimum Moisture: Percentage of water at maximum density

F. Rubble: Buried concrete foundations, beams, walls, and other material, which requires blasting or jack hammering for its practical and effective removal

G. Rock Excavation: Material that requires blasting or jack hammering for its practical and effective removal

H. Materials include sandstone, limestone, flint, granite, quartzite, or similar material, in masses measuring more than one (1) cubic yard in volume or in ledges 4" or more in thickness.

I. Rock encountered in two or more ledges, being 3" or thicker, with interlaying earth strata ≤ 12" thick, the entire volume from the top of the top ledge to the bottom of the bottom ledge is classified as rock.

J. Subbase Course: The layer placed between the subgrade and base course in a paving system or the layer placed between the subgrade and surface of a pavement or walk.

K. Base Course: The layer placed between the subbase and surface pavement in a paving system.
L. Drainage Fill: Course of washed granular material supporting slab-on grade placed to cut off upward capillary flow of pore water.

M. Unauthorized excavation consists of material removal beyond indicated subgrade elevations or dimensions without direction by the Owner’s Representative. Unauthorized excavation, as well as remedial work shall be at the Contractor’s expense.

N. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below ground surface.

O. Utilities include on-site underground pipe, conduits, ducts, and cables, as well as underground services within building lines.

1.5 SAMPLES

A. Submit samples under provisions of Section 01 32 00.

B. Submit 1.0-lb. sample of imported fill to testing laboratory in airtight containers.

C. Disregard sample submission if recent test results are available for type of fill.

1.6 JOB CONDITIONS

A. Control dust caused by the Contractors operations during performance of the work or if resulting from the conditions in which the Contractor leaves the site, on and near the work including off-site areas.

B. Protection:
 1. Protect trees, shrubs and lawn, rock outcroppings, and other features remaining as part of final landscaping.
 2. Protect benchmarks, existing structures, fences, roads, sidewalks, paving, and curbs not scheduled for removal from damage.
 3. Protect aerial, surface, or underground utility lines or appurtenances, which are to remain.
 4. In the event of damage, immediately make repairs and replacements necessary to the approval of the Owner’s Representative and at no additional cost to the Owner.

1.7 SITE COMPACTION TESTING

A. The Owner’s Representative will perform testing of compacted fill materials.

B. When work under this Section or portions of work are completed, notify the Owner’s Representative to perform density tests. Do not proceed with additional portions of work until verifying results.

C. If, during progress of work, tests indicated that compacted materials do not meet specified requirements, remove defective work and replace at no cost to Owner.

D. Ensure testing of compacted fills before proceeding with placement of surface materials.

PART 2 - PRODUCTS

2.1 FILL MATERIAL

A. Fill material shall be subject to approval of the Owner’s Representative.

B. Fill material shall be soil or soil rock mixture, which is free from organic matter, broken concrete, broken asphalt, building debris, and other deleterious substance. Material shall contain no rocks or lumps over six inches in greatest dimension. Not more than 15% of the rocks or lumps shall be larger than 2-1/2 inches in greatest dimension.
C. Additional Fill Material: Material shall meet ASTM D2487, soil classification groups GW, GP, GM, and CL. The Contractor may use soil classification CH in areas greater than 2 feet from pavements.

2.2 TOPSOIL

A. Reused native material from the site
B. Imported: friable loam; free of subsoil, roots, grass, excessive amount of weeds, stone, and foreign matter; acidity range (pH) of 5.5 to 7.5; containing a minimum of 4% and a maximum of 25% organic matter.

PART 3 - EXECUTION

3.1 GENERAL

A. Prior to work under this section, become thoroughly familiar with the site, the site conditions, and all portions of the work falling within this section.
B. Backfilling Prior to Approvals
 1. Do not allow or cause covering or enclosing any of the performed or installed work of this section prior to all required inspections, tests, and approvals.
 2. Should any of the work be so enclosed or covered up before it has been approved, uncover all such work at no additional cost to the Owner
C. Excavation includes the removal of materials indicated on the Drawings. It also includes shaping and slope construction necessary for the facility’s construction in conformance with the grades shown on the Drawings.
D. Beginning work under this Section means acceptance of existing conditions.

3.2 PREPARATION

A. Establish and identify required lines, levels, contours, and datum.
B. Maintain benchmarks, monuments, and other reference points. Re-establish disturbed or destroyed monuments at no cost to Owner.
C. Before start of grading, establish the location and extent of utilities in the work areas. Notify utilities to remove and relocate lines, which are in the way of construction.

3.3 TOPSOIL EXCAVATION

A. Remove topsoil of horticultural value from areas to be excavated, regraded, or paved. Remove from site or stockpile. Remove a minimum depth of six inches.
B. Do not permit mixing of topsoil with subsoil.
C. Do not strip topsoil when wet.
D. Do not stockpile topsoil to depths exceeding 8'-0". Do not drive heavy equipment over stockpiled topsoil.

3.4 EXCAVATING

A. Depressions Resulting from Removal of Obstruction
 1. Where depressions result from, or have resulted from the removal of surface or subsurface obstructions, open the depression to equipment working width and remove all debris and soft material as directed by the Owner's Representative.
B. Other Areas
 1. Excavate to grades shown on the Drawings.
2. Where the drawings do not include excavation grades, excavate as required to accommodate the installation.

C. Overexcavation: Backfill and compact all overexcavated areas and unauthorized excavation areas, at no additional cost to the Owner.

3.5 ROCK EXCAVATION
A. The Owner does not anticipate rock excavation on this project. Notify the Owner’s Representative if you encounter rock during excavation.

3.6 EXCESS WATER CONTROL
A. Unfavorable Weather
 1. Do not place, spread, or roll any fill material during unfavorable weather conditions.
 2. Do not resume operations until moisture content and fill density are satisfactory.
B. Flooding: Provide dikes or channels to prevent flooding of subgrade; promptly remove all water collecting in depressions.
C. Remove Unstable Subgrade and compact as specified for fill and compaction at the Contractor’s expense.
D. Dewatering
 1. Provide and maintain at all times during construction ample means and devices with which to promptly remove and dispose of all water from every source entering the excavations or other parts of the work.
 2. Dewater by means that will ensure dry excavations and the preservation of the final lines and grades of bottoms of excavations.

3.7 WASTE EXCAVATION
A. Disposal of excess material will be the responsibility of the Contractor at no additional cost to the Owner.

3.8 FILLING
A. Fill areas to drawing contours and elevations with unfrozen materials.
B. Granular Fill: Place and compact materials in continuous layers not exceeding 8” compacted depth, compacted to 95%.
C. Subsoil Fill: Place and compact material in continuous layers not exceeding 8” compacted depth, compacted to 95% areas to be paved and 85% in lawn areas.
D. For cohesive soils, maintain –2% to +4% of optimum moisture content. For cohesionless soils, maintain moisture at less than +4% of optimum moisture content.
E. Slope grade away from building minimum 2 in. in 10 ft. unless otherwise noted.
F. Make grade changes gradual. Blend slope into level areas.

3.9 SUBSOIL PREPARATION
A. Eliminate uneven areas and low spots. Remove debris, roots, branches, and stones, in excess of 1/2” in size. Remove subsoil contaminated with petroleum products.
B. Scarify subgrade to depth of 6 in. where topsoil is scheduled. Scarify in areas where equipment used for hauling and spreading topsoil has compacted subsoil.

3.10 PLACING TOPSOIL
A. Place topsoil in areas where seeding or sodding is scheduled.
B. Use topsoil in relatively dry state. Place during dry weather.
C. Fine grade the topsoil eliminating rough or low areas. Maintain levels, profiles, and contours of subgrade.
D. Remove stone, roots, grass, weeds, debris, and foreign material while spreading
E. Manually spread topsoil around trees, plants, and buildings to prevent damage
F. Lightly compact topsoil
G. Remove surplus subsoil and topsoil from site
H. Leave stockpile area and site clean and raked, ready to receive landscaping

3.11 TOLERANCES
A. Top Surface of Subgrade: Plus or minus 0.1 foot
B. Top of Topsoil: Plus or minus 1/2 inch
C. Grade all areas to have positive drainage.

3.12 FIELD QUALITY CONTROL
A. Perform tests and analysis of subgrade fill material in accordance with ASTM D698.
B. Perform compaction testing of subgrade material in accordance with ASTM D698.
C. If tests indicate work does not meet specified requirements, remove work, replace, and retest at no cost to Owner.

3.13 SCHEDULE OF TOPSOIL LOCATIONS
A. Compact topsoil with thickness as follows:
 1. Seeded Grass: 6 in
 2. Sod: 4 in
 3. Shrub Beds: 18 in
 4. Flower Beds: 12 in
 5. Planter Boxes: To within 3 in. of box rim

END OF SECTION 31 23 00
SECTION 312313 – SUBGRADE PREPARATION

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. Preparation of subgrade under areas prior to surfacing
 B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS
 A. Section 31 23 00 – Excavation and Fill
 B. Section 32 11 23 - Aggregate Base Course

1.3 DEFINITIONS
 A. The subgrade is the portion of the graded base under surfacing.

1.4 METHOD OF MEASUREMENT AND BASIS OF PAYMENT
 A. All costs pertaining to the preparation and restoration of subgrade shall be included in the contract price for ‘Excavation and Fill’.

PART 2 – PRODUCTS NOT USED

PART 3 - EXECUTION

3.1 GENERAL
 A. Construct the subgrade with uniform in density through the entire width and conforming to the line, grade, and cross section shown on the drawings.
 B. At all times there shall be at least 50’ of prepared subgrade ahead of the point at which pavement is being placed.

3.2 CUT COMPACTION
 A. Cut areas under proposed asphaltic or portland cement concrete pavements shall be cut compacted.
 B. After grading to subgrade elevation, scarify the top 6-inches of the base and compact as follows:
 C. Cohesive soils: compact to 95% of its maximum dry density at a moisture content within –2% to +4% of optimum
 D. Cohesionless soils: compact 95% of its maximum dry density at a moisture content dryer than +4% of optimum
 E. Optimum determined by ASTM D698

3.3 FINISHING
 A. After excavation, embankment, and cut compaction are completed, bring the subgrade to true shape with a subgrade planer. Compact any loose material on the subgrade behind the planer with a self propelled roller weighing not less than five tons for portland cement concrete pavement and a three-wheeled roller weighing not less than ten (10) tons for flexible pavements (asphaltic concrete, seal and chip, or granular).
 B. Use care shaping the subgrade, so that no portion of the completed pavement varies from the specified thickness.
C. Contractor shall proof roll prepared subgrade under road and parking lot pavements by running a tandem dump truck, loaded with gravel, across the subgrade.

D. Remove all soft and yielding spots to a depth not to exceeding 2-feet. Remove all vegetative substances or unsuitable material. Fill the resulting space with approved material.

E. All large rocks or boulders encountered shall be removed or broken off to a depth not less than 6″ below the finished surface of the subgrade. Fill the space with approved material.

F. Re-roll the subgrade until no depressions occur. In narrow strips or repair areas, where rolling is not practical, other methods of compaction may be used.

3.4 RESTORING SUBGRADE TO ACCEPTABLE CONDITION

A. If subgrade is disturbed prior to the placement of paving, restore the surface to acceptable condition by reshaping and rolling.

B. The Contractor may use Non Penetrated Macadam Base per Section 32 11 23 to stabilize soft areas at no cost to the Owner.

3.5 QUALITY CONTROL

A. Proof Rolling
 1. In addition to compaction testing, and prior to the placement of aggregate base course(s), the Contractor shall proof roll the subgrade.
 2. Proof rolling shall consist of passing / driving a loaded 20-ton tandem dump truck over the prepared subgrade soil. The maximum allowable yield or displacement is 1″.
 3. Areas that yield or displace more than 1″ shall be recompacted until the area meets this criteria or excavated, to a depth not to exceed 1.5-feet, and replaced with compacted Non-Penetrated Macadam Base or Type 1 Aggregate Base.
 4. Perform proof rolling in the presence of the Owner’s Representative.

END OF SECTION 31 23 13
SECTION 312316 – STRUCTURE EXCAVATION AND BACKFILL

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Excavation for structures and removal of subsoil from the site
B. Capping and sealing discontinued utility services and removal of portions of lines within excavated areas
C. Shoring and bracing excavations as required
D. Placing and compacting fills to rough grade elevations
E. Dewatering excavations
F. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS

A. Section 01 33 00 - Submittals

1.3 DEFINITIONS

A. Maximum Density: Maximum dry weight in pounds per cubic foot of a specific material, as determined by ASTM D698, Standard Proctor Density.
B. Optimum Moisture: Percentage of water at maximum density.
C. Rock Excavation: Material that requires blasting or jack hammering for its practical and effective removal.
D. Materials include sandstone, limestone, flint, granite, quartzite, or similar material, in masses measuring more than one (1) cubic yard in volume or in ledges 4” or more in thickness.
E. Rock encountered in two or more ledges, being 3” or thicker, with interlaying earth strata ≤ 12” thick, the entire volume from the top of the top ledge to the bottom of the bottom ledge will be classified as rock.
F. Rubble: Buried concrete foundations, beams, walls, and other material which requires blasting or jack hammering for its practical and effective removal.
G. Earth Excavation: Earth excavation will include all material not otherwise classified. Decomposed or disintegrated shale, which can be effectively plowed, spaded, or removed with power drive excavation equipment, and gravel base will be classified as earth excavation.
H. Unstable Subgrade is subgrade softened, eroded by flooding or placement during unfavorable weather, or other Contractor controlled actions.
I. Unsuitable Subgrade is natural material that cannot be compacted to the requirements of this section.
J. Over excavation of Unsuitable Material: Removal of material that is too soft to provide adequate support as determined by the Owner’s Representative for pipe being placed in the bottom of the trench.
K. Granular Material Backfill and Bedding: Coarse sand, crushed rock or gravel, free from dust, clay, organic, and other undesirable materials.
L. Payment Line: Used for over excavation of unsuitable material. The payment line shall be considered the lower of the bottom of the bedding material or a line 6” below and parallel to the...
1.4 SITE COMPACTION TESTING
A. Testing of compacted fill materials will be performed by the Owner’s Representative.
B. When work of this Section or portions of work are completed, notify the Owner’s Representative to perform density tests. Do not proceed with additional portions of work until results have been verified.
C. If, during progress of work, tests indicated that compacted materials do not meet specified requirements, remove defective work. Replace at no cost to Owner.
D. Ensure compacted fills are tested before proceeding with placement of surface materials.

1.5 SUBMITTALS
A. Submit minimum ten-pound samples of each type of fill material to be used in accordance with Section 01 33 00.
B. Provide samples to the Owner’s Representative, packed tightly in containers to prevent contamination.
C. If recent test results are available for the fill materials, disregard sample submission and submit such test results to the Owner’s Representative. Test results must clearly indicate types of materials and composition, hardness, compactability, and suitability for proposed usage.
D. Gravel backfill material certification.

1.6 PROTECTION
A. Protect trees, shrubs and lawns, areas to receive planting, rock outcroppings, and other features remaining as part of final landscaping.
B. Protect benchmarks, existing structures, roads, sidewalks, paving, and curbs against damage from equipment and vehicular or foot traffic.
C. Protect excavations by shoring, bracing, sheet piling, underpinning, or other methods, as required to prevent cave-ins or loose dirt from falling into excavations.
D. Underpin adjacent structure(s) that may be damaged by excavation work, including service lines and pipe chases.
E. Notify Owner's Representative of unexpected subsurface conditions and discontinue work in area until Owner's Representative provides notification to resume work.
F. Grade around excavations to prevent surface water runoff into excavated areas.

PART 2 - PRODUCTS

2.1 FILL MATERIALS
A. Granular Fill
1. Angular pit run crushed natural stone; free from shale, clay, friable materials, and debris:
 Graded within the following limits:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>20 to 75</td>
</tr>
<tr>
<td>No. 8</td>
<td>20 to 40</td>
</tr>
</tbody>
</table>
B. Subsoil: Excavated or off-site material, free from roots, broken concrete, broken asphalt, rocks larger than 2-1/2" in size, and building debris.
C. Fill Under Landscaped Areas: Free from alkali, salt, and petroleum products. Use subsoil excavated from site only if conforming to specified requirements.

PART 3 - EXECUTION

3.1 PREPARATION AND LAYOUT
A. Establish extent of excavation by area and elevation; designate and identify datum elevation.
B. Set required lines and levels.
C. Maintain benchmarks, monuments, and other referenced points.

3.2 UTILITIES
A. Before starting excavation, establish location and extent of underground utilities in the work area.
B. Notify utility companies to remove and relocate lines that conflict with the excavation.
C. Maintain, reroute, or extend as required, existing utility lines to remain which pass through work area.
D. Pay costs for this work, except those covered by utility companies.
E. Protect utility services uncovered by excavation.
F. Remove abandoned utility service lines from areas of excavation; cap, plug, or seal such lines and identify at grade.
G. Accurately locate and record, on Project Record Documents, abandoned and active utility lines, rerouted or extended.

3.3 EXCAVATION
A. Excavate subsoil, to the lines and levels, required for construction of the work. Provide space for forms, bracing and shoring, foundation drainage system, applying damp proofing, and permitting inspection.
B. Do additional excavation only by written authorization of Owner's Representative.
C. Machine slope banks.
D. Hand trim excavations and leave free from loose or organic matter.
E. When complete, verify subgrade is firm and compacted to drawing depth and dimensions.
F. Correct unstable subgrade or unauthorized excavation as directed, at no cost to the Owner.
G. Fill over excavated areas under structure bearing surfaces with backfill as specified for foundations.
H. Excavations are not to interfere with normal 45 degree bearing splay of any foundation.
I. Remove excavated material from site.
J. Do not disturb soil under the drip line of existing trees or shrubs that are to remain.
K. If necessary to excavate through roots, perform work by hand and cut roots with a sharp ax.

3.4 BACKFILLING
A. Do not backfill over existing porous, wet, or spongy subgrade surfaces.
B. Compact existing subgrade surfaces if densities are not equal to that required for backfill materials.

C. Cut out soft areas of existing subgrade. Backfill with granular material and compact to required density.

D. Backfill areas to grades, contours, levels, and elevations.

E. Backfill systematically and as early as possible to allow maximum time for natural settlement and compaction.

F. Place and compact fill materials in continuous layers not exceeding six inches loose depth. Use a method so as not to disturb or damage foundation damp proofing.

G. Maintain optimum moisture content of backfill materials to attain required compaction density.

H. Backfill simultaneously on each side of foundation walls to equalize soil pressures.

I. Where temporary unbalanced pressures are liable to develop on walls before floor slabs are placed, erect necessary shoring to counteract imbalance.

3.5 FILL TYPES AND COMPACTION

A. Exterior side of foundation walls: Subsoil fill to top of subgrade elevation. Compact to 90% standard proctor per ASTM D698.

B. Stabilizing base course under concrete slabs within building area:
 1. Four inches of gravel fill to underside of slabs. Compact to 95% standard proctor per ASTM D698.

C. Fill under landscaped areas: Subsoil to top of subgrade elevation. Compact to 90% standard proctor per ASTM D698.

END OF SECTION 31 23 16
SECTION 31233 – TRENCHING AND BACKFILLING

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. This section encompasses the work required for excavation of trenches, structures, appurtenances, bedding, over-excavation of unsuitable material, and backfilling for the installation of utilities.

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 DEFINITIONS

A. Maximum Density: Maximum dry weight in pounds per cubic foot of a specific material, as determined by ASTM D698, Standard Proctor Density

B. Optimum Moisture: Percentage of water at maximum density

C. Rock Excavation: Material that requires blasting or jack hammering for its practical and effective removal

1. Materials include sandstone, limestone, flint, granite, quartzite, or similar material, in masses measuring more than one (1) cubic yard in volume or in ledges 4" or more in thickness.

2. Rock encountered in two or more ledges, being 3" or thicker, with interlaying earth strata ≤ 12" thick, the entire volume from the top of the top ledge to the bottom of the bottom ledge will be classified as rock.

D. Rubble: Buried concrete foundations, beams, walls, and other material which requires blasting or jack hammering for its practical and effective removal.

E. Earth Excavation: Earth excavation will include all material not otherwise classified. Decomposed or disintegrated shale, which can be effectively plowed, spaded, or removed with power drive excavation equipment, and gravel base will be classified as earth excavation.

F. Unstable Subgrade is subgrade softened, eroded by flooding or placement during unfavorable weather, or other Contractor controlled actions.

G. Unsuitable Subgrade is natural material that cannot be compacted to the requirements of this section.

H. Over excavation of Unsuitable Material: Removal of material that is too soft to provide adequate support as determined by the Owner’s Representative for pipe being placed in the bottom of the trench.

I. Granular Material Backfill and Bedding: Coarse sand, crushed rock or gravel, free from dust, clay, organic, and other undesirable materials.

J. Payment Line: Used for over excavation of unsuitable material. The payment line shall be considered the lower of the bottom of the bedding material or a line 6" below and parallel to the pipe flow line. Width of over excavation shall be 2-feet greater than the outside diameter of the pipe.

1.3 JOB CONDITIONS

A. Blasting: Blasting is not permitted on this project.

B. Length of open trench.

1. The maximum length of open trench shall be 200 feet in public right-of-way and 400 feet elsewhere.
2. The Contractor shall not leave an unattended open trench without fencing.

C. Protection of existing underground utilities.

1. The location of existing utilities shown on the drawings is based upon information and data supplied to the Owner or Engineer by the owner of the utility. The utilities are shown for information only. The information is not guaranteed to be either complete or accurate. It is the Contractor's responsibility to contact all utilities and obtain utility staking prior to construction.

2. Any damage to existing utilities shall be reported to the utility and repaired in accordance with the utility's standards.

3. The cost of repairs to damaged utilities shall be borne by the Contractor.

4. If utility service must be interrupted to complete a construction operation, the Contractor shall obtain permission from the utility.

5. The Contractor shall provide affected residents or businesses written notice at least 48 hours in advance of the time of the interruption and the expected duration of the interruption.

6. Notice shall be hand delivered to each affected structure.

7. If the utility requires standby service, it shall be provided at the Contractor's expense.

8. If a non-scheduled interruption of utility service results from accidental damage, the Contractor shall take immediate steps as necessary to notify the utility and restore service. The Contractor's personnel shall not leave the site until the interruption has been restored.

D. Work within Highway, Railroad, or Utility Right of Way

1. When the Contractor performs work within the right-of-way of other jurisdictions such as railroads, highways, or utilities, such work shall comply with applicable permits or regulations of such jurisdiction in addition to the requirements of this section.

E. Scheduling

1. Clean up shall be performed promptly following utility installation backfill.

2. Repair of trench settlement shall be performed promptly.

F. Erosion Control

1. The Contractor shall comply with the Drawings, Specifications, and all applicable Federal, State, or Local erosion control regulations.

2. The Contractor shall perform regular maintenance of all erosion control devices until time of final acceptance.

G. Maintenance

1. The Contractor is responsible for repair of trench settlement up to the level of the adjacent grade that occurs during construction, as well as the warranty period. This shall include restoration of the finish surface as appropriate.

H. Driveway Closing

1. Driveway closing will be limited to a maximum of 12 hours, except during reconstruction of the driveway or main line paving in front of a residence. Provisions shall be made for alternate parking and pedestrian access.

2. Access shall be continuously maintained to non-residential properties.

I. Costs associated with construction phasing shall be considered incidental to the Project, unless noted otherwise.
1.4 SITE COMPACTION TESTING
 A. The Owner’s Representative will perform testing of compacted fill materials.
 B. Notify the Owner’s Representative when work or portions of work under this Section are completed.
 C. If, during progress of work, tests indicate that compacted materials do not meet specified requirements, remove defective work. Replace at no cost to Owner.
 D. Allow the Owner’s Representative the opportunity to test compacted fills before proceeding with placement of surface materials.
 E. Absence of compaction testing shall not relieve the Contractor of his obligation to satisfy the compaction requirements of this section.

1.5 PROTECTION
 A. Protect trees, shrubs and lawns, areas to receive planting, rock outcroppings, and other features remaining as part of final landscaping.
 B. Protect benchmarks and existing structures, roads, sidewalks, paving, and curbs against damage from equipment and vehicular or foot traffic.
 C. Protect excavations by shoring, bracing, sheet piling, underpinning, or other methods, as required to prevent cave-ins or loose dirt from falling into excavations.
 D. Underpin adjacent structure(s), which may be damaged by excavation work, including service lines and pipe chases.
 E. Notify the Owner’s Representative of unexpected subsurface conditions and discontinue work in area until the Owner’s Representative provides notification to resume work.
 F. Grade around excavations to prevent surface water runoff into excavated areas.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Backfill
 1. Suitable Excavated Material: Free of cinders, ashes, refuse, sod, vegetative, or organic matter, boulders, rocks, or pavement fragments.
 2. Do not use sand backfill unless specifically called out on the drawings.
 3. Granular backfill: Crushed limestone or gravel with 100% passing a 1” sieve, 20-75% passing a No. 4 sieve, 20-40% passing a No. 8 sieve, and 6-16% passing a No. 200 sieve
 B. Trench Stabilization
 1. Trench stabilizing material shall consist of crushed rock or other approved material with 100% passing the 3” sieve and 25-95% passing the 1” sieve.
 C. Concrete
 1. Concrete shall be a commercial grade with a minimum 28-day compressive strength of 4,000 psi.
 D. Bedding
 1. Gravity Storm Sewer or Sanitary Sewer Pipe Bedding Material:
 a. Rigid Pipe: Clean gravel or crushed rock shall meet the following gradation for rigid sewer pipe (RCP, DIP, VCP).
<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>95% Passing</th>
<th>95% Retained</th>
<th>Maximum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 18"</td>
<td>½ - inch</td>
<td>No. 4</td>
<td>¾ - inch</td>
</tr>
<tr>
<td>20" - 30"</td>
<td>1 - inch</td>
<td>No. 4</td>
<td>1-½ inch</td>
</tr>
<tr>
<td>Over 30"</td>
<td>2 - inch</td>
<td>No. 4</td>
<td>3 - inch</td>
</tr>
</tbody>
</table>

b. Non-Rigid Pipe (PVC or CMP): Gravel or crushed rock meeting the following gradation; 100% passing a 3/4” sieve, 50-80% passing a No. 4 sieve, and 25-60% passing a No. 8 sieve.

2. Water Main and Force Main Bedding Material
 a. Not required except for trench bottoms carried below required grade. Use compacted sewer pipe bedding or gravel for trench bottoms carried below required grade.

PART 3 - EXECUTION

3.1 GENERAL
 A. Replace or reinstall obstructions removed to accommodate construction equipment or to facilitate excavation after construction.
 B. Do not remove trees unless noted on the drawings. Exercise care in operating equipment beneath the drip line or adjacent to trees to prevent damage. If damage occurs, the Contractor shall retain a Professional Arborist at the Contractor’s expenses to repair the damage.
 C. Pile excavated material suitable for backfill in an orderly manner a sufficient distance from the edge of excavation to avoid rollbacks, slides, or cave-ins.
 D. Excavate by open-cut method for utilities and structures except as noted on Drawings.
 E. The Contractor shall be responsible for providing barricades and protection around excavation and work areas.
 F. The Contractor shall be responsible for removing and replacing fences that are disturbed by construction operations. Materials shall be new and type shall match existing.
 G. Work in areas containing crops, where practical, shall be started after the crops have been harvested or before the crops are planted. Compensation for crop damage outside the easement limits shall be the responsibility of the Contractor.

3.2 SAFETY
 A. The means of the work and the safety of the Contractor’s employees are solely the responsibility of the Contractor. The Contractor has a contractual obligation to comply with all applicable laws and regulations including those of OSHA. At no time will either the Owner or Owner’s Representative take responsibility for either the means of the work or the safety of the Contractor’s employees.

3.3 SHEETING, SHORING, AND BRACING
 A. Construct sheeting, shoring, and bracing required to hold walls of excavation, provide a safe area for workmen, protect existing utilities and structures, and to permit construction in the dry.
 B. Sheet may be wood or steel.
 C. Wood Sheet Driven below Level of Utility: Leave in place to a level of 5’ below finished grade.
 D. Pull steel sheeting.
 E. When using a moveable trench box, below the spring line of pipe, it shall be lifted prior to any forward movement to avoid pipe displacement.
TRENCHING AND BACKFILLING

3.4 PREPARATION

A. Clearing
 1. Remove vegetative material and obstructions as necessary for construction.
 2. The Contractor shall properly dispose of removed material off the project site.

B. The greater of the existing topsoil layer or the top 6" of native material shall be removed and stockpiled for the finish surface of backfill, except in areas of existing or proposed pavement or noted otherwise on the Drawings.

3.5 PERFORMANCE

A. General
 1. General: Surplus and rejected unsuitable excavated material becomes property of the Contractor for disposal.

B. Excavation for Utility Structures
 1. Stockpile topsoil for later distribution on the finished grade.
 2. Remove rubble or rock to 12" below the bottom of the foundation and 12" horizontally from any vertical surface.
 3. Subgrade: The subgrade below each major portion of a structure shall be inspected by the Owner’s Representative prior to placing stone base course or placing reinforcing bars.
 4. Excavation shall be to firm undisturbed soil. If excavation is carried below the bottom of foundations, the Contractor shall fill with concrete or compacted granular material in accordance with this Specification.

C. Trench Excavation
 1. Excavated material shall be stored in such a manner as to avoid property damage. Repair any damage at the Contractor’s expense.
 2. Excavate the base of the trench to provide a uniform and continuous bearing and support on solid and undisturbed material.
 3. The minimum trench width shall be sufficient to allow space for jointing and bedding. The maximum allowable trench width at a point 12" above the top of the pipe (pipe envelope) shall be 30" for pipes 6-10" in diameter. For pipes 12" in diameter or larger, the maximum trench width shall be the outside diameter plus 24". For elliptical or arch pipes, it shall be the outside dimension at the spring line plus 24".
 4. If rubble or rock is encountered, the trench shall be excavated to provide clearance of at least 6" below and 12" on each side of the utility line and fittings.
 5. Remove and repair Unstable Subgrade at the Contractor’s expense.
 6. Over excavation of Unsuitable Material: When the Contractor encounters material that is not suitable for supporting the pipe line or structure being constructed, the Contractor shall notify the Owner’s Representative to obtain written instructions on how to proceed. Material
removed prior to authorization of the Owner’s Representative will not be eligible for payment. The over excavation will be backfilled to the payment line with granular material.

D. Bedding
1. Provide rigid gravity storm or sanitary sewer pipe with compacted granular bedding having a minimum thickness of 4" or 1/8th of the outside pipe diameter, whichever is greater.
2. Provide non-rigid gravity storm or sanitary sewer pipe with compacted granular bedding having a minimum thickness of 4" or 1/4th of the outside pipe diameter, whichever is greater.
3. Water mains or sanitary sewer force mains may be installed with undisturbed or compacted soil bedding provided the subgrade is consistent and the Contractor provides hand excavation for bells such that the pipe barrel bears evenly on the subgrade.

E. Dewatering
1. Excavation, installation of bedding, pipes, structures, and backfilling shall be done in dry conditions. If the subgrade is saturated or standing water exists, the work area shall be dewatered prior to installation or backfilling operations.
2. The Contractor shall make provisions to handle water encountered during construction. The Contractor shall obtain approval from the Owner’s Representative of the proposed method of dewatering.
3. The Contractor shall prevent surface water from flowing into the excavated area. Divert or pump stream flow past the area of construction. Remove water accumulating in the area of construction.
4. Do not pump water onto adjacent property without approval of the Owner’s Representative and adjacent property owner.

F. Backfill for Structures
1. Do not place backfill, adjacent to concrete structures, until the concrete has achieved at least 75% of its design strength.
2. Backfill simultaneously on all sides of structure. Protect structures from damage.
3. Place backfill in lifts of 8" or less prior to compaction.
4. Compact backfill areas to 95% of maximum Standard Proctor Density or 75% Relative Density (ASTM D4253 or ASTM D4254) for clean granular material.

G. Trench Backfill
1. Trenches shall be backfilled only after the locations of connections and appurtenances have been recorded by the Contractor on the drawing set. This information is to be submitted to the Owner’s Representative with other construction record information.
2. Place backfill in lifts of 8" or less prior to compaction.
3. Carefully place backfill in the pipe envelope (top of bedding to a point 12" above the pipe). Material shall be of even consistency and free of clumps and boulders, finely divided. Compact material to 95% maximum Standard Proctor Density. Material within the pipe envelope shall be the same as specified for trench backfill, unless noted otherwise on the Drawings.
4. Place backfill simultaneously on both sides of pipe to prevent displacement.
5. Place backfill into the trench at an angle so that impact on installed pipe is minimized.
6. Install a 3’ minimum cushion of backfill above pipe envelope before using heavy compacting equipment. If pipe is damaged, replace the section of damaged pipe and provide additional depth of cushion.
H. Backfill Above the Pipe Envelope

1. Under and within 5' of pavement and undercut structures or right of way, compact suitable excavated material to 95% of maximum Standard Proctor Density. The Contractor may substitute granular backfill with no additional cost to the Owner.

2. Under landscaped and lawn areas, compact suitable excavated material to 90% of maximum Standard Proctor Density. The top 12" of the backfill shall be soil equal to the stockpiled topsoil.

3. Under all other areas, unless noted otherwise on the plans, compact suitable, native material to 85% of maximum density. The top 12" of the backfill shall be soil equivalent to the stockpiled topsoil. Round the surface neatly, 2-4" above the original surface.

4. Sand backfill shall be used only if specifically called out in the Drawings or authorized by the Owner’s Representative. If utilized the Contractor shall:
 a. Backfill with sand up to bottom of specified surface restoration.
 b. Compact to 75% Relative Density (ASTM D4253) under and within 5' of pavement; 70% Relative Density (ASTM D4253) in other areas.

5. Place sidewalk and pavement base and/or surface above compacted backfill as noted on the Plans.

6. Place top 12" of soil equivalent to stockpile topsoil in all other locations.

3.6 FIELD QUALITY CONTROL

A. The Contractor shall furnish and provide equipment and personnel to provide access for the Owner’s Representative to any test location and test depth necessary, in the Owner’s Representative’s opinion, to properly evaluate compaction effort.

B. If specified compaction rates are not attained, the Owner’s Representative may require the Contractor to utilize different compaction methods or lift thickness.

C. Compaction Testing

1. The Owner’s Representative will perform compaction testing, unless noted otherwise.

2. The moisture density relation to be used in establishing compaction will be ASTM D698 (Standard Proctor) or ASTM D4253 (Relative Density).

3. Compaction effort may be evaluated by the use of any of the following standard test methods:
 a. ASTM D-2937 (drive cylinder)
 b. ASTM D-2167 (rubber balloon)
 c. ASTM D-1 556 (sand cone)
 d. ASTM D-2922 (nuclear)
 e. The Owner’s Representative will determine the Compaction Testing Frequency.
SECTION 312500 – EROSION CONTROL

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Installation of temporary water pollution control measures to prevent discharge of pollutants such as chemicals, fuels, lubricants, bitumen, raw sewage, or other harmful material from the project.

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 GENERAL

A. The Contractor shall manage his operations to control water pollution in accordance with this specification and applicable State regulations. Construction of permanent drainage facilities and other contract work, contributing to control of erosion, shall be scheduled at the earliest practicable time.

B. The Contractor shall furnish, install, maintain, and remove temporary erosion control measures. The Contractor shall prevent discharging silt or polluted storm water from the site.

C. The Owner’s Representative may require installation of additional erosion control facilities, by the Contractor, if in the sole opinion of the Owner’s Representative the Contractor’s efforts are inadequate.

1.3 DEFINITIONS

A. Temporary Berm: A temporary ridge of compacted soil, with or without a shallow ditch, constructed at the top of slopes or transverse to the centerline of a slope. The berm diverts storm runoff to temporary outlets to discharge water with minimal erosion.

B. Temporary Slope Drain: A temporary facility used to carry water down a slope.

C. Ditch Check: An obstruction placed at frequent intervals across ditches, creating small ponds to cause sediment to settle and be contained.

D. Sediment Basin: An excavated or dammed storage area to trap and store sediment and prevent the discharge of silt.

E. Temporary Seeding and Mulching: Placement of a quick ground cover to reduce erosion in areas expected to be re-disturbed.

F. Straw Bales: Standard agricultural bales used to filter the flow of water trap, deposit sediment, and/or divert water.

G. Silt Fence: A geotextile barrier fence to contain sediment by removing suspended particles from water passing through the fence.

H. Temporary Pipe: Conduit utilized to carry water under haul roads, silt fences, etc., and prevent equipment from direct contact with water when crossing an active or intermittent stream.

I. Sediment Removal: Removal of accumulated sediment to restore the efficiency of sediment control features.

J. Concrete Washout: Cementitious material washed out of the chutes of ready mixed concrete trucks and hoppers of concrete pump trucks, and off of wheelbarrows, crane concrete bins, and hand tools.

1.4 SUBMITTALS

A. The Contractor shall submit his proposed “Erosion Control Plan” for review and approval by the Owner’s Representative. Approval of the plan does not relieve the Contractor of his contractual responsibility to prevent the discharge of pollutants into the receiving drainage ways.
1.5 RELATED SECTIONS
 A. Section 32 92 00 – Turf Restoration

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Temporary slope drains: Stone, concrete or asphalt gutters, half-round pipe, metal pipe, plastic pipe or flexible rubber pipe.

 B. Ditch Checks:
 1. Rock ditch checks: 2” to 3” clean gravel or limestone.
 2. Straw bale ditch checks: Rectangular wheat straw bales in good condition. Other foliage may be substituted for straw in accordance with MoDOT 802.2.1.
 3. Silt fence ditch checks: Geotextile meeting the requirements of this specification.

 C. Riprap for Temporary Erosion Control: Type 1 Rock Blanket conforming to MoDOT 611.30.2.

 D. Pipe: Corrugated metal (16 Ga.) or ADS N12 Corrugated Plastic.

 E. Temporary Seeding:
 1. December 1 to March 1: 50 lbs. oats/acre
 2. March 1 to December 1: 50 lbs. cereal rye or wheat

 F. Mulch shall be wheat straw.

 G. Wire Supported and Self Supporting Silt Fence:
 1. Geotextile Fabric
 a. Fibers used in geotextiles shall consist of longchain synthetic polymers, composed of at least 85 percent by weight polyolefins, polyesters, or polyamides. They shall be formed into a network such that the filaments or yarns retain dimensional stability relative to each other, including selvages.
 b. The geotextile shall be free of any treatment or coating which might adversely alter its physical properties after installation.
 c. Geotextile shall be furnished in 36” width rolls.
 d. Geotextile rolls shall be furnished with suitable wrapping for protection against moisture and extended ultraviolet exposure.
 e. Each roll shall be labeled or tagged to provide product identification sufficient for inventory.
 f. Rolls shall be stored in a manner, which protects them from the elements.
 g. Geotextile shall conform to the following:

 | Property | Wire Fence Supported Requirements | Self Supported Requirements |
 |----------------------------|------------------------------------|----------------------------|
 | Tensile Strength, Lbs. | ASTM D4632 90 Minimum² | 90 Minimum² |
 | Elongation at 50% Minimum | | |
 | Tensile Strength (45 Lbs.)| ASTM D4632 N/A | 50 Maximum |
Rebuild Kitchen & Stabilize Structure
Tavern, Arrow Rock State Historic Site, Missouri
May 12, 2020

<table>
<thead>
<tr>
<th>Filter Efficiency, %</th>
<th>VTM-51</th>
<th>75</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate gal/ft/min</td>
<td>VTM-51</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Ultraviolet Degradation at 500 hrs.</td>
<td>ASTM D4355</td>
<td>Minimum 70% Strength Retained</td>
<td>Minimum 70% Strength Retained</td>
</tr>
</tbody>
</table>

1. Notes: All numerical values represent minimum average roll value. When tested in any principal direction. Virginia DOT test method.

2. Posts: Wood, steel, or synthetic posts may be used. Posts shall have a minimum length of 36” plus embedment depth (24” min.). Posts shall have sufficient strength to resist damage during installation and to support applied loads.

3. Support Fence: Wire or other support fence shall be at least 24” high and strong enough to support applied loads.

4. Prefabricated Fence: Prefabricated fence systems may be used provided they meet all of the above material requirements.

H. Concrete Washout Containers

1. Hay Bale and Plastic Washout Pit
 a. Pit dug into ground or built above grade.
 b. Plastic lining free of tears or holes. Repair and/or replace as required after removal of hardened concrete.

2. Vinyl Washout Container w/ Filter Bag

3. Metal Washout Container

2.2 CERTIFICATION AND SAMPLING:

A. The Contractor shall furnish a manufacturer's certification, stating the material conforms to the requirements of these specifications.

B. The certification shall include, or have attached, typical results of tests for the specified properties, representative of the materials supplied.

C. The Owner's Representative reserves the right to sample and test any material offered for use.

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. The Owner's Representative may limit the surface area of erodible earth material exposed by clearing and grubbing, excavation, borrow, or fill operations.

B. The Owner’s Representative may direct the Contractor to provide immediate permanent or temporary pollution control measures to prevent contamination of adjacent streams, other watercourses, lakes, ponds, or other areas of water impoundment. Work may involve the construction of temporary berms, dikes, dams, sediment basins, slope drains, use of temporary mulches, seeding or other control devices or methods to control erosion.

C. The Contractor shall incorporate permanent erosion control features at the earliest practicable time.

D. The Contractor shall provide, at no additional cost to the Owner, temporary pollution control measures needed to control erosion during normal construction practices.

3.2 LIMITATION OF AREA DISTURBED:

A. The Contractor's operations shall be scheduled to install permanent erosion control features immediately after clearing and grubbing, and grading.
B. The surface area of erodible earth material exposed at one time by clearing and grubbing, excavating, fill, or borrow shall not exceed 200,000 square feet without written approval of the Owner’s Representative.

C. The Owner’s Representative may limit the area of clearing and grubbing, excavation, borrow, and embankment operations commensurate with the Contractor’s capability and progress in completing the finish grading, mulching, seeding, and other such permanent pollution control measures current.

D. The Contractor shall respond to seasonal variations. If required by weather, temporary erosion control measures shall be taken immediately.

3.3 RIVERS, STREAMS, AND IMPOUNDMENTS:

A. Construction operations in rivers, streams, and impoundments shall be restricted to areas which must be entered for the construction of temporary or permanent structures.

B. Rivers, streams, and impoundments shall be promptly cleared of falsework, piling, debris, or other obstructions as soon as practical.

C. Frequent fording of live streams with construction equipment will not be permitted.

D. Temporary bridges or other structures shall be used when the Contractor’s operations include cycling of equipment across streams, rivers, or impoundments.

E. Mechanized equipment shall not be operated in flowing streams except as required to construct channel changes and temporary or permanent structures.

3.4 BORROW AND WASTE AREAS

A. Material pits other than commercially operated sources and material spoil areas shall be subject to pollution control measures of this specification. An offsite location does not relieve the Contractor of his contractual obligation to prevent the introduction of silt or other pollutants into receiving waterways.

3.5 CONFLICT WITH FEDERAL, STATE OR LOCAL LAWS, RULES OR REGULATIONS

A. In case of conflict between these requirements and pollution control laws, rules, or regulations or other Federal, State or local agencies, the more restrictive laws, rules, or regulations shall apply.

3.6 TEMPORARY BERMS

A. Temporary berms shall be constructed at the top of newly constructed slopes and / or transverse to grade to divert runoff and prevent erosion until permanent controls are installed and / or slopes are stabilized. Two types of temporary berms will be utilized under conditions listed below:

1. Type “A” Berm: At the end of each day’s operations on embankments.

2. Type “B” Berm: At shut down of embankment operations for the winter season or discontinuation of work at the direction of, or with concurrence of the Owner’s Representative.

3. Interceptor berms transverse to centerline may be used when temporary berms are installed on grades in excess of 1 percent and at locations where water is to be carried down the fill slope by temporary or permanent slope drains.

B. Construction Requirements:

1. Type “A” Berms shall be constructed to the approximate dimensions indicated on the drawings. Berms shall be machine compacted with a minimum of one pass over the entire width with a bulldozer tread, grader wheel, or other approved method.

2. Type “B” Berms shall be constructed to the approximate dimensions indicated on the drawings. These berms shall be machine compacted with a minimum of three passes over the entire width with a bulldozer tread, grader wheel, or other approved method.
3. Type “A” and Type “B” Berms must drain to a compacted outlet at a slope drain. The top width of these berms may be wider and the side slopes flatter on transverse berms to allow equipment to pass over these berms with a minimal disruption.

3.7 TEMPORARY SLOPE DRAINS

A. General:
1. Temporary slope drains are required to concentrate water flowing down a slope prior to installation of permanent facilities. Slope drains shall be placed at approximately 500-foot intervals or as directed by the Owner’s Representative.

B. General Requirements
1. The Contractor shall install a temporary silt fence in locations shown on the drawings, around inlets that accept flow carrying silt, and other locations necessary to prevent the discharge of silt from the site.
2. Installation shall conform to the drawing detail.
3. Fence construction shall be adequate to handle the stress from hydraulic and sediment loading.

C. Construction Requirements:
1. Temporary slope drains shall be anchored to prevent disruption by the force of the water flowing in the drain.
2. The inlet end shall be constructed to channel water into the drain.
3. The outlet ends of these temporary slope drains shall have some means of dissipating the energy of this water to reduce erosion downstream.
4. Unless otherwise directed by the Owner’s Representative, temporary slope drains shall be removed when no longer necessary and the site restored to match the surroundings.

3.8 DITCH CHECKS

A. General:
1. Rock ditch checks may be used on ditches with grades of 4 percent or less.
2. Straw bale ditch checks may be used on all ditches with a fabric silt fence.
 a. The silt fence fabric may be eliminated for ditch grades of 2 percent or less.
3. Silt fence ditch check may be used on all ditches.
4. A straw bale ditch check or a silt fence ditch check may be used in lieu of a sediment basin for drainage areas less than two acres. The basin shall have a volume of 1,815 CF per acre of contributing drainage area.

B. Construction Requirements:
1. Construct rock ditch checks in accordance with the drawing detail.
2. Achieve complete coverage of the ditch or swale and insure the center of the check is lower than the edges.
3. Construct straw bale ditch checks in accordance with the drawing detail.
4. Construct silt fence ditch checks in accordance with the drawing detail.

C. Maintenance:
1. Inspect ditch checks for sediment accumulation after each rainfall.
2. Sediment shall be removed when it reaches one-half of the original height.
3. Regular inspections shall insure that the center of a rock check is lower than the edges. Correct erosion caused by high flows around the edges of the check immediately.

3.9 SEDIMENT BASIN

A. General
1. Sediment basins are used for drainage areas of two (2) to five (5) acres or for a roadway ditch exceeding 1,000 consecutive feet in length. Break larger drainage areas or longer ditches into smaller areas.

B. Construction Requirements:
1. The area where a sediment basin is to be constructed shall be cleared of vegetation.
2. Construct the inlets of sediment basins with a wide cross-section and a minimum grade to prevent turbulence and allow deposition of soil particles.
3. The minimum depth is 2'; the maximum depth is 6'.
4. The minimum width is 5'; the maximum width is 20'.
5. The minimum length is 25'; the maximum length is 200'.
6. The minimum volume shall be 1,815 CF per acre of drainage area.
7. Sediment basins shall remain in service until all disturbed areas draining into the structure have been stabilized.
8. When use of sediment basin is discontinued, backfill all excavations and compact fill. Fill material shall be removed and the existing ground restored to the original or plan grade.

C. Maintenance
1. When the depth of sediment reaches 1/3 of the depth of structure in any part of the pool, all accumulation shall be removed.
2. Removed sediment shall be disposed of in locations that the sediment will not erode into the construction areas or into natural waterways. The same holds true for excavated material removed during construction of the sediment basin.

3.10 TEMPORARY SEEDING AND MULCHING

A. General
1. This item is applicable to all projects.
2. Seeding and/or mulching shall be a continuous operation on all cut slopes, fill slopes, and borrow pits during the construction process. All disturbed areas shall be seeded and mulched within five (5) working days after the last construction activity in all locations where necessary to eliminate erosion.

B. Construction Requirements:
1. Permanent seeding and mulching following temporary seeding will be performed during the favorable seeding seasons only.
2. Temporary seeding mixtures and planting season:
 a. December 1 to March 1: 50 lbs. oat grain per acre
 b. March 1 to December 1: 50 lbs. (cereal rye or wheat) per acre
3. Temporary mulch, fertilizer, and lime for seeding:
4. Fertilizer and mulch for temporary seed mixtures shall be applied in accordance with Section 32 92 00.
5. Fertilizer shall be applied at the rate specified for permanent seeding.
6. Lime will not be required for temporary seeding.

3.11 STRAW BALES
A. General
1. Install at the bottom of embankment slopes less than 10’ high to divert runoff from sheet flow and intercept some of the sediment in the sheet flow.
2. Install as ditch checks in small ditches and drainage areas.
3. Install on the lower side of cleared areas to catch sediment from sheet flow.

B. Construction Requirements:
1. Bales of straw shall be utilized to control erosion, trap sediment, and divert runoff.
2. Bales must be adequately braced from behind.

3.12 SILT FENCE
A. General
1. Install along the toe of fills over 10’ in height, along the right-of-way line, parallel to streams or around an inlet to prevent sediment from entering the pipe system.

B. General Requirements:
1. The Contractor shall install a temporary silt fence in locations shown on the drawings, around inlets that accept flows containing silt, and other locations necessary to prevent the discharge of silt from the site.
2. Installation shall conform to the detail at the end of this section.
3. Fence construction shall be adequate to handle the stress from hydraulic and sediment loading.

C. Installation
1. Geotextile at the bottom of the fence shall be buried as indicated on the detail.
2. The trench shall be backfilled and the soil compacted over the geotextile. The geotextile shall be spliced together as indicated on the detail.

D. Post Installation
1. Post spacing shall not exceed 8’ for wire support fence installation or 5’ for self-supported installations.
2. Posts shall be driven a minimum of 24” into the ground. Where rock is encountered, posts shall be installed in a manner approved by the Owner’s Representative.
3. Closer spacing, greater embedment depth and/or wider posts shall be used in low areas, soft, or swampy ground to ensure adequate resistance to applied loads.
4. When support fence is used, the mesh shall be fastened securely to the upstream side of the post.
5. The mesh shall extend into the trench a minimum of 2” and extend a maximum of 36” above the original ground surface.
6. When self-supported fence is used, the geotextile shall be securely fastened to fence posts.
E. Maintenance
1. The Contractor shall maintain the integrity of silt fences as long as they are necessary to contain sediment runoff.
2. The Contractor shall inspect all temporary silt fences immediately after each rainfall. Inspect daily during prolonged rainfall.
3. The Contractor shall immediately correct deficiencies.
4. The Contractor shall make a daily review of the location of silt fences in areas where construction activities have changed the natural contour and drainage runoff to ensure that the silt fences are properly located for effectiveness.
5. Where a single fence is not adequate to handle the volume of silt or flows are not completely intercepted, additional silt fences shall be installed.
6. The Contractor shall remove and dispose of sediment deposits when the deposit approaches one-half the height of the fence.
7. The silt fence shall remain in place until the upstream surface is stabilized. Upon removal, the Contractor shall remove the silt fence, dispose of excess silt, and restore the disturbed area in accordance with Section 32 92 00.

3.13 TEMPORARY PIPE
A. General:
1. The Contractor shall install temporary pipes and fill at locations, to be crossed by the Contractor’s equipment, which carry a concentrated flow during rain events.
B. Construction Requirements:
1. All temporary pipes shall be installed in the same manner as permanent pipe is installed on the project to assure that the water does not cause erosion around the pipe.
2. Material to backfill the pipe should be placed in 6" lifts and mechanically compacted. Compaction testing will not be required.

3.14 SEDIMENT REMOVAL
A. General
B. Sediment deposits shall be removed when:
1. The deposits reach approximately one-half the height of a ditch check, straw bale barrier or silt fence.
2. The sediments have reduced the ponded volume of sediment basins to one-third of the original volume.
3. Requested by the Owner’s Representative.
C. Sediment removed from erosion control features shall be deposited in a location where it will not erode into construction areas or watercourses.

3.15 CONCRETE WASHOUT
A. Inspect concrete washout containers to be inspected daily and after heavy rains for leaks, plastic lining and sidewall damage.
B. When washout container is filled to over 75% of its capacity, vacuum off washwater or allow it to evaporate. Remove cementitious solids after they have hardened.
C. Damage to washout containers should be repaired promptly.
D. Before heavy rains, lower liquid levels by vacuuming off or cover container to avoid overflows.

END OF SECTION 31 25 00
SECTION 321123 – AGGREGATE BASE COURSE

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. Section includes placing an aggregate base course consisting of a uniform mixture of graded materials on a prepared subgrade. The drawings specify the type of aggregate.
 B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS
 A. Section 31 23 13 – Subgrade Preparation

1.3 GENERAL
 A. Work shall be in conformance with MoDOT 304.1 through 304.3.6.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Aggregate material shall conform to the following:
 1. Type 1 Aggregate (Rolled Stone) MoDOT 1007.2
 2. Type 5 Aggregate MoDOT 1007.3
 3. Aggregate for Surfacing – Grade A or B MoDOT 1006
 4. Non-Penetrated Macadam Base:
 a. Non-penetrated macadam base shall consist of sound, durable particles of limestone or dolomite, and shall not contain deleterious material such as shale or disintegrated stone in excess of 15 percent.
 b. The crushed stone shall have a percent of wear not to exceed 50 when tested in accordance with AASHTO 96-58(c) (Los Angeles Abrasion). Stone shall meet the following gradation requirements:

 | Percent |
 |-----------------|
 | Passing 3” Square Sieve | 100 |
 | Passing 2½” Square Sieve | 90 - 100 |
 | Passing 2” Square Sieve | 35 - 70 |
 | Passing 1½” Square Sieve | 0 - 15 |
 | Passing ¾” Square Sieve | 0 - 5 |

 B. Water shall be clean and free from acid, salt, oil, and other organic matter.

PART 3 - EXECUTION

3.1 GENERAL
 A. Placement of Aggregate for base shall be in accordance with MoDOT 304.3.3 through 304.3.6.
 B. Placement of Aggregate for surfacing shall be in accordance with MoDOT 310.3 through 310.3.4.

END OF SECTION 32 11 23
SECTION 321216 – ASPHALTIC CONCRETE PAVING

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Placement of asphaltic concrete, in one or more courses, on a prepared base or underlying course in conformity with the line, grade, thickness, and typical cross section shown on the drawings.

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Materials and composition of Types SP125, SP190, and SP250 Asphaltic Concrete shall conform to MoDOT 403.2 through 403.3 inclusive.

B. Materials and composition of Plant Mix Bituminous Base, BP-1, and BP-2 shall conform to MoDOT 401.2 through 401.4.5 inclusive.

C. Materials and the composition of mixtures for surface leveling (wedge course) shall conform to MoDOT 402.2 through 402.3.3.

PART 3 - EXECUTION

3.1 EQUIPMENT

A. Equipment shall meet the requirements of MoDOT 403.7 through 403.9.

3.2 WEATHER LIMITATIONS

A. Asphaltic concrete shall not be placed:
 1. When either the air temperature or the temperature of the surface on which the mixture is to be placed is below 50°F for the surface course or below 40°F for subsurface courses
 2. On any wet or frozen surface
 3. When weather conditions prevent the proper handling or finishing of the mixture

3.3 SPREADING AND FINISHING

A. Spreading and finishing shall conform to MoDOT 403.13 through 403.16.2.

3.4 SPOT WEDGING AND LEVELING COURSE

A. Spot wedging and surface leveling shall conform to MoDOT 402.10.4 through 402.10.9.

3.5 SURFACE TOLERANCES

A. The surface of each layer shall be substantially free from waves or irregularities.

B. The final surface (except on medians and similar areas, shoulders adjacent to rigid pavement, or resurfaced rigid pavement, and temporary bypasses) shall not vary by more than 1/8" from a 10' straight edge, applied parallel to the centerline.

C. At transverse construction joints, the surface of all other layers shall not vary from the 10' straight edge by more than 1/4".

3.6 TESTING PAVEMENT

A. The finished courses shall have the nominal thickness shown on the drawings.
B. If the Owner’s Representative requires tests to ensure the course construction meets the proper thickness, composition, and density, the Contractor shall cut samples from any layer of the compacted mixture and shall deliver them to the Owner’s Representative in good condition.

1. Obtain samples by either sawing with a power saw or by drilling 4” diameter cores.

2. Each sawed sample shall consist of a single piece of pavement of at least 4” in diameter, but not larger than 12” square.

3. Repair the area damaged by removing the specimen with hot mix no later than the next day of plant operation.

4. The Owner will make payment for obtaining and delivering samples and repairing surfaces at $100.00 per sample.

END OF SECTION 32 12 16
SECTION 321300 – PORTLAND CEMENT PAVING

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. Construction of Portland Cement Concrete Flatwork
 B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS
 A. Section 32 13 73 – Concrete Pavement Joint Sealant
 B. Section 03 20 00 – Concrete Reinforcing

1.2 SUBMITTALS
 A. Certifications
 1. Manufacturer’s Certification that materials meet specification requirements.
 2. Ready Mix delivery tickets: ASTM C94

1.4 QUALITY ASSURANCE
 A. Compressive strength testing per ASTM C94: by Owner
 B. Thickness Tolerance per MoDOT 502.10: by Owner if desired

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Forms and equipment shall conform to MoDOT 502.3 through 502.3.6
 B. Curing compound shall conform to MoDOT 1055.
 C. Joint Sealer for pavements shall conform to MoDOT 1057.5.
 D. Joint Sealer for sidewalks and driveways shall conform to Section 32 13 73, Concrete Pavement Joint Sealer.
 E. Pre-formed fiber expansion joint filler shall conform to AASHTO M213
 F. Portland cement concrete shall conform to MoDOT 501 and 1005 with the following modifications:
 1. All portland cement concrete shall be air entrained with 6% (± 1%) minimum air content.
 2. Do not use or include calcium chloride.
 3. The allowable slump for pavement shall be 2.5 in.; for sidewalk shall be 2-4 in.; and for storm drainage structures shall be 4 in.
 4. The minimum 28-day compressive strength requirements shall be 4,000 psi for Class A-1, B, B-1, B-2, and Pavement. Compressive strength shall be 3,000 psi for Seal Class.
 5. Aggregate:
 a. The combined maximum weight of flint and chert shall be 1% of the weight of coarse aggregate.
 b. The maximum weight of lignite shall be 0.07% of the weight of the fine aggregate.

2.2 USE OF FLY ASH IN CONCRETE – MR SP-31
A. The Contractor may use fly ash in the concrete production in accordance with this specification.

B. General: Approved Class C fly ash may be used to replace a maximum of 25 percent of Type I or II cement on a pound for pound basis in all concrete, except concrete designed for high early strength. Fly ash shall not exceed 25 percent by weight of the total cementitious material (fly ash and cement).

C. Fly ash may replace Type III, IP, or I (PM) cement, provided the various classes of concrete meet or exceed the strength requirements.

D. All proportioning, air entraining, slump, maximum mixing water requirements, mixing, sampling, measurement of materials, transporting of concrete, and all materials except fly ash shall be in accordance with MoDOT 501.

E. All fly ash shall conform to MoDOT 1018, Fly Ash for Concrete.

F. When fly ash is used, an adjustment in design mix proportions will be required to correct the volume yield of mixture. The Contractor shall submit a copy of the mix design and a certification from the supplier the concrete meets the requirements of this specification and MoDOT 501 for all classes of concrete. Obtain the Owner’s Representative approval prior to changing a mix design or proportions.

G. Base the maximum mixing water as specified in MoDOT 501 on total cementitious material. A sack or bag of cementitious material is ninety-four pounds. The quantity of mixing water in the concrete after proper allowance for aggregate absorption is the net quantity.

H. Special Requirements for the use of Fly Ash
 1. Fly ash shall be stored in a separate enclosed storage silo during batching operations.
 2. Measure the fly ash in the same manner and with the same accuracy as cement. If weighing the fly ash on the same scale beam with the weigh the cement separately first.
 3. Consider fly ash in the same manner as cement when measuring mixing time.
 4. When using an allowed commercial mixture of concrete that includes fly ash, the contractor shall notify the Owner’s Representative of the class, source, and quantity of fly ash proposed in addition to the other requirements of MoDOT 501. The fly ash shall be from an approved source and the quantity shall not exceed 25%, by weight, replacement of cement.

PART 3 - EXECUTION

3.1 GENERAL

A. Surface finish for pavement patches shall match the adjacent pavement. Sidewalks and driveways shall generally receive a light broom finish.

B. Control Joints:
 1. Saw joints to the depth shown on the drawings and outlined in these specifications.
 2. Saw control joints as soon as possible after the concrete has set, but no greater than 18 hours. Raveled joints are not acceptable.
 3. Seal all driveway, parking lot, and sidewalk joints per Section 32 13 73, Concrete Pavement Joint Sealant.
 4. Seal street and highway pavement joints per MoDOT 502.5.4.

3.2 PAVEMENTS

A. Construction of pavements shall conform to MoDOT 502.4.1 through 502.7 and 502.9.

3.3 SIDEWALKS

A. Construction of sidewalks shall conform to MoDOT 608.1 through 608.3.8.

3.4 FIELD QUALITY CONTROL OF ROADWAYS (Not applicable to small patches)
A. As soon as practicable, the thoroughly test the pavement surface by straightedging. The contractor in the presence of the Owner’s Representative shall perform Straightedging.

B. Take pavement profiles 3 feet from and parallel to each edge of pavement, for pavements 11 feet wide. If pavement placement is greater than 11 feet wide, take profile 3 feet from and parallel to each edge and 3 feet to one side of each plan longitudinal joint.

C. All variations exceeding 1/8 inch in 10 feet will be plainly marked. Correct all areas more than 1/8 inch high.

3.5 SURFACE CORRECTIONS

A. Bump correction, smoothness correction, or both may be required.

B. Accomplish the corrective action to improve the average profile index by longitudinally diamond grinding or use of an approved device designed for that purpose. Do not use a bush hammer or other impact device.

C. The final surface of the corrected concrete pavement shall have a texture comparable to adjacent sections that do not require correcting. Satisfactory longitudinal grinding is acceptable as the final surface of the corrected pavements.

END OF SECTION 32 13 00
SECTION 321373 – CONCRETE PAVEMENT JOINT SEALANT

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. Section includes sealing control and expansion joints in concrete sidewalks, parking lots, and driveways.
 B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 WORK INCLUDED
 A. Work under this section includes providing all labor, material, and equipment to seal the contraction, control, and expansion joints in concrete sidewalk, parking lot, and driveway pavements.

PART 2 - PRODUCTS

2.1 EXPANSION JOINT MATERIAL
 A. Expansion joint material shall be 1/2” thick, full depth, pre-molded non-bituminous joint material, with the top 1/2” perforated for removal prior to sealing operations.

2.2 JOINT FILLER
 A. One or two component polysulfide polymer sealant or a one or two component polyurethane prepolymer sealant
 B. Color: Gray

2.3 BACKER ROD
 A. Closed cell polyethafoam sealant backer rod; sized as required

PART 3 - EXECUTION

3.1 PREPARATION
 A. Saw control joints in accordance with the drawings and specifications.
 B. Seal joints following the sawing operation or as soon as possible thereafter.

3.2 GENERAL
 A. Manufacturer's recommendations on the joint sealer shall be strictly adhered to with the following additions:
 1. Leave joint sealant approximately 1/16” below the pavement surface level to prevent tracking.
 2. Sprinkle fine silica sand, as needed, to reduce tracking of the joint sealer.
 B. Maintain pedestrian traffic on sidewalks unless the Owner’s Representative authorizes closure. Prevent ANY tracking of the joint material.
 1. The Contractor may close off one-half the sidewalk width to pedestrian traffic while sealant cures.
 2. Contractor may place a board, notched on the bottom side, with the notch centered over the joint, and held securely in place with sandbags.

3.3 INSTALLATION
A. Remove the perforated portion of the expansion joint material prior to placing joint sealant.
B. Clean all loose material from the joints with compressed air.
C. In contraction joints, place a polyethylene foam sealant backer rod of 5/16" to 3/8" below the surface elevation of the sidewalk. Install the backer rod at uniform depth.
D. Install expansion and construction joint sealant to approximately 1/16" below the pavement’s surface level.

END OF SECTION 32 13 73
SECTION 329200 – TURF RESTORATION

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Work includes providing material, labor, and equipment necessary to restore all disturbed areas to original or better than original condition, including soil preparation, fertilizing, liming, seeding, and mulching.

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 GENERAL

A. Fertilize, seed, and mulch all disturbed areas except surfaced areas, solid rock, and slopes consisting primarily of broken rock.

B. Protect all disturbed or regraded swales and ditch lines with Type 2 Erosion Blanket, whether or not noted on the plan drawings.
 1. Bank slope of 3:1 or flatter: Protect to 1’ above flow line.
 2. Bank slopes greater than 3:1: Protect to the top of bank.

C. Protect other areas with Erosion Control Blanket as noted on the plan drawings. Type 2 Erosion Control Blanket shall be the default if not otherwise identified.

1.3 SUBMITTALS

PART 2 - PRODUCTS

2.1 LIME

A. Material for soil neutralization shall be agricultural lime with not less than 90 percent passing the No. 8 sieve and containing at least 65 percent calcium carbonate equivalent.

B. Lime application rate shall provide at least 800 pounds per acre. The quality of material required to provide the specified pounds of effective neutralizing material per acre shall be determined from the producer or distributor’s certification of analysis furnished by the Director of the Missouri Agriculture Experiment Station, Columbia, Missouri in accordance with the Missouri Agricultural Liming Materials Act.

2.2 FERTILIZER

A. Fertilizer shall be a standard commercial product. Material shall supply at least 30 pounds of total nitrogen (N), 90 pounds of phosphoric acid (P$_2$O$_5$), and 90 pounds of soluble potash (K$_2$O) per acre.

B. Owner may accept material based on bag label analysis, supplier’s certification, or based on samples tested in the laboratory.

C. Tolerances for samples tested in the laboratory: Nominal composition shown by label or certification of −10 percent up to the maximum of two units (2% plant food) for the individual constituents, and −3 percent for the sum of the constituents.

D. There is no limit on the plus tolerances for such samples.

2.3 SEED
A. U.S. Department of Agriculture rules and regulations under the Federal Seed Act apply to seed labeling. Seed shall comply with the requirements of the Missouri Seed Law. The following percentages for purity and germination will be the minimum requirements in the acceptance of seed, unless otherwise permitted by the Owner’s Representative.

<table>
<thead>
<tr>
<th></th>
<th>Purity</th>
<th>Germination Including Hard Seed</th>
<th>Maximum % Weed Seed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perennial Rye</td>
<td>98%</td>
<td>85%</td>
<td>1.00</td>
</tr>
<tr>
<td>Redtop</td>
<td>92%</td>
<td>85%</td>
<td>2.00</td>
</tr>
<tr>
<td>Bluegrass</td>
<td>98%</td>
<td>85%</td>
<td>1.00</td>
</tr>
<tr>
<td>Turf Type Tall Fescue</td>
<td>97%</td>
<td>85%</td>
<td>2.00</td>
</tr>
<tr>
<td>Red Fescue</td>
<td>97%</td>
<td>85%</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Does not apply if unhulled or unscarified seed is specified

B. No reduction will be permitted in the specified quantity of seed if the purity or germination, or both, are higher than the minimum required by the specifications.

C. Inoculate or treat Red Clover seed with the proper quantity of cultures approved for the legume seed.

D. The inoculant for treating leguminous seed shall be a pure culture of nitrogen-fixing bacteria. The containers of the inoculant shall be plainly marked with the expiration date for use and the manufacturer’s directions for inoculating seed.

E. The process for inoculation shall be in accordance with the manufacturer’s directions for the particular species of legume. The time lapse for sowing the seed following inoculation shall not exceed 24 hours.
 1. If using hydraulic slurry seeding, use a quantity of inoculant equal to five times the normal rate required to inoculate only the legume seed. Place inoculant directly into the slurry and thoroughly mixed immediately before seeding.
 2. If other than the hydraulic slurry method is used, the Contractor may inoculate the legume seed at the normal rate if sowing alone or if inoculating the legume seed prior to mixing with other seed.
 3. Inoculate a seed mixture, which contains a legume not inoculated prior to mixing and not seeded by the slurry method, with sufficient inoculant to cover all seed.

F. Seed Mixture: The pure live grass seed mixture:

<table>
<thead>
<tr>
<th>Type</th>
<th>Rate (# per 1,000-sf)</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turf Type Tall Fescue</td>
<td>10</td>
<td>67.67</td>
</tr>
<tr>
<td>Bluegrass</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Redtop</td>
<td>1</td>
<td>6.67</td>
</tr>
<tr>
<td>Red Fescue</td>
<td>1</td>
<td>6.66</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

Use the following formula to determine the amount of commercial seed required to provide in each kind of seed the specified quantities of pure live seed

\[
\text{Pure Live Seed} \times 100 \times 100 = \text{Pounds Seeds Required}
\]
Purity x Germination

2.4 TYPE 1 MULCH

A. Type 1 Mulch (vegetative mulch) shall be the cereal straw from stalks of oats, rye, wheat, or barley.

B. The straw shall be free of prohibited weed seed defined in the Missouri Seed Law. Straw shall be relatively free of all other noxious and undesirable seed.

C. The straw shall be clean and bright, relatively free of foreign material, and be dry enough to spread properly.

D. If the Contractor cannot meet the above straw specification, the Owner’s Representative may approve substituting the foliage of the following plants.
 1. Smooth brome, timothy, orchard grass, reed canary grass, tall fescue, red top, millet, blue stem, Indian grass, alfalfa, birdsfoot trefoil, and vetch.
 2. Take the foliate from areas of current season’s growth with relatively pure stands of plants.

E. The straw shall be relatively free of noxious and undesirable seed and foreign material.

2.5 EROSION CONTROL BLANKET

A. Type 1 Erosion Control Blanket: S150BN by North American Green, AEC Premier Straw Double Net by American Excelsior Co., Excel SS-2 All Natural by Western Excelsior Corp., or approved equal.

B. Type 2 Erosion Control Blanket: SC150BN by North American Green, AEC Premier Straw/Coconut by American Excelsior Co., Excel S-2 All Natural by Western Excelsior Corp., or approved equal.

C. Type 3 Erosion Control Blanket: C125BN by North American Green, Curlex II (.98) by American Excelsior Co., Excel CC-4 All Natural by Western Excelsior Corp., or approved equal.

D. Staples: Staples for erosion control blanket shall meet the installation requirements of the manufacturer.
 1. Type 1, Type 2, Type 3 Erosion Control Blanket: Staples shall be at least No. 11 gage, or heavier, ungalvanized steel wire, "U"-shaped, with approximately a 1" or larger crown, and have a length of not less than 6".

PART 3 - EXECUTION

3.1 FERTILIZING

A. The seedbed shall be prepared by placing lime and fertilizer. The area shall have a uniform surface free from rills, washes, and depressions.

B. The soil shall be thoroughly broken up, worked, tilled, and loosened to a minimum depth of two inches.

C. The seedbed shall be prepared by loosening the existing soil on the slope, rather than by the addition of loose soil.

D. Lime and fertilizer shall be applied evenly and only when the soil is in a tillable condition.

E. After application, mix the lime and fertilizer into the soil by disking, harrowing, or raking to a minimum depth of two inches unless applied hydraulically on slopes steeper than 2:1.

F. Apply the lime and fertilizer separately or incorporate into the soil in one operation.

G. Apply lime and fertilizer not more than 48 hours before sowing the seed.
3.2 SEEDING

A. The seedbed shall be prepared, to provide a firm but uncompacted condition with a relatively fine texture at the time of seeding.

B. During the months of January through May, and September apply all lime, fertilizer, seed, and mulch at the specified rates. During the months of June, July, August, October, November, and December, modify the rates as follows:
 1. Lime: 100 percent of the specified quantity.
 2. Fertilizer: 75 percent of the specified quantity.
 3. Seed: 50 percent of the specified quantity.
 4. Mulch: 100 percent of the specified quantity.

C. Seeding shall be done before the proposed seedbed becomes eroded, crusted over, or dried out and shall not be done when the ground is in a frozen condition or covered with snow.

D. When making partial application during June, July, August, October, November, or December, apply the remainder of the fertilizer plus 75 percent of the specified quantity of seed by over seeding during September, January, February, or March.

E. Uniformly apply seed at the rates specified. Make provisions by markers or other means to insure that the successive seeded strips will overlap or separated by a space no greater than the space left between the rows planted by the equipment used.

F. If inspection during the seeding operations indicate strips wider than the space between rows planted are unplanted, plant additional seed on these areas.

G. Hydraulic Seeding and Fertilizing:
 1. In lieu of mechanical application of seed and fertilizer, hydraulic application may be used.
 2. On slopes steeper than 2:1, or when applying seeding to a previously seeded and mulched area, apply the seed and fertilizer hydraulically and in a single operation. Incorporation into the soil is not required.
 3. On all other slopes, the Contractor may apply seed and fertilizer hydraulically provided the seed and fertilizer incorporated into the soil in separate operations.
 4. Raking will not be required when seeding a previously seeded and mulched area.
 5. Mix seed and fertilizer, separately or in combination with water, constantly agitated, so hydraulically applying a uniform mixture to the specified areas.
 6. Calculate the ratio of seed and fertilizer to water by determining the number of square feet covered by a given quantity of water.
 7. Do not add the seed to the water more than four hours before application.

H. Dry Seeding: Install dry seed mechanically with equipment designed for even distribution. The equipment may be hand operated, such as knapsack seeder, or be tractor-drawn, such as seed drill. On previously seeded and mulched area do not use tractor-drawn equipment.
 1. Cover seed scattered on the surface with approximately ¼" of soil by raking or other approved methods. Raking will not be required when seeding a previously seeded and mulched area.
 2. Seed placed in the soil shall be approximately ¼" below the surface.
 3. If the seedbed is loose or contains clods which would reduce the germination of the seed, the Contractor shall firm the area by rolling
 a. When rolling is required, use a lawn-type roller and avoid over-compaction of the soil.
3.3 TYPE 1 MULCHING

A. Apply Type 1 Mulch (vegetative) at the rate of 2½ tons per acre.
B. Distribute mulch evenly over the required area within 24 hours of the seeding operation.
C. Following the mulching operation, take precautions to prohibit foot or vehicular traffic over the mulched area.
D. Replace displaced mulch at once.
 1. Repair damaged limed, fertilized, or seedbed prior to mulching.

3.4 EROSION CONTROL BLANKET

A. Site Preparation:
 1. Install erosion control blanket on subgrade that has been properly compacted, graded smooth, has no depressions, voids, soft or uncompacted areas, is free from obstructions such as tree roots, protruding stones or other foreign matter, and is seeded and fertilized according to this specification.
 2. Contractor shall fine grade the subgrade by hand dressing where necessary to remove local deviations.
 3. No vehicular traffic shall be permitted directly on the erosion control blanket.

B. Slope Installation
 1. Install erosion control blanket in accordance with the manufacturer's instructions.
 2. Erosion control blanket shall be orientated in vertical strips and anchored with staples. Adjacent strips shall be overlapped to allow for installation of a common row of staples that anchor through the nettings of both blankets. Horizontal joints between erosion control blankets shall be sufficiently overlapped with the uphill end on top for a common row or staples so that the staples anchor through the nettings of both blankets.
 3. Where exposed to overland sheet flow, a trench shall be located at the uphill termination. Erosion control blanket shall be stapled to the bottom of the trench. The trench shall be backfilled and compacted. Where feasible, the uphill end of the blanket shall be extended three feet over the crest of the slope.
 4. Slope erosion control blanket shall be overlapped by the channel erosion control blanket sufficiently for a common row of staples to anchor through the nettings of both blankets when terminating into a channel.

C. Channel Installation
 1. Install erosion control blanket in accordance with the manufacturer's instructions.
 2. Erosion control blanket shall be installed parallel to the flow of water. The first roll shall be centered longitudinally in mid-channel and anchored with staples. Subsequent rolls shall follow from channel center outward and be overlapped to allow installation of a common row of staples so that the staples anchor through the nettings of both blankets.
 3. Successive lengths or erosion control blanket shall be overlapped sufficiently for a common row of staples with the upstream end on top. Staple the overlap across the end of each of the overlapping lengths so that staples anchor through the netting of both blankets.
 4. A termination trench shall be located at the upstream termination. Erosion control blanket shall be stapled to the bottom of the trench. The trench shall be backfilled and compacted.

END OF SECTION 32 92 00
SECTION 331000 – WATER DISTRIBUTION

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Water mains and appurtenances
B. Submittals
C. Product delivery, storage and handling
D. Installation of pipe and appurtenances
E. Poly Wrap
F. Joint restraint
G. Disinfection and testing
H. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS

A. Section 01 33 00 – Submittals
B. Section 31 23 33 – Trenching and Backfilling

1.3 SUBMITTALS

A. Submit shop drawings, project data, and manufacturer’s installation instructions in accordance with Section 01 33 00.
B. Manufacturer’s specifications and/or catalog data listing for pipe, valves, and other special items.
C. Shop drawings showing reinforcing steel details, structural steel, supports, and mechanics defined for structures and specialty items.
D. Material and pressure test certifications.
E. Other information Owner’s Representative may request.
F. Locations of connections to existing water lines, service lines, valves, and water main appurtenances shall be submitted as a drawing with measurements to Owner’s Representative for construction record purposes.

1.4 JOB CONDITIONS

A. Interrupting Water Service:
 1. Approval required by the utility owner in advance of any interruption.
 2. A 24-hour notice to affected occupants and a 48-hour notice to the fire department of the time and duration of interruption will be provided by hand delivered notice.
 3. Provide stand by service as required by Owners Representative. Outage shall not exceed 4 hours. Contractor to make all arrangements.
 4. Existing valve operation by Owner’s employees only.
 5. Prevent contamination of existing water lines.

B. Scheduling:
 1. Install connecting lines after successful testing of the main.
2. Backfill, grading, and material clean up shall be no more than 400' behind the location of the pipe placement.

1.5 QUALITY ASSURANCE

A. Do not install materials until the Owner’s Representative approves mill and/or factory test certifications, showing material compliance with Specifications.

B. Field tests for water mains and force mains shall be in accordance with this Specification.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. The Contractor shall exercise care to prevent damage to materials during loading, transporting, unloading, and storage.

B. Do not telescope small pipe inside larger pipe for shipment or storage.

C. Handle with slings, hoist, skids, or other approved means. Do not drop or roll pipe or fittings.

D. Pipe with damaged cement mortar lining will be rejected; field patching not permitted.

E. Materials shall be stored on site, or a location subject to the approval of the Owner’s Representative. Do not store materials directly on the ground. Keep materials dry and clean by storing in enclosures or under protective coverings.

PART 2 - PRODUCTS

2.1 GENERAL

A. Lead joints are not permitted.

B. Waterline pipe shall be certified by NSF and listed in NSF Standard 61.

2.2 DUCTILE-IRON PIPE (DIP)

A. Pipe: ANSI / AWWA C151 / A21.51

1. Minimum thickness shall be Pressure Class 350 for 4" to 12" pipe and Pressure Class 250 for pipe 14" and larger unless shown otherwise on the Drawings, or called out on the Bid Form.

 a. Coat the inside of the pipe with standard thickness cement lining in accordance with ANSI / AWWA C104 / A21.4, and provide seal
 b. Coat inside and out with bituminous coating in conformance to ANSI / AWWA C110 / A21.10.

B. Push-on joints for DIP shall be provided with thermite welded sockets and cable or approved conductivity strap.

2.3 RESTRAINED JOINT DUCTILE IRON PIPE (RJ-DIP)

A. Pipe shall conform to ANSI / AWWA C151 / A21.51.

1. Minimum thickness shall be Pressure Class 350 for 4" to 12" pipe and Pressure Class 250 for pipe 14" and larger unless shown otherwise on the Drawings, or called out on the Bid Form.

 a. Coat the inside of the pipe with standard thickness cement lining in accordance with ANSI / AWWA C104 / A21.4, and provide seal
 b. Coat inside and out with bituminous coating in conformance to ANSI / AWWA C110 / A21.10.
3. Joints shall conform to ANSI / AWWA C111 / A21.11.

B. Acceptable Products

1. American Ductile Iron Pipe: Lok-Fast Joint Pipe
2. U.S. Pipe: Lok-Tyte Pipe

C. Isolated Restrained Joints shall conform to one of the following:

1. MJ DIP – Basis of Design: EBAA Iron Megalug Series 100, or approved equal.
2. DIP (Push-on) – Basis of Design: EBAA Iron Megalug Series 800, or approved equal.
3. Other acceptable manufacturers include Ford, E.J. Prescott, Romac Industries, or approved equal.

2.4 FITTINGS FOR DIP PIPE

A. Fittings (Tees, Bends, etc.)

1. ANSI A21.10 or ANSI A21.53 mechanical or push-on joint, ANSI A21.11, Class 250 for underground piping. All underground joints shall be push-on except where mechanical joints are shown on Drawings.
2. Flanged fittings ANSI A21.10 or ANSI A21.53, Class 250 for above ground piping or as shown on Plans.
4. All underground fittings shall be poly wrapped.

2.5 POLY WRAP

A. Poly Wrap shall conform to ANSI / AWWA C105 / A21.5 and ASTM A674.

2.6 POLYVINYL CHLORIDE PIPE (PVC)

A. Use for PVC pipe sizes 4” diameter and larger

B. Pipe:

1. 4”-12”: AWWA C900, DR 14, PR200

C. Fittings: C900 pipe shall use DIP fittings

D. Joints: ASTM F-477

2.7 POLYVINYL CHLORIDE PIPE (PVC)

A. Use for PVC pipe less than 4” diameter.

B. Pipe:

1. ASTM D-2241, PVC 1120, SDR 21, PR 200
2. Markings on pipe must include nominal pipe size, material code designation, standard dimension ratio, pressure rating, manufacturers name or trademark, National Sanitation Foundation Seal, and appropriate ASTM designation numbers.

C. Joints: ASTM D-3139 with rubber gasket per ASTM F-477; or ASTM D-2672, solvent weld.

D. Fittings: PVC fittings or CIP fittings for PVC pipe smaller than 4” diameter. PVC pipe 4” to 8” shall use DIP fittings.

2.8 VALVES
A. Gate Valves
 1. Sizes 2 inches through 12 inches.
 a. Valves shall be manufactured in accordance with AWWA C509, non-rising stem, opening counterclockwise, mechanical joint flanges, and o-ring stuffing boxes.
 b. A 2-inch operating nut shall be provided for below ground applications and a hand-wheel for above ground.
 2. Sizes 14 inches through 48 inches.
 a. Valves shall be manufactured in accordance with AWWA C500, double disc, opening counterclockwise, non-rising stem, mechanical joint flanges, and o-ring stuffing boxes.
 b. Valves over 16 inches shall be fully bronze mounted, and roller and gear operated. Gear cases shall be of the extended type.
 c. A 2-inch operating nut shall be provided for below ground applications and a hand-wheel for above ground
 3. The Contractor shall provide one (1) valve wrench if project has three (3) valves or less. Provide two (2) valve wrenches if project has 4-20 valves, and three (3) valve wrenches if the project has more than 20 valves. Valve wrenches shall be 8 feet long.

B. Tapping Valves and Sleeves
 1. Tapping CIP, DIP, PVC C900 Pipe.
 a. Sleeve – Basis of Design: Clow F-5205
 b. Valve – Basis of Design: Push-on joint Clow F-5211
 2. Tapping PVC Pipe for 4-inch and 6-inch.
 a. Sleeve – Basis of Design: Clow F-6342
 b. Valve – Basis of Design: Push-on PVC joint, Clow F-5082
 3. Other acceptable manufacturers include Mueller, U.S. Pipe, or approved equal.

C. Cutting in Valves and Sleeves
 1. Sleeve – Basis of Design: Clow F-1203 or F-1213
 2. Valve – Basis of Design: Clow F-5065
 3. Other acceptable manufacturers include Mueller, U.S. Pipe, or approved equal.

2.9 VALVE BOXES
 A. Use 3-section cast iron valve box for valves 12 inches and smaller.
 B. Lid shall be marked "Water'.
 C. Upper Section: Screw on adjoining center section and full diameter throughout.
 D. Center Section: Minimum 5 inches inside diameter.
 E. Base Section: Fit over valve bonnet and shaped round for valves through 10 inches and oval for 12 inches and over.

2.10 JOINT RESTRAINING DEVICE
 A. Tie Rods
 1. Tie rods shall be 5/8" or 3/4" and shall be U.S. steel Corten conforming to ASTM A-588, stainless steel conforming to ASTM, A-564 or approved equal.
2. Washers shall conform to ANSI B27.2, Plain Steel.
3. Nuts shall be hexagonal and shall conform to ASTM A-563.
4. The number of tie rods for bends, plugs, caps, tees, end valves, and fire hydrant valves shall conform to the following:

<table>
<thead>
<tr>
<th>PIPE DIAMETER (Based on 250 psi)</th>
<th>6"</th>
<th>8"</th>
<th>10"</th>
<th>12"</th>
<th>14"</th>
<th>16"</th>
<th>18"</th>
<th>20"</th>
<th>24"</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8" RODS</td>
<td>2</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3/4" RODS</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

B. Joint Restraints shall be EBAA Iron Megalug or approved equal.
1. PVC Pipe – Basis of Design: Megalug Series 2000 PV or Series 6500.
2. C900 Pipe – Basis of Design: Megalug Series 2000 PV or Series 1500 or CertainTeed Certa-Lok.
4. DIP (Push-on) – Basis of Design: Megalug Series 800.
5. Other acceptable manufacturers include CertainTeed, Ford, or approved equal.

2.11 MISCELLANEOUS
A. Service Clamps: Cast iron double strap, bronze or stainless steel parts, AWWA C80 threads.
C. Warning Tape: Non-magnetic polyethylene Plastic Tape, 6" wide by 4 mils thick, solid blue in color, with continuously printed caption in black letters, “Caution – Waterline Buried Below”.

PART 3 - EXECUTION

3.1 PREPARATION
A. Alignment:
1. Deviations: Notify Owner’s Representative and obtain instruction to proceed where there is an alignment discrepancy or an obstruction not shown on the Drawings.
2. Depth of Pipe: Finished grade to top of pipe shall be a minimum of 3'-6”.
3. Before installation of new facilities, verify sizes, measurements, type, and location of existing piping and appurtenances at points of connection to existing system.
4. Before installation, visually inspect for cracks or defect; damages or unsound pipe will be rejected.
5. High Points in Pipe Line: Locate at services and air vents.
6. Separation from Storm or Sanitary Sewer Lines: Water line shall be a minimum of 10' from sewer line when running parallel. At sewer line crossings, there shall be a minimum of 18" between both pipes and a full length of pipe shall be centered over or under the crossing sewer line.

B. Bedding:
2. Bearing: Support entire length of pipe barrel evenly.

C. Cleaning Pipe and Fittings:
 1. General: Interior of the pipe shall be free of all foreign materials and the joint surfaces shall be free of lumps and blisters.

3.2 INSTALLATION

A. Laying Pipe:
 1. General:
 a. Clean pipe interior of foreign material before lowering into trench.
 b. Keep clean at all times.
 (1) Securely close open ends of pipe and fittings with watertight plug to prevent ingress of foreign material.
 (2) Close when pipe jointing operation is not in progress.
 (3) If water is in the trench, the seal shall remain in place until the trench is pumped dry.
 c. Place in trench in sound, undamaged condition; do not injure pipe coating or lining; do not use end hooks to install or move pipe.
 d. Make necessary field measurements to determine piping-laying lengths; work pipe into place without forcing or springing.
 e. Lay pipe in the dry, frost-free trench, and install to a minimum of 3'-6" of cover over the top of the main or as shown on the Drawings.
 2. Tracer wire and warning tape to be installed with all plastic pipe.
 3. Deflection: Pipe may be deflected at joints by an amount less than or equal to the manufacturers maximum recommendation.

B. Cutting Pipe
 1. Pipe shall be cut in a neat and workmanlike manner to provide an even surface, perpendicular to the pipe centerline.
 2. All burrs and irregularities shall be removed prior to pipefitting.
 3. Bevel ends of push-on type pipe.

C. Jointing
 1. Perform mechanical joint installation per manufacturer’s instructions. Bolts shall be tightened evenly to 75-90 foot-pounds with a torque wrench.
 2. Perform push-on joint installation per manufacturer’s instructions.
 3. Junctions with other materials shall require the use of adapter type and technique recommended by pipe manufacturer.

D. Pipe Laying/Connections
 1. Uncover existing mains a sufficient time ahead of pipe-laying operations to determine fittings required to make connections. Make connections between existing and new water mains with specials and fittings as required.
 2. Install pipe in accordance with best construction practices as specified in AWWA Standard C600 and manufacturers recommendations.
 3. Swab pipe, valves, and fittings with 4% chlorine solution to prevent contamination of water supply.
4. During the PVC pipe-laying operation, the temperature of the pipe must be such that when the pipe cools to ground temperature, the pipe joints will not separate.

5. Plug or cap and block all pipe ends or fittings left for future connections.

6. Connection Condition:
 a. No Pressure Condition: Install solid or cutting in sleeve
 b. For a Line under Pressure: Install tapping sleeve or saddle and valve.
 c. Anchor piping laid on grade prior to embedment in concrete.

7. Attach tracer wire to plastic pipe, with two full wraps of duct tape, at 5-7 foot centers.
 a. Daylight wire at each fire hydrant, air release chamber, valve chamber, or outside of building or structure
 b. Bring to surface with 1" PVC pipe and cap.
 c. Extend wire 1-2 feet above the top of the PVC pipe. Loop wire back into the pipe. Secure cap.

8. All ductile and cast iron pipe and fittings shall be poly-wrapped.

E. Setting Valves, Fittings, and Fire Hydrants
1. General: See Drawings for location.
2. Valves shall be set plumb.
3. Valves in manholes shall be centered and supported.
4. Valve Boxes:
 a. Base section: Center and plumb over operating nut and 2" above bonnet joint
 b. Upper Section: Set cover flush with finished grade.
 c. Witnesses shall be provided by the Contractor on his record drawings.
 d. The Contractor shall protect valve boxes after installation.
5. Hydrants:
 a. Connection between hydrant and auxiliary valve shall be RJ ductile iron pipe.
 b. Hydrants shall be set plumb, with pumper nozzle facing street, and nozzle centerline 20" above finished grade.
 c. Hydrant shall be set with 4 cubic feet of 3/4" or 1" clean rock for the hydrant weep-hole.

F. Valve Manhole Chambers
1. General: See Drawing Detail sheets.
2. Base:
 a. Cast-in-Place: On undisturbed frost-free dry subgrade.
 b. Precast Unit: On crushed limestone with full and even bearing.
3. Precast: Fill joint space completely with bituminous material and trowel.
4. Casting Setting:
 b. Gravel Grade: 4 inches below.
 c. Unpaved Areas: Finished grade.
d. Witnesses shall be provided by the Contractor on his record drawings.

3.3 SERVICE LINES

A. Service lines shall be connected to water main with the corporation stop, curb stop, the curb box located below frost line as shown on the Drawing Details.

B. Line and Grade:
 1. Service lines shall be placed at right angles to the street centerline.
 2. Service lines shall be placed with a minimum depth of 4 feet, except for a short transition to match existing.

C. Curb Boxes: Shall be set plumb and located 3 feet inside the right-of-way line unless shown otherwise.
 1. Contractor shall provide three witness measurements to surface features.

D. Services shall be drilled or pushed under pavement or other surface obstruction as directed by Owner’s Representative or shown on the Drawings. No disturbance of surface shall be allowed in construction of drilled services.

E. Maximum tap sizes shall be as follows:

Type of Tap Pipe	4"	6"	8"	10"	12"	14"+
Cast Iron CI 22	1/2"	3/4"	1"	1-1/2"	2"	2"
Direct CI W (Direct)	1/2"	3/4"	1"	1-1/2"	1-1/2"	2"
All Pipe (W/Dbl. Strap Saddle)	1"	1-1/2"	2"	2"	2"	2"

3.4 INSTALLATION OF POLYWRAP

A. Clean pipe and cut polyethylene tube so that it is approximately two feet longer than the pipe section. Slip tube on the pipe and allow about one foot of the tube to overhang at each end.

B. Push back the overhanging tube ends until they clear the pipe ends.

C. Take up slack in the tube to make a snug but not tight fit. Fold excess back over the top of the pipe.

D. Secure the fold with polyethylene compatible adhesive tape at several locations along the pipe barrel.

E. Dig a shallow bell-hole in the trench bottom at the joint location.

F. Place the pipe into the trench.

G. Assemble the joint.

H. Pull the polyethylene tube end of the previously installed pipe over the new pipe and secure with the tie strap from the preceding pipe bell.

I. Overlap the secured tube end of the new pipe section. Secure the new tube end in place with the spigot end tie strap.

J. Repair all rips, tears, or other tube damage with suitable adhesive tape. Small pin point sized punctures need not be repaired.

3.5 JOINT RERAINT
A. Thrust Blocks

1. Where piping has an abrupt change direction, tees, bends, dead-ends, and hydrants.
2. Carry to undisturbed, solid trench wall for bearing.
3. Concrete thrust blocks shall be used for joint restraint. Thrust blocks shall be installed as shown on the drawing detail.
4. Bearing Area: The minimum square feet of bearing area against trench wall in sand, is as follows:

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Tees</th>
<th>90° Bends</th>
<th>45° Bends</th>
<th>22.5° Bends</th>
<th>11.25° Bends</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6"</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8"</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10"</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12"</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14"</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16"</td>
<td>9</td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>18"</td>
<td>12</td>
<td>17</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>20"</td>
<td>15</td>
<td>21</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>24"</td>
<td>21</td>
<td>30</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

a. Based on the Owner’s Representative’s observations and approval, the preceding bearing areas can be adjusted for other soil conditions.

- Cemented Sand or Hardpan: Multiply above 0.5
- Gravel: Multiply above 0.7
- Hard Dry Clay: Multiply above 0.7
- Soft Clay: Multiply above 2.0

b. Muck: Secure all fittings with tie rod clamps with concrete reaction backing over twice the area listed for sand conditions.

B. Restraining Fittings:

1. May be used as an alternative for thrust blocks with ductile iron or cast iron pipe.
2. Provide restrained or securely jointed pipe joints to prevent joint separation where piping changes direction or dead-ends.
3. Restrained pipe joints shall include use of either retainer glands or locked mechanical joints.

C. Anchorage

1. Required where thrust blocks alone will not prevent joint movement.
2. Anchorage lugs shall be provided for flanged or bell and spigot fittings and/or socket clamps and interconnecting tie rods used where there is a possibility of pulling of the joint under pressure. Concrete thrust blocks may be used in lieu of the anchorage lugs and/or socket clamps and tie rods where pipe is entirely installed below ground, provided any potential joint movement has been eliminated.

3.6 ABANDONMENT OF LINES:
A. Abandonment of Mains: At each end of water mains being abandoned, a service line will be
turned up above the backfilled portion and capped.
 1. After all services are connected to the new water line, and the old water main abandoned, the
caps shall be removed in the presence of the Owner’s Representative.
 2. If water runs out of the services, the Contractor shall locate and remove the cross connection.
 3. If the line is dead, the service shall be removed to 24” below finished grade.
 4. New lines will not be accepted as complete until all abandoned lines have been shown dead
in the presence of the Owner’s Representative.

B. Capping of Abandoned Lines: Manufactured caps compatible with existing pipe material shall be
placed on cut ends of abandoned lines and secured in place with concrete (minimum 12-inch thick
all around the cap).

C. The cost of abandonment of lines shall be incidental to the project.

3.7 FIELD QUALITY CONTROL

A. Testing and Inspection:
 1. General:
 a. Testing will be observed by the Owner’s Representative.
 b. Testing will be completed prior to connection to existing lines.
 c. Pretest line first, than arrange with Owner’s Representative for inspection and observation
 of test.
 d. The Contractor will supply all equipment and personnel required to correctly perform the
 tests.
 e. The Contractor shall make arrangements for supply of water required for test
 2. Electrical Continuity: Test ductile iron pipe and tracer wire for continuity. Repair breaks.

B. Disinfection/Chlorination
 1. Conditions:
 a. To be performed in accordance with AWWA C651. A copy of this standard can be
 obtained from the Owner’s Representative upon Contractor’s request.
 b. Observation: By the Owner’s Representative.
 c. Required Water by the Owner where available from Owner system.
 d. Equipment and Assistance: Provide.
 e. Chlorine Gas: Not permitted on job site.
 2. Sequence: Prior to pressure tests.
 3. Method of Disinfection: In accordance with AWWA C651.
 4. Sampling by the Owner’s Representative.
 5. Sampling Taps: To be provided by Contractor at a minimum of one per 2,000’ or as directed
 by Owner’s Representative and at each end of the line. Sampling tap to be as shown in
 Figure 1 of AWWA C651 or a corporation cock with copper-tube gooseneck assembly. After
 samples have been obtained, the gooseneck assembly shall not be removed. Use of hose or
 fire hydrant for collection of samples will not be permitted.
6. Corrections: Re-chlorinate to be performed by the Contractor in accordance with Section 8 of AWWA C651 for sections not meeting Department of Natural Resources bacteriological requirements.

C. Flushing:
 1. Conditions:
 b. Required Water By Owner, limited to 1,000 gpm, where and when available from municipal system.
 2. Sequence: Following pressure testing and chlorination if continuous feed or slug methods are used. If tablet method is used, flushing shall follow chlorination.
 3. Minimum Velocity: 2-1/2' per second at pipe wall.
 4. Procedure: Submittal required including method, materials, equipment, and time schedule.

D. Pressure: Testing (to be completed after disinfection and flushing)
 1. Condition: Air or air water methods of applying pressure prohibited.
 2. Range: 140 to 150 psi at lowest elevation.
 3. Duration: 1 hour and until completion of inspection.
 4. Procedure: Fill system slowly, expel air through corporation stop at high points, and apply pressure.
 5. Inspection: Examine line and appurtenances for leaks and movement.
 6. Corrections: Repair defects, visible leaks, and repeat test until acceptable.

E. Leakage:
 1. Check for leakage as soon as practical after pressure tests.
 2. Pressure will be maintained within the pressure test range.
 3. Test will be for a period not less than 2 hours.
 4. Procedure:
 a. Filling: As in pressure test.
 b. Supplying Make up Water: Measurable source.
 c. Leakage: Quantity of water supplied to maintain test pressure.
 5. Allowable Leakage: Less than: \(L = \frac{NDP^{1/2}}{3,700} \) where,

 \[
 L = \text{Leakage (Gallons Per Hour)} \\
 N = \text{Number of Joints} \\
 D = \text{Nominal Pipe Diameter (inches)} \\
 P = \text{Average Test Pressure (Pounds per Square Inch Gauge)}
 \]

 Note: Formula equals 1.0 gallons per hour per mile per inch diameter at 140 psi for 18' lengths.
 6. Testing Valves Only: Maintain pressure on main and check all valves as follows:
 a. Vent extreme ends of main and briefly check each valve progressively back towards test point.
 b. Allowable: Pressure drop less than 10 psi in five minutes with test pump off.
7. Correction: Repair defect and repeat test until acceptable.

3.8 ADJUST AND CLEAN

A. Flushing:

1. Conditions:
 b. Required Water: By Owner, limited to 1,000 gpm where and when available from Owner’s system.

2. Sequence: Following pressure testing and chlorination if continuous feed or slug methods are used. If tablet-method is used, flushing shall follow chlorination.

3. Minimum Velocity: 2-1/2” per second at pipe wall.

4. Procedure: Submittal required including method, materials, equipment, and time schedule.

END OF SECTION 33 10 00
SECTION 333000 – SANITARY SEWERAGE

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Gravity sanitary sewers and appurtenances including submittals, materials, material tests, manholes, pipe, installation of pipe and appurtenances, and testing

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS

A. Section 01 33 00 – Submittals

B. Section 31 23 33 – Trenching and Backfilling

1.3 SUBMITTALS

A. Manufacturer’s specifications and/or catalog data listing for pipe, manhole steps, covers and frames, and other special items.

B. Shop drawings showing reinforcing steel details, structural steel details, structural steel supports, and mechanical details for structures and specialty items.

C. Pipe manufacturer’s installation instructions.

D. Material and pressure test certifications.

E. Such other information as the Owner’s Representative may request.

1.4 PRESENCE OF UNDERGROUND UTILITIES

A. If utility services are encountered, the Contractor is responsible to have the services relocated if necessary or repaired if damaged.

B. If a main line utility is in direct conflict to the proposed work, the Contractor shall report the conflict to the Owner’s Representative immediately. The Owner’s Representative will advise the Contractor how the conflict will be resolved.

1. A direct conflict is defined as the existing utility occupying the exact location that the sewer is to be laid.

2. Relocation and/or support of utilities which are near the sewer location, but not in direct conflict, shall be considered incidental to the sewer work. It is the Contractor’s responsibility to arrange and pay for such relocation or support.

C. Separation from Water Lines:

1. Sanitary sewer lines shall be a minimum of 10’ from a water line when running parallel.

2. At water line crossings, provide a minimum of 18” between pipes. Sewer line shall have a full length of pipe centered over or under the crossing water line.

3. If the separation requirements are not available, immediately notify the Owner’s Representative.

D. Service Line Witnesses: Promptly record the location of wyes along the sewer line. Distance from the downstream manholes may be used or record the actual station along the sewer line. Wyes shall be shown on the Contractor’s Record Drawing Set.

1.5 JOB CONDITIONS

A. Existing Wastewater System: The Contractor shall maintain operation of the existing wastewater system during construction.
B. Scheduling:
 1. Backfill, grading, and clean up shall be no more than 200 feet behind the location of the pipe placement.
 2. The Contractor shall maintain trenches for settling.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Pipe:
 1. The Contractor may select particular pipe material for a project from the below listed table, unless specified on the Drawings or in the Bid Documents. These pipe specifications shall govern when cover is 16' or less.
 2. Service Lead Piping: Minimum 4" diameter.
 3. Plastic Pipe: Provide seating marks where couplings are used for jointing.

<table>
<thead>
<tr>
<th>Type and Size</th>
<th>Size Limitations</th>
<th>Pipe Material Spec</th>
<th>Joint Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic PVC</td>
<td>4"-6"</td>
<td>ASTM D2665</td>
<td>ASTM D3212 or D2672</td>
</tr>
<tr>
<td>Plastic PVC</td>
<td>8"-15"</td>
<td>ASTM D3034-SDR35</td>
<td>ASTM D3034, Type 1, Grade 1</td>
</tr>
<tr>
<td>Plastic (PE)</td>
<td>6"-24"</td>
<td>ASTM D3034-SR100</td>
<td>ASTM D2239</td>
</tr>
</tbody>
</table>

B. Poly Wrap shall conform to ANSI / AWWA C105 / A21.5 and ASTM A674.

C. Manholes:
 1. Manholes will be precast units and shall conform to ASTM C478 or ASTM C76 Class III.
 a. Joints shall meet ASTM C361 or ASTM C443.
 b. Pipe openings shall be provided with flexible connectors designed to produce a positive watertight connection for pipes entering the manhole. These connectors shall be A-LOK produced by A-LOK Products Inc. or equal.
 2. Grade rings shall conform to ASTM C478.
 3. Waterproofing will be required for all manholes. The bitumen shall consist of two coats of asphaltic pitch. Asphalt shall conform to the requirements of ASTM D449.
 4. Prior to backfilling, lift holes shall be fully grouted and/or plugged. Waterproofing shall be field applied in accordance with Item 3 above.
 5. Manhole Castings:
 a. Standard frame and lid shall be Neenah R-1764, Deeter 1270, or equal.
 b. Watertight frame and lid shall be Neenah R-1916-F, Deeter 1247 B, or equal.
 6. Manhole steps shall be Neenah R-1980-J, Deeter 1606, M. A. Industries PS2-PF, or equal.
PART 3 - EXECUTION

3.1 ALIGNMENT AND GRADE

A. Before installation of new sewer facilities, verify sizes, measurements, type, and location of existing piping, and appurtenances at points of connection to existing system. If a deviation from the Drawings is found, the Contractor shall notify the Owner's Representative and obtain instruction on how to proceed.

B. Line and grade control shall be done with a laser beam. The Contractor shall spot check the accuracy of the laser beam in accordance with the following requirements:
 1. Elevation shall be checked at the set up point, 25' point, 50' point, 100' point, and 100' intervals thereafter to the next set up point.
 2. Projector shall be advanced and reset at each manhole with 600' maximum distance prior to advancement.
 3. Grade shall be checked with a rod and level at each checkpoint.
 4. Pipe ventilation shall be provided, to prevent beam refraction.

3.2 BEDDING

A. Bedding shall be provided to the spring-line for concrete and ductile iron pipe. Bedding for PVC, plastic, and ABS shall be to 6" above the top of the pipe. Bedding shall be uniformly placed and hand tamped below the haunch area of the pipe.

B. Granular material for pipe bedding shall be crushed rock or 3/4" clean stone extending 6" below and to the spring line for concrete and ductile iron pipe and to the top of all other pipe materials.

C. The entire length of the pipe barrel shall be supported evenly.

D. In a casing pipe, the carrier pipe shall be supported in accordance with Section 33 05 23, Boring and Jacking Casing Pipe.

3.3 PIPE INSTALLATION

A. Work shall be done in accordance with the following standards: ASTM D2321; Underground Installation of Flexible Thermal Plastic Sewer Pipe, AWWA C600; Installation of Cast Iron Water Mains.

B. Pipe shall be laid commencing at downstream end of line and install pipe with spigot or tongue end downstream. Provide bell holes at each pipe joint to allow barrel of pipe to support trench load.

C. Use no defective pipe; check each length for defects and hairline cracks at ends prior to lowering into trench.

D. Place pipe in trench in sound, undamaged condition using chains or straps. Lifting holes will not be allowed except for the manholes.

E. Clean the interior of all pipe fittings and joints prior to installation. Exclude entrance of foreign matter during installation. Close open ends of pipe with snug fitting closures. Include provisions to prevent flotation should trench fill with water. Remove water, sand, mud, and other undesirable materials from trench before removal of cap.

F. Install pipe only when conditions are suitable. Do not lay pipe in water or water filled trench.

G. Pipe shall not be placed on frozen subgrade. Backfill material shall not be frozen.

H. Except where pipe sections are being encased in concrete, no pipe is to be supported by blocks or other means.
I. Pipes installed on grades in excess of 20% shall be anchored securely with concrete anchors spaced as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Maximum Anchor Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% - 35%</td>
<td>36’</td>
</tr>
<tr>
<td>35% - 50%</td>
<td>24’</td>
</tr>
<tr>
<td>Greater than 50%</td>
<td>16’</td>
</tr>
</tbody>
</table>

J. Cutting Pipe:
1. Pipe shall be cut in a neat and workmanlike manner to provide an even surface, perpendicular to the pipe centerline.
2. All bumps and irregularities shall be removed prior to pipefitting.
3. Bevel ends of push-on type pipe.

K. Jointing:
1. The gasket position shall be verified prior to compressing the pipe joint together.
2. Only those solvents, adhesives, and lubricants furnished by the pipe manufacturer shall be permitted.
3. Perform push-on joint installation per manufacturer's instructions.
4. Junctions with other materials shall require the use of adapter type and technique recommended by pipe manufacturer.

L. All ductile or cast iron pipe and fittings shall be poly-wrapped.

3.4 MANHOLES
A. Manholes shall be constructed in accordance with the drawing detail.

B. Bases:
1. A cast-in-place base may be poured on undisturbed, frost-free, dry subgrade.
2. If a precast base is utilized, it shall be placed on crushed limestone with a full and even bearing.
3. If unsuitable base material exists, the contractor shall remove the unsuitable material and replace it with 3/4" clean rock or other suitable material compacted to provide a bed with full and even bearing.

C. Casting Setting:
1. Existing Pavement: In asphalt or concrete pavements, or gravel drives / parking areas, set the manhole ring and lid to match the finished grade.
2. Gravel Roadway Surfaces: Set the ring and lid 4" below finished grade surface.
3. Unpaved Areas: Match finished ground elevation, unless otherwise noted.

D. Waterproof the outside surface of manholes with two coats of bitumen material. The bitumen wall shall consist of asphaltic pitch conforming to the requirements of ASTM D449.

3.5 CONNECTIONS
A. Existing Wastewater System:
1. Connection of new pipe to an existing structure shall be made as follows:
 a. Prepare the existing structure by making an opening with at least a 2" clearance all around the pipe to be connected.
b. Insert the pipe so that the end of the pipe is flush with the inside wall.
c. Fill the opening between pipe and manholes wall with an expansive grout in such a manner that watertight condition will result.

2. Connection to an existing line:
 a. Manholes to be built on an existing sewer shall be constructed without damaging the existing sewer.
 b. The manhole base, walls, and invert shall be completed before the top half of the existing sewer pipe is cut or broken away.
 c. Rough edges of the pipe shall be covered with an expansive grout to produce a smooth finish.
 d. The Contractor shall repair any existing sewer line damaged by his work, at no expense to the Owner.

3. Connections between different pipe materials shall be made using Fernco transition couplings or equal meeting the specifications of the pipe manufacturer.

B. Existing system carrying wastewater may be bypassed using pumping when necessary. Discharge directly to closest downstream manhole on normal line of flow.

C. Provisions for future wastewater extensions, where indicated on the Plans, shall include extending a short section of pipe from the manhole and plugging with a standard disc for pipes 21" or smaller.

3.6 SERVICE LINES

A. Line and Grade:
 1. Horizontal Alignment: Service lines shall be constructed at right angles to the sewer.
 2. Grade: Service lines shall be laid at a minimum uniform grade of 1/8" per foot.
 3. Depth: The service elevation, at the property or easement line, shall allow a minimum 1/8" per foot grade from the existing building service. If a service is to be provided for a vacant lot, the service shall be kept at the lowest possible elevation.

B. Connection Fittings:
 1. Location of the connection fitting shall match an existing service or as directed by the Owner's Representative.
 2. 45° or 60° wyes shall be utilized for connection of the service leads to the sanitary sewer. Wye tees and tees will not be permitted.

C. Main Risers: Where the cover is excessive at the main, a riser may be placed to bring the service to a reasonable depth to match an existing service except as follows:
 1. Service leads under street or parking lot pavements shall be constructed at minimum grade from the main to a point 10’ outside the pavement.

D. Vertical bends greater than 45° are not permitted for service lines.

E. Horizontal bends 45° degrees or less will be permitted in service lines, provided a cleanout is provided immediately upstream of the bend.

F. Standard plugs or caps shall be securely placed and blocked at the end of all service leads.

G. Markers shall be placed at the end of service leads left for future connections. Markers shall conform to the following:
 1. Material Markers: A 12" long x 2" x 4" horizontal member nailed to a vertical 2" x 4" at the terminus of the service lateral.
2. The vertical 2” x 4” shall be placed extending from the lateral end to 18” above grade.

3. The vertical 2” x 4” shall be provided with four wraps of #9 iron wire placed 6” below finished grade.

H. Witnesses:
1. Wyes and tees shall be witnessed to the nearest downstream manhole. Contractor shall measure the distance from the center of the downstream manhole to the wye and maintain an accurate log of these locations.

2. At the end of the service lead Contractor shall take three measurements to permanent surface features and place this information in a log. Permanent surface features shall be defined as items such as building corners, fence corners, etc.

3. The Contractor shall provide a copy of all witness data to the Owner’s Representative prior to backfilling.

3.7 FIELD QUALITY CONTROL
A. General:
1. The Contractor shall maintain his work site in a manner that will be fully accessible by the Owner's Representative for observation of the work.

2. The Contractor shall conduct the leakage test promptly following installation of wastewater pipe. This test shall include services that have been constructed.

3. The Contractor shall notify the Owner's Representative 48 hours before conducting the leakage test so that the Owner's Representative can schedule inspection and observation of the test.

4. The Contractor shall provide all equipment and conduct the test.

B. The following drift from proposed alignment between structures is as follows:
1. Horizontal Alignment:
 a. Through 36” Diameter Pipe: 0.20'
 b. Over 36” Diameter Pipe: 0.40'

2. Grade:
 a. Through 36” Diameter Pipe: 0.02'
 b. Over 36” Diameter Pipe: 0.05'

C. Plastic Pipe Deformation: In addition to leakage tests, a deformation test will be done as follows:
1. The test shall be conducted not less than one month (30 days) after backfill has been properly installed.

2. The maximum allowable deflection shall not exceed 5% of the pipe's internal diameter.

3. Mandrel testing shall be performed on 100% of the pipeline.

4. Mandrels shall be "Wortco 9-Arm Mandrel" (5% deflection) for flexible or semi-rigid pipe or approved equal.

5. Gauge shall be pulled through the pipe by hand. Mechanical pulling assistance is not permitted.

6. If any section of pipe does not conform to this requirement, the Contractor shall replace it at no cost to the Owner. Leakage re-testing and mandrel re-testing shall take place 30 days after backfilling.

7. The Owner may, prior to the end of warranty (guarantee period), conduct another deflection test. The Contractor at no cost to the Owner shall replace any pipe not conforming to this
requirement. The Contractor shall provide an additional warranty (guarantee) of one year for that portion of the replaced pipeline.

D. Leakage:

1. General:
 a. Contractor shall clean pipe of excess mortar, joint sealant, and other dirt and debris prior to inspection.
 b. Sewer will be inspected by flashing a light (lamping) between manholes and/or by physical passage where space permits.
 c. The Owner's Representative will determine from illumination and/or physical inspection the presence of visible infiltration or other defects.
 d. Defects shall be corrected prior to conducting leakage tests.

2. Leakage test shall be done either by a water exfiltration test or air exfiltration test.
 a. For water tests, the allowable exfiltration shall be less than 100 gallons per inch of ID per day per mile per 24 hours (0.08 gallons per inch of internal diameter per hour per 100' of pipe length).
 b. For air exfiltration tests, the holding time shall not be less than that listed in the table at the end of this Section.
 c. The Contractor may use air exfiltration testing for pipes of all sizes.
 d. The Contractor shall perform water exfiltration tests on manholes and may perform water exfiltration tests on sewer pipe larger than 18" ID.

3. Any sections of pipe not meeting the test requirements shall be repaired and the test shall be repeated until work is acceptable.
 a. The Contractor is encouraged to pretest the pipes prior to notifying the Owner's Representative and formal testing.
 b. For any section of pipe not passing the test when requested by the Contractor, the Contractor shall be responsible for the total cost of re-inspection. The Owner reserves the right to deduct the cost of re-inspection from the Contractor's payment for the work.

E. Exfiltration Test (Water)

1. The Contractor shall furnish all labor, equipment, tools, and materials required including bulkheads, water, and miscellaneous items to perform the test.

2. Perform all tests for lines at a minimum water depth 2' above the high point of the system or 2' above ground water elevation, whichever is higher. Perform tests at a minimum water depth of 2' above casting elevation for manholes.

3. Tests shall be maintained to locate all leaks, but not less than two hours. The Owner's Representative shall confirm measurement of exfiltration amounts.

4. Tests shall be repeated after repair of leaks and defects, until leakage meets the requirements of this specification.

5. Manholes and other structures shall be protected by means of bulkheads to prevent bursting pressure from being applied inside the structure.

6. Pipe shall be de-watered upon completion of the successful test.

F. Exfiltration Test (Air)
1. In the areas where ground water is known to exist, the Contractor shall install a 1/2" diameter capped pipe nipple approximately 10" long through the manhole wall on top of one of the sewer lines entering the manhole.

 a. Install at the time the sewer line is installed.
 b. Immediately prior to the line acceptance test, determine the ground water level. Remove the pipe cap, blow air through the pipe nipple into the ground to clear it, and then connect a clear plastic tube to pipe nipple.
 c. The hose shall be held vertically and measurement of height of water, in feet, shall be taken after the water stops rising in this plastic tube.
 d. The height shall be divided by 2.3 to establish the pounds of pressure that will be added to all readings.

2. Contractor shall furnish all facilities required including necessary piping connections, test pumping equipment, pressure gauges, bulkheads, regulators to avoid over-pressurization, and all miscellaneous items required.

 a. The pipe plug for introducing air to the sewer pipe shall be equipped with two taps. One tap will be used to introduce air into the line being tested, through suitable valves and fittings, so that the input air may be regulated. The second tap will be fitted with valves and fittings to accept a pressure test gauge indicating internal pressure in the sewer pipe. An additional valve and fitting will be incorporated on the tap used to check internal pressures so that a second test gauge may be attached to the internal pressure tap. Pressure test gauge will also be used to indicate loss of air pressure due to leaks in the sewer line.

 b. The pressure test gauge shall meet the following minimum specifications:

 (1) Size (diameter) -- 4-1/2".
 (2) Pressure Range -- 0 to 15 psi.
 (3) Figure Intervals 1 psi. increments.
 (4) Minor Subdivisions -- 0.05 psi.
 (5) Pressure Tube Bourdon 2 or diaphragm; Accuracy -- +/- 0.25% of maximum scale reading.
 (6) Dial white coated aluminum with black lettering, 270° arc and mirror edge.
 (7) Pipe Connection - low male, 1/2" NPT.

 c. Calibration data will be supplied with all pressure test gauges. Certification of pressure test gauge will be required from the gauge manufacturer. This certification and calibration data will be available to the Owner's Representative whenever air tests are performed.

3. Test each reach of sewer pipe between manholes. Test at the completion of the installation of pipe and appurtenances and the backfill of the sewer trench.

4. Plug ends of line, cap, or plug all connections to withstand internal pressure. One of the plugs provided must have two taps for connecting equipment.

 a. After connecting air control equipment to air hose; monitor air pressure so that the internal pressure does not exceed 5 psig.
 b. After reaching 4 psig, throttle the air supply to maintain between 4 and 3.5 psig for at least two minutes in order to allow equilibrium between air temperature and pipe walls. During this time, check all plugs to detect any leakage.
 c. If plugs are found to leak, bleed off air, tighten plugs, and re-pressurize. After the temperature has stabilized, the pressure is allowed to decrease to 3.5 psig.
d. At 3.5 psig, begin timing. Measure the time for air pressure to drop to 2.5 psig. If the time in seconds for the air pressure to decrease from 3.5 psig to 2.5 psig is greater than the time shown in the table at the end of this section, the pipe shall be presumed free of defects.

G. If the air test fails to meet the above requirements, repeat test as necessary after all leaks and defects have been repaired. Prior to acceptance, all constructed sewer lines shall satisfactorily pass the low-pressure air test or the exfiltration test.

3.8 ADJUSTING AND CLEANING

A. General: Pipe and structures shall be kept clean as work progresses.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 ft</td>
</tr>
<tr>
<td>4</td>
<td>3:46</td>
<td>597</td>
<td>0.380 L</td>
<td>3:46</td>
</tr>
<tr>
<td>6</td>
<td>5:40</td>
<td>398</td>
<td>0.854 L</td>
<td>5:40</td>
</tr>
<tr>
<td>8</td>
<td>7:34</td>
<td>298</td>
<td>1.520 L</td>
<td>7:34</td>
</tr>
<tr>
<td>18</td>
<td>17:00</td>
<td>133</td>
<td>7.692 L</td>
<td>17:00</td>
</tr>
</tbody>
</table>
TABLE 2
MINIMUM TIME REQUIRED FOR A 0.5 psig PRESSURE DROP FOR SIZE AND LENGTH
OF PIPE INDICATED FOR Q = 0.0015 (CFM/SF INTERNAL SURFACE AREA)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 ft</td>
<td>150 ft</td>
</tr>
<tr>
<td>4</td>
<td>1:53</td>
<td>597</td>
<td>0.190 L</td>
<td>1:53</td>
</tr>
<tr>
<td>6</td>
<td>2:50</td>
<td>398</td>
<td>0.427 L</td>
<td>2:50</td>
</tr>
<tr>
<td>15</td>
<td>7:05</td>
<td>159</td>
<td>2.671 L</td>
<td>7:05</td>
</tr>
</tbody>
</table>

END OF SECTION 31 30 00
SECTION 334000 – STORM DRAINAGE

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Section includes gravity storm sewers and appurtenances, including submittals, materials and material tests, manholes, pipe, manhole, and service installation.

B. Drawings and General Provisions of Contract, including General and Special Conditions, apply to this section.

1.2 RELATED SECTIONS

A. Section 31 23 33 – Trenching and Backfilling

1.3 SUBMITTALS

A. Manufacturer’s specifications and/or catalog data listing for pipe, steps, covers and frames, castings, and other special items.

B. Shop drawings showing reinforcing steel details, structural steel details, structural steel supports, and mechanical details for structures and specialty items.

C. Pipe manufacturer's installation instructions

D. Material and pressure test certifications

E. Such other information as the Owner’s Representative may request

1.4 PRESENCE OF UNDERGROUND UTILITIES

A. If the Contractor encounters utility services in conflict with the work, the Contractor is responsible to have the services relocated to clear the proposed improvement. If damaged the Contractor shall repair at no cost to the Owner.

B. If a main line utility is in direct conflict with the proposed work, the Contractor shall immediately report the conflict to the Owner’s Representative.

1. The Owner’s Representative will advise the Contractor how the conflict will be resolved.

2. A direct conflict is the existing utility occupying the exact location of the proposed sewer.

3. Relocation and/or support of utilities, which are near the sewer location, but not in direct conflict, are incidental to the sewer work.

C. Separation from Water Lines: Storm sewer lines shall be a minimum of 10' from a water line when running parallel with the water line. At water line crossings, there shall be a minimum of 18" between pipes with a full length of pipe centered over or under the crossing water line.

1.5 JOB CONDITIONS

A. Scheduling

1. Backfill, grading, and material clean up shall be no more than 400' behind the location of the pipe placement.

2. The Contractor shall maintain trenches for settling.

PART 2 - PRODUCTS

2.1 CORRUGATED METAL PIPE (CMP)

A. Corrugated galvanized metal culvert pipe, pipe arches, end sections, and band shall conform to AASHTO M36.
B. Coatings:
 1. Bituminous coatings shall conform to AASHTO M190.
 a. Repair bituminous coating damaged or displaced during delivery or installation by
 application of hot bituminous material of the same type as that originally used.
 2. Polymer precoating shall conform to AASHTO M245, Type 1 and to Federal Specification
 WW-P-405B. Coat pipe uniformly, inside and outside, to a minimum thickness of 0.05"
 measured on the crest of the corrugations.

C. Joints:
 1. Bands shall conform to Section A above
 2. Waterproof bands shall use 3/8" thick neoprene, solid and shall be 7" wide for pipe to 36" in
 diameter and 12" wide for pipes greater than 36" in diameter.

2.2 POLYETHYLENE PIPE

A. Pipe shall conform to AASHTO M294, Type S. The pipe shall have annular corrugations. It shall
 be manufactured from high density polyethylene (HDPE) meeting the requirements of ASTM
 3350, cell class 324420C or the requirements of ASTM D1248, Type III, Category 4, Grade P33,
 Class C.

B. Joints:
 1. Field joints of polyethylene pipe shall provide circumferential and longitudinal strength to
 maintain the pipe alignment, prevent separation of pipe, and prevent infiltration of side fill
 material.
 2. Coupling bands, if used, shall be of the same base material as the pipe. Corrugations in the
 bands shall have the same configuration as the corrugations at the pipe end connection.
 3. Self-Locking Joints: self-locking integral bell portion shall permanently affix to the pipe and
 shall be the same material as the pipe.
 4. Gaskets shall be factory installed inside the bell and conform to ASTM D1056.

2.3 PVC PIPE

A. Pipe shall conform to ASTM D2665 for pipe sizes 4"-6" and ASTM D3034-SDR35 for pipe sizes
 8"-15".

B. Joints shall conform to ASTM D3212 or D2672 for pipe sizes 4"-6" and ASTM D3034 for pipe
 sizes 8"-15".

2.4 INLETS AND JUNCTION BOXES

A. Cast-in-place structures shall conform to Drawing details and Section 33 05 16.

B. Precast structures shall conform to ASTM C478.

C. Mortar:
 1. The mortar shall be composed of 1 part Portland cement plus 10%, by volume, of hydrated
 lime and of two parts approved clean sand by volume.
 2. Hydrated lime shall be Type N, conforming to the requirements of ASTM C207.
 3. After thoroughly mixing the dry materials, add the water, and turn and chop by hand or
 mechanical methods the mixture until stiff mortar results.
 4. Do not mix mortar more than 30 minutes in advance of use. Do not retemper the mortar.
5. Mortar for pointing shall be mixed in the proportions of one part portland cement to one part sand by volume.

D. Standard frame and lid shall be Neenah R-1764, Deeter 1270, or equal. Grates and castings shall be as noted on the Drawings.

E. Manhole steps shall be Neenah R1980-J, Deeter 1606, M. A. Industries PS2-PF or approved equal.

PART 3 - EXECUTION

3.1 CONFLICT WITH EXISTING UNDERGROUND UTILITIES AND SERVICES

A. Provide temporary support for existing water, gas, telephone, steam, sewer, and power utility services crossing the trench until completing backfilling, unless Drawings require relocation.

B. Construct permanent support for existing sewer main or service crossing the trench.

C. Reconnect all unknown field tiles in similar fashion to their construction.

3.2 CONNECTIONS BETWEEN PIPES OF DISSIMILAR MATERIALS

A. Use special adapters or couplings. Bands or hardware shall be stainless steel.

3.3 INLET AND JUNCTION BOX INSTALLATION

A. Poured in place concrete structures shall conform to Section 33 05 16 and the Drawing details.

B. Carefully place precast concrete structures with true to line and grade, and joints sealed with mastic.

C. Base and Invert: Construct the structure's base and invert of concrete as specified under Section 33 05 16. Pour all bases and inverts individually in one continuous pour for each, unless otherwise specified and particular care taken to make channels smooth. All structure inverts and bases shall conform to the Drawing detail.

2. Precast structures may use precast bases. Place precast bases on a minimum of 6" of crushed limestone with full and even bearing.

3. If unsuitable base material exists, the Contractor shall remove the unsuitable material and replace it with sand, rock, gravel, or other suitable material compacted to provide a bed with full and even bearing.

D. Manhole Rings and Covers: The rings and covers of all structures shall be set at the elevation shown on the Drawings and solidly built into place, and grouted with cement mortar. If no elevation is specified, set casting as follows:

1. Manhole lids and frames shall match finished grade in existing pavements or yard areas, and 4" below grade for gravel surfaces.

2. Catch basin grates shall be set 1/2" below finished grade in paved areas and 6" below finished grade in unpaved areas.

3.4 PIPE INSTALLATION

A. General:

1. For pipe installed below the existing ground line, excavate a trench to the required depth. Excavate adequate width to permit thorough tamping of the backfill under the haunches and around the pipe.
2. Remove and relay any pipe which is not in true alignment or which shows any undue settlement before placing backfill at the Contractor’s expense.

3. If shown on the Drawings, lay pipe with sufficient camber to allow for settlement from fill loads.

4. Seal all non-gasket RCP joints with an approved plastic compound or cement mortar.

5. The Contractor may use rubber gasket joint RCP in lieu of standard pipe at no additional cost to the Owner.

6. Do not provide RCP with lift holes. Finish the mortar flush on the inside of the pipe and be properly cured on the outside. Lifting devices shall have sufficient bearing on the inside of the pipe to avoid damage resulting from a concentration of stresses around the lift holes.

7. If there is a grade discrepancy or any obstruction not shown on the Drawings, the Contractor shall notify the Owner’s Representative and obtain instructions.

B. Do line and grade control with a laser beam.

1. Check grades with a level and rod at the set up point, at 25’, 50’, 100’, and then at 100’ intervals to the next set up point.

2. Advance and reset the projector at each manhole or at 600’ centers; whichever is shorter.

3. Provide pipe ventilation as necessary to prevent beam refraction.

C. Install rubber gasket type pipe in accordance with the manufacturer’s recommendations to ensure the rubber gaskets are not displaced.

D. In sealing rigid pipe with mortar, the mortar contact areas of all pipe ends shall be damp when mortar is applied.

1. After applying mortar to the entire interior surface of the bell or groove, force the spigot or tongue end into position.

2. Fill any remaining void in the bell or groove with a hub of mortar built up adjacent to the bell, or a bead of mortar built up around a groove type joint.

3. The interior joints of either type of pipe shall be finished flush with the surface of the pipe.

4. Cure the outside surface of mortar joints with a membrane curing compound.

E. In sealing rigid pipe with plastic joint compound, apply trowel grade compound to the mating surfaces of both the tongue and groove or to the entire interior of the bell and the upper portion of the spigot.

1. Apply rope or tape type plastic compound in accordance with the manufacturer’s recommendations.

2. Force the joints together with excess compound extruding both inside and outside the joint.

3. Remove the excess compound from the interior surface where accessible.

4. The joint between the bell and spigot shall be uniform for the full circumference and take care to prevent the bell from supporting the spigot.

F. Excavation, pipe bedding, and backfill shall be done in accordance with Section 31 23 33.

G. Begin pipeline construction at lowest point in line. Lay bell or groove ends pointing upstream.

1. Lower pipe carefully into trench; lay true to line and grade, per Drawings.

2. Keep pipe free of all dirt and foreign material.

3. Use no defective pipe; check each length for defects and hairline cracks at ends prior to lowering into trench.
4. Carefully protect pipe and joints from injury while handling and storing pipe.
5. Clean bell and spigot surfaces of dirt and foreign matter before jointing pipe.
6. Lay and join pipe in strict accordance with manufacturer's recommendations.
7. Check alignment and grade of each installed pipe segment. Correct misalignment, displacement, or otherwise defective sewer pipe at Contractor's expense.
8. Provide bell holes at each pipe joint to allow barrel of pipe to support trench load.

3.5 PIPE CONNECTIONS

A. Trim the pipe flush with the inside surface of the structure.
B. Grout pipe securely in place with no voids around the pipe.
C. Existing Drainage System:
 1. Structures: Relay and repoint loose blocks and bricks.
 2. System Carrying Water: Provide bypass pumping as necessary to assure continued system operation during connection process.
D. Future Drainage System: Seal the ends of all pipe stubs for future connections at inlet and manhole structures and all pipe installed as a portion of future sewers with suitable plugs. Install the plugs in a manner to prevent infiltration of dirt into the pipe. There is no direct payment for furnishing and installing plugs.
 1. Plug pipes 4" through 21" with standard disc.
 2. Construct bulkheads in pipe 24" and larger with bricks and mortar with 1/2" plaster outside.
 a. 24" to 36" - 4" thick
 b. 42" to 60" - 9" thick
 c. 60" and Larger - 12" thick

3.6 INSPECTION

A. After construction is complete, and before final acceptance of the project, inspect all pipe culverts. Seal any separation at joints sealed with either cement mortar or plastic joint compound with like material.

3.7 FIELD QUALITY CONTROL

A. The allowable drift between structures from the proposed alignment is as follows:
 1. The maximum allowable horizontal drift for pipes through 36" diameter is 0.40' and 0.75' for pipes greater than 36" in diameter.
 2. The maximum allowable vertical drift for pipes through is 0.10'.

END OF SECTION 33 40 00