ADDENDUM NO. 1

TO: PLANS AND SPECIFICATIONS FOR STATE OF MISSOURI

New Premium Campsites Watkins Woolen Mill State Park and State Historic Site Project No. X2220-01

Bid Opening Date: 1:30 PM, Thursday, May 29, 2025 (Changed)

Bidders are hereby informed that the construction Plans and/or Specifications are modified as follows:

SPECIFICATION CHANGES:

- 1. Section 011000 Summary of Work
 - a. As stated in part 1.8 Owner-Furnished Products, the Owner will provide the shower house, Tuff Shed, fire rings, picnic tables, lantern hangers and campsite post markers. All items will be installed by the contractor except for the Tuff Shed and picnic tables.

DRAWING CHANGES/CLARIFICATIONS:

- 1. Sheet G-000 access gate area added to location map.
- 2. <u>Sheet L-404</u>, detail 1 Prefabricated Shower House Plan an MEP is not required; however, all required venting, electrical and plumbing work must be performed by licensed professionals provided by the contractor.
- 3. <u>Sheet L-501</u>, detail 03 as the note states, this detail only applies to locations where the sidewalk abuts the parking lot, which is the shower house. It does not apply to campsite pads.
- 4. <u>Sheet C-001</u>, General Note #13 Permits should be up to date. Any additional permits that should arise shall be the responsibility of the contractor.
- 5. Sheet C-501, revise reference to match line C113. This should refer to C-502.
- 6. Sheet C-502, revise reference to match line C112. This should refer to C-501.
- 7. Sheet C-522, straw wattles shall be a minimum 9-inches in diameter.
- 8. <u>Sheet C-601</u>, Phase III notes delete "sod right-of-way." Disturbed areas will be seeded. Refer to specifications.

GENERAL COMMENTS:

- RESPONSE TO QUESTIONS:
 - a) There is a reference made to obtaining permits from Platte County. The project is in Clay County.
 - b) Topsoil is to be stockpiled and re-used on site. Excess topsoil and other soils are to be removed from the site
 - c) The NPDES Land Disturbance Permit is provided in the Appendix of the Specifications

- d) State Parks will perform necessary Bat Surveys prior to tree removal.
- e) Question: The IPS DR-11 water line drawings include notes about installing bends. If we use a roll, will it be necessary to cut the pipe and install a bend instead of making a long sweep with no fittings?
 - Response: Long sweeps are acceptable on the service lines if there are not additional crossings or conflicts presented. If a conflict is present, bends shall be installed. Water main shall be constructed as shown on the plans.
- f) Question: Please list the size of the water main we tie into on 162nd Street. *Response:* 10" Public Water Main along 162nd Street.
- g) Question: Will the tie in at 162nd require a tapping sleeve and valve? It is not shown. Response: Tapping sleeves and valves required, see connection details per Sheet C-521.
- h) Question: Please provide more information about the Rigid Lip shown on Sheet C-518 and the detail on Sheet C-523
 - Response: See note for Level Spreader Detail "Rigid Lip 6"x6" Cast in Place Concrete Strip". Per sheet C-518, shall be 46 LF.
- i) Question: For the water, is it OK to propose SDR-21, Class 200? Response: Yes, SDR-21.
- j) Question: On the sewer, should I price SDR-35 or SDR-26? Response: Price SDR-26.
- k) Question: Who pays the power company for extending service to the proposed control panel locations?
 - Response: The Contractor, who will be reimbursed by the State of Missouri.
- I) Sheet C-102 refers to MSP Lagoon Sanitary Plans.
 - Response: See attached for plans of existing lagoon.
- m) Soil Boring B-02 is the only one that reports Lean Clay (low plasticity). Is it expected that we import 12" of lean clay under all roadways and concrete pads? Response: Refer to Geotech report and specification Section 012200 Unit Prices. Items B, C, D and E are options provided for remediation of high plastic clays and other select areas.
- n) Question: Please list the contact information for the local power company. I think the drawings may need updated.
 - Response: Contact information shown on E-201 is correct. Phone for Joshua Meyer is 816-629-2843. Phone number for Jacob Bishop is 816-903-7374.
- o) Question: Are there CAD files for the site grading available?

 Response: Contract Chad Potter or Ashley Shmalberg from Vireo to request access to the shared files. Chad@bevireo.com or Ashley@bevireo.com.
- 2. The Pre-Bid Meeting was held on May 7, 2025 at 10:00 AM.
- Please contact Paul Girouard, Contract Specialist, at 573-751-4797 or Paul.girouard@oa.mo.gov for questions about bidding procedures, MBE\WBE\SDVE Goals, and other submittal requirements.
- 4. The deadline for technical questions is March 22, 2025 at 12:00 PM.

- 5. Changes to, or clarification of, the bid documents are only made as issued in the addenda.
- 6. Chad Potter will be out of the office May 26-30. Please route addendum questions to Ashley Shmalberg. Email address Ashley@bevireo.com.
- 7. All correspondence with respect to this project must include the State of Missouri project number as indicated above.
- 8. Current Plan holders list available online at https://www.oafmdcplanroom.com/projects/2792/plans/X2220-01-new-premium-campsites
- 9. Prospective Bidders contact American Document Solutions, 1400 Forum Blvd Suite 1C, Columbia MO 65201, 573-446-7768 to order official plans and specifications.
- 10. All bids shall be submitted on the bid form without additional terms and conditions, modifications, or stipulations. Each space on the bid form shall be properly filled including a bid amount for each alternate. Failure to do so will result in rejection of the bid.
- 11. MBE/WBE/SDVE participation requirements can be found in DIVISION 00. The MBE/WBE/SDVE participation goals are 10%/10%/3%, respectively. Only certified firms as of the bid opening date can be used to satisfy the MBE/WBE/SDVE participation goals for this project. If a bidder is unable to meet a participation goal, a Good Faith Effort Determination Form must be completed. Failure to complete this process will result in rejection of the bid.

ATTACHMENTS:

- 1. Attendance Sheet
- 2. Modular Unit Plan
- 3. Watkins Mill State Park & Historic Site Upgrade Wastewater Treatment System Plans
- 4. Sheet G-000

May 9, 2025

END OF ADDENDUM NO. 1

www.BeVireo.com

Vireo

A planning and design firm where being fresh, healthy, and vigorous is more than an ideology; it's how everyday decisions are made.

Sign In

Danial Tathlehan	1.	22 on crillia.	100	-10	Ple	ase Print Clearly
Danier Tottleben	Vagguez CC	3303 Gillian	City City	MO g State, Zip	316.812.3430 de	enterazquezcc.com
\ 51; 51						
Justin Shrere Name	Hener Construction Organization	#8/0 N. 22 W 94 Address	St. Joseph City	MO State, Zip	4/6 - 2 37 - 4551 Phone	justing here contraction ton
T.5 Foors	Indidge 1 LLC Organization	Address	Freeposce	Mo State, Zip	Q16-310-9/66 Phone	Indiage 1@ Granail. Com
			7			
John Anderson	Scott gonn Const. Organization	3929 Pear Streat Address	St. Joseph	MO State, Zip	86-383-3705 Phone	janderson CSCott gancons. com
			/	ower = p	816-308-100	madniga
Jim Kunce Name	DSP P4D Organization	Lewis & Clark SP	City	State, Zip		
M. K. R L +		Lanson Mo CYCCZ			21/-/159	265 Cannue, Ser
Mike Beckett	DSP-Wakkins MIII	Address	City	State, Zip	016 613-1	
C.1. TI 'S		Address 5037 S, 4th Sf			913-727-1234	cody & lexeco, con
Cody Theis	Lex <i>eco</i> Organization	Leavenworth, KS Col	City	State, Zip	Phone	E-mail
N 11 F.	SOI					
Darrell Erwin	Organization	Address	City	Mo State, Zip	660-924-3327 Phone	Darrelloshedigsit.com
		goo west Hely	~-y	MO		· · · · · · · · · · · · · · · · · · ·
Stan Schultz	Better by Delign Organization	goo west Held Mo Address	City	State, Zip	573->74-8736 Phone	sschalte betterlyderigallerum
1 1 2 1	1 - 11 11 (11)		A			
Austin Pounds	Apex Earthworks Solutions	11625 Johnson Cemetery Rd. Address	Aduland	MB 65010 State, Zip	573 868 5495 Phone	apex. eathwork pgmail.com
Jim ALLER	1115015116	7 0 501 7 0 6 0 00	410.4	,	785-741-	
Name	ALLER'S LLC Organization	2095 Kingfisher Rd	Hia watha,	State, Zip	979 3000 Phone	JINQ ALLERSLLC.
7 5 1				,		
Toe Sigler Name	Plumisser Constraxin	4303 Flibry Address	Mr. 10 City	MO 65265 State, Zip	573-536-9/32 Phone	we Oflanny sin took troper com
DANO'DONATELL	METRO ASPHALT, TWO		INDEPENDE	WE MO. 64	050 816836-74000	Africa dodonnell@netpo
print of the contract	/100 01 -1 /010/ 1000		, , , , , ,	(/	B16564-4/34 C	cal asphalt. net

www.BeVireo.com

Vireo

A planning and design firm where being fresh, healthy, and vigorous is more than an ideology; it's how everyday decisions are made.

Sign In

					Ple	ase Print Clearly
BRIAN PAXTON	VAZQUEZ CC Organization	3303 Cillham	Kemo	64109 State, Zip	816 - 284 - 2625 N	MIANDE VAZQUEZCC: COM
David Madden	i (Organization	Address	(1) City	II State, Zip	816 - 225 - 45 76 Phone	DavidMA QVazquez reicom
Doug Ronk	Frantia Services	57817 N 90 T St	City City			dranketrantierservices not
Ben Williams	Frontier Services	1807 Elseusni		no po	8166054490	C-111dil
Name DAVID ACKLEY	Organization RUS	O NW PARKWAY	City RIVERSIDE	State, Zip	Phone \$16.400.2316	DAVID. ACKLEYO BROWN AND ROOT. COM
Name	Organization Superior Electrical Cons	Address Strand 12780E US HWY	City	State, Zip MO 64055	Phone 816-719-2740	E-mail SECOSUPERIOR - FLECT COM
CHris Head	Organization Constitution	Address	City	State, Zip	Phone Phone	E-mail
Matt Lincoln Name	Better By Design UC Organization	900 W Helm St Address	Brookfield City	MO 64628 State, Zip	60-412-5411 Phone	mlincoln a better by dosign lecon
Chals Sounders	BRIS Organization	Colombia Blufforcer	Columbia City	M& USZUS State, Zip	573 · 721 3564	Chocks_Sounders @ Brownandry/
Dusma Hagens	SES COMETRUCTION Organization	\$ 305 NKHOLS ST Address	Foctory City	mo 65251 State, Zip	(209) 620-0825 Phone	DUSTING SESCONSTRUCTION COM
Steven Brockman	FMDC/6A Organization	Address	U arrens borg	State, Zip	573 C194395	Stever, brockman@oa.mogor
Ashley Shmalberg Name	Vire O Organization	Address	KCM O City	64106 State, Zip	## 816~777-300 Phone	9 ashleye bevireo.com E-mail
CHAD POTTET? Name ANDY CARRULL	VIPTO Organization FMDC	Address	City	State, Zip	Phone	CHAN e BEVIPEO. COM E-mail ANDY. CARRECLE DA, NO. CON

Missouri Public Service Commission Manufactured Housing & Modular Units Program Application for Modular Unit Plan Approvals

Transmittal	Number (PSC Offic		700	Check Number	122	mii	Check Amount	2		
	3	- / -	0759		1035	34	\$150	J 		
INSTR	UCTIONS									
fees to Manufac P.O. Bo	your Third I tured Housing 360, Jefferso	Party to forv g & Modular I on City, MO 6	Jnits Program	model Make all checks and money o	Plan Approval Fees (non-refundable): \$1 model Make all checks and money orders payable to: Missouri Director of Revenue		How to reach us:		<u>v</u>	
				MANUFACTU	RER INFORMA	ATION		MISS	SOURI	
			Must u	se the actual facility name &				PUBLIC	SERVICE	
	on Number:	Modular	12-000476		Registration Exp	iration Date: 11	/06/2024	COMM	ISSION	
	irer's Name:	CXT, Inc						ADDE	OVED	
	ame: Ali Ca				Email Address:	acairns@ll	ofoster.com	APPR	OVED	
	dress: 901 I	N.Highwa	y 77		Physical Location	901 N.Hig	ghway 77	11/19	9/2024	
City/State	1 111131	oro/ TX/	50 50 N Strain					MANUF/	ACTURED	
Phone Nu	mber: (800)334-694	6		Fax Number: 50	09-928-827	70	HOU	SING	
	1	NOTE: A let		HIRD PARTY INSPECT ized representative approvin				Approval Form.		
Third Parl	y Agency: IC(C-NTA						A n		
Contact N	^{ame:} Ch	ris Pfleeg	jor		Email Address: (cpfleegor@	icc-nta.	60		
Mailing Ad	dress: 30	5 N Oakla	and Ave.				41	CV		
City/State	^{Zip:} Na	ppanee, l	N 46550				M	No	<i>*</i>	
Phone Nu	mber: (57	4) 773-79	975		Fax Number: ((574) 773-2	2732 71/1/2	TOV,	L	
				DEALER OR CON Attach addition	ISUMER INFOR		050	Up PREY	(V)	
Dealer or	Consumer Name	Missou	ri State Parks		Dealer Registration	on #:	729	P) 0/4		
Physical A	ddress: 165	9 E. Elm	St., P.O. Box	(176	Dealer Email Add	ress:		Wy Vo	No.	
City/State			, MO 65102-			Phone Number: Shanea Frederick 816-579(3564				
				MODEL	INFORMATION					
			s are approved for	Please list the mod a period of one year and mu			oduction of the mod	lel has ceased.		
New Model	Please indicate Model Revision	Model Renewal		Model Name			Model Destination PLETE ADDRESS Address, City, State	REQUIRED	Seismic Design Category	
Х				Rainier RN-125			16600 MO-4	ļ5,	Е	
							Weston, MO 6			
Code, th NFPA. C	e 2015 Interna urrent models g to the Public	ational Mecha approved pri Service Con	nical Code, the 201: or to March 30, 20 nmission's Rules 4C	e constructed to the criteria set 5 International Residential Cod 18, are good until October 1, 2 CSR 240-123.010(I) governing the State of Missouri. Question	de, 2015 Internationa 018. modular units, modu	l Fuel Gas Cod ular units must b	e, and the 2014 Nation	onal Electric Code		
	/			SIG	NATURE					
Authorized	Company Official	du C								
™ Senio	r Proied	t Mana	aer		Date 10/24/24					

305 N. OAKLAND AVE. ● P.O. BOX 490 ● NAPPANEE. IN 46550 ● P: 574.773.7975 ● F: 574.773.2732 ● ICC-NTA.ORG

October 31, 2024

Missouri Public Service Commission Manufactured Housing Department 200 Madison St. Suite 530 Jefferson City, MO 65101

Attn: David Freeman

CXT Inc-Hillsboro, TX

Model: Rainier RN-125-MO

Dear Mr. Freeman,

Attached is (1) copy of the above referenced project. This project has been reviewed and found to be in compliance with the applicable codes and regulations for the State of Missouri as evidenced by the NTA approval stamp on each page.

If you should have any questions, please feel free to contact me at your convenience.

Sincerely,

Chris Pfleegor

Chris Pfleegor Account Manager ICC NTA, LLC

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

A MEMBER OF THE ICC FAMILY OF SOLUTIONS

Missouri Public Service Commission Manufactured Housing & Modular Unit Program Plan Review Form

To be completed by the Third Party Agency.

We, the Third Party Agency, have reviewe	d and approved plans from:					
Manufacturer Name						
Project Name						
Job Number						
Number of Units						
Location of Project (Exact Location Required)						
This unit meets or exceeds the:		PUBLIC SERVICE COMMISSION APPROVED 11/19/2024 MANUFACTURED HOUSING				
Selsific Design Category						
An on-line inspection for compliance will	be completed for the above units.					
Third Party Name						
Address						
Phone	Fax	Fax				
Contact Email Address:	'					
Representative Name:	Representative Title					
	the complete plan approval submission e Plan Approval Checklist for Submission Guidelines)	on to:				
Mailing Address:	Street Address:					
Missouri Public Service Commission Manufactured Housing & Modular Unit Progra P.O. Box 360 Jefferson City, MO 65102	Missouri Public Service am Manufactured Housing 200 Madison Street, Su Jefferson City, MO 651	& Modular Unit Program ite 500				
Phone: 800-819-3180 Fax: 573-522-2509	Web Address: www.ps	c.mo.gov				
This form must accompany the plan appro	oval form as well as any other required	I documentation and fees				

ICC NTA

To: Manufactured Housing & Modul

MANUFACTHOU

Check Number:

Date:

0000103534

11/06/2024

Invoice Number

Date

Description

Amount

Discount

Paid Amount

10/31/24 A

10/31/2024

fee Rainier RN-125-MO

\$150.00

\$0.00

\$150.00

RECEIVED

NOV 0 8 2024

MO PUBLIC SERVICE COMMISSION TOTA MAIL ROOM

\$150.00

\$0.00

\$150.00

G THIS CHECK HAS A COLORED BACKGROUND AND CONTAINS MULTIPLE SECURITY FEATURES—SEE BACK FOR DETAILS

INTERNATIONAL CODE

JPMorgan Chase Bank, N.A.

Chicago, IL

0000103534

2-1/710

DATE

AMOUNT

Nov 6, 2024

\$150.00

One Hundred Fifty Dollars And 00 Cents

Pay to the

Manufactured Housing & Modular Units Program

Order of:

200 Madison St 5th Floor Jefferson City, MO 65101

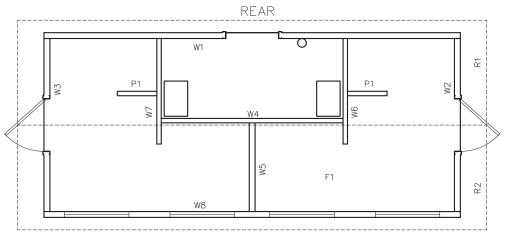
""0000103534" #071000013:

518923153#

RAINIER

NOTES

- BUILDING IS DESIGNED TO COMPLY WITH THE 2018 INTERNATIONAL BUILDING CODE
- DESIGN COMPLIES WITH THE PROVISIONS OF THE 2018 IBC FOR THE FOLLOWING


GROUND SNOW LOAD = 250 PSF ROOF SNOW LOAD = 210 PSF FLOOR LOAD = 400 PSF IBC DESIGN SPECTRAL RESPONSE $S_S = 1.057$, $S_1 = 1.057$ SITE CLASS: D RISK CATEGORY: I SEISMIC DESIGN CATEGORY: E BEARING WALL SYSTEM: R = 4.0 A5 - INTERMEDIATE PRECAST SHEARWALLS WIND - V_{ULT} = 150 MPH WIND - V_{ASD} = 116 MPH WIND EXPOSURE C OCCUPANT LOAD: 3 ***BUILDING IS NOT TO BE PLACED IN A LOCATION WHERE LOADS EXCEED THE

- VALUES PROVIDED ABOVE 3. CONSTRUCTION TYPE: V-B OCCUPANCY: U EXTERIOR WALLS: 1-HR RATED PER IBC TABLE 721.1(2), ITEM 4-1.1
 - MINIMUM FIRE SEPARATION DISTANCE: 10' PER IBC TABLE 705.8 MAXIMUM UNPROTECTED OPENING AREA: 12.36% (WALL W8)
- CONCRETE STRENGTH f'ci = 2500 PSI INITIAL f'c = 5000 PSI FINAL AIR ENTRAINMENT 6% ± 1 1/2% IN PLASTIC CONCRETE. REINFORCING STEEL: ASTM A615 #3 GRADE 40, #4 AND LARGER GRADE 60 Fy=60 KSI MINIMUM LAP 18" AT SPLICES. TIE BARS WITH DOUBLE ANNEALED 16 GA IRON WIRE. REINFORCING TO BE PLACED IN CENTER OF PANEL UNO. ALL WELDED WIRE FABRIC (W.W.F.): ASTM A1064 GRADE 80, 4x4xW6.7xW6.7, Fy=80 KSI (OR EQUIVALENT), SMOOTH WIRE, MIN. LAP 2 SQUARES.
- EMBEDDED ITEMS IDENTIFIED ON DRAWINGS (i.e. PS-2, R301) REFER TO CXT STANDARD EMBEDMENT CATALOG.
- REFER TO SEPARATE CXT INCORPORATED SPECIFICATIONS COVERING DESIGN. MATERIALS, PRODUCTION, AND INSTALLATION CRITERIA FOR SPECIFIC STYLE OF BUILDING.
- BACK OF PANELS TO HAVE SMOOTH TROWEL FINISH U.N.O. ALL SURFACES TO BE TEXTURED ARE NOTED ON PANEL DWG'S
- ALL REBAR BENDS ARE TO HAVE A MINIMUM RADIUS OF 6x BAR DIAMETER.
- INSTALLATION TO MEET APPLICABLE LOCAL, STATE & FEDERAL CODES, BY OTHERS.
- 10. ADEQUATE PLUMBING FACILITIES MUST BE PROVIDED IN ACCORDANCE WITH THE 2018 IBC (NOT BY CXT)

MANUFACTURED BY: CXT INC. (TX) 901 N. HIGHWAY 77 HILLSBORO, TX 76645

SITE ADDRESS: WESTON BEND STATE PARK WESTON, MO 64098

PANEL MARK NO. KEY PLAN

FRONT

APPLICABLE CODES

2018 INTERNATIONAL BUILDING CODE 2018 INTERNATIONAL PLUMBING CODE 2017 NATIONAL ELECTRIC CODE 2018 INTERNATIONAL MECHANICAL CODE

2018 INTERNATIONAL ENERGY CONSERVATION CODE (2013 ASHRAE 90.1)

2009 ANSI A117.1

SPECIAL CONDITIONS AND/OR LIMITATIONS

ACCESSIBILITY TO THIS BUILDING, INCLUDING PARKING, IS TO BY PROVIDED BY OTHER AND CONSTRUCTED IN ACCORDANCE WITH ALL LOCAL BUILDING CODES

INDEX OF DRAWINGS

COVER SHEET RN-02 RIGGING DETAIL FLOOR PLAN RN-0.3RN-04 BUILDING ELEVATIONS INTERIOR ELEVATIONS CASTING DETAILS WALL PANEL MARK W1 RN-07 WALL PANEL MARK W2 RN-08 WALL PANEL MARK W3 RN-10 WALL PANEL MARK W4 RN-11 WALL PANEL MARK W5 WALL PANEL MARK W6 RN-12

TITLE

NO.

WALL PANEL MARK W7 RN-14 WALL PANEL MARK W8 ROOF SLAB MARK R1 ROOF SLAB MARK R2 RN-16

RN-17 FLOOR SLAB MARK F1

INTERIOR PARTITION MARK 1 FOUNDATION DETAIL

RN-20 FLOOR DRAIN LOCATIONS & BELOW FLOOR PIPING

WATER, WASTE & VENT PIPING PLANS & NOTES

RN-22 PLUMBING SCHEDULE, DIAGRAM, & NOTES ELECTRICAL NOTES & SCHEDULE

ELECTRICAL PLAN, LEGEND & NOTES EMBEDDED MATERIALS

APPROVED BY 0/31/2024 Approval of this document does not authorize or approve any deviation or deviations from the requirements of applicable State Laws.

RN-19

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED 11/19/2024

MANUFACTURED HOUSING

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER

BUILDING NUMBER RN-125 NOTICE

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpos intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a controllar purpose.

pur	icului pui p	036.						
	CXT Incorporated							
REV.		DESCRIPTION		APPROVAL		DATE		
SCA	LE	NTS	DATE		1	0-10-24		
DRA	WN	G.OGG	FILE	NO.	RN	-125		
CHE	CKED	N.PENNER	PL01	Γ		NTS		
		COVER	SH	HEET				

WG NO. RN-01

0

MISSOURI STATE TAGS. APPROVAL. & PE DRAWINGS (ECC ONLY) REQUIRED

WALL TEXTURE: BARNWOOD DGE REINFORCEMENT TO BE NO MORE THAN 4" FROM FORM WALL COLOR: GEORGIA BRICK VARIATION FROM SQUARE = ±1/8 PER 6 FT OF DIAGONA ROOF TEXTURE: RIBBED METAL CHARCOAL GRAY ROOF COLOR:

> TRIM PAINT. DTM ALKYD ENAMEL SW 7005 PURE WHITE

MARINE PACKAGE:

STAINLESS STEEL EMBEDS & HINGES REQUIRED

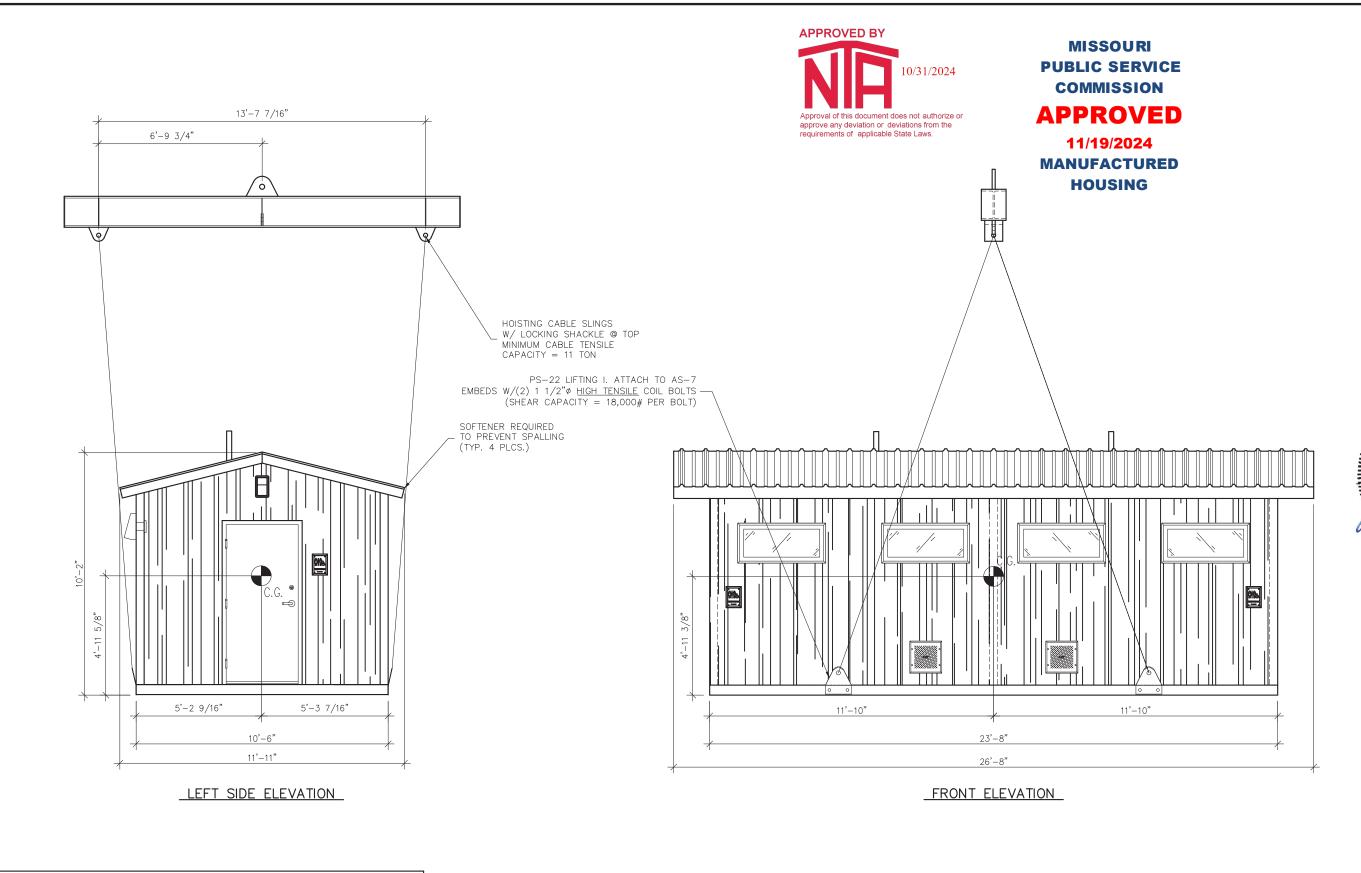
POSITION OF BLOCKOUTS = $\pm 1/4$ SIZE OF BLOCKOUTS = ±1/4" POSITION OF EMBEDS = ±1/4" PPING AND FLUSHNESS OF PLATES = +1/16, -1/4

ASTING TOLERANCES:

SWEEP = $\pm 1/4^{\circ}$

PVERALL LENGTH OR WIDTH

10 FT OR UNDER = \pm 1/8"


10 TO 20 FT = \pm 1/8", -3/16"

20 TO 40 FT = \pm 1/4"

TOTAL THICKNESS = -1/8, +1/4

LOCAL SMOOTHNESS = 1/4" IN 10 FT

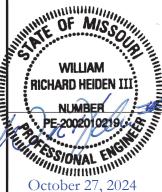
POSITION OF TENDONS = ±1/4"

SHIPPING WEIGHTS AND DIMENSIONS

LENGTH

26'-8"

WIDTH


11'-11"

HEIGHT

10'-2"

WEIGHT

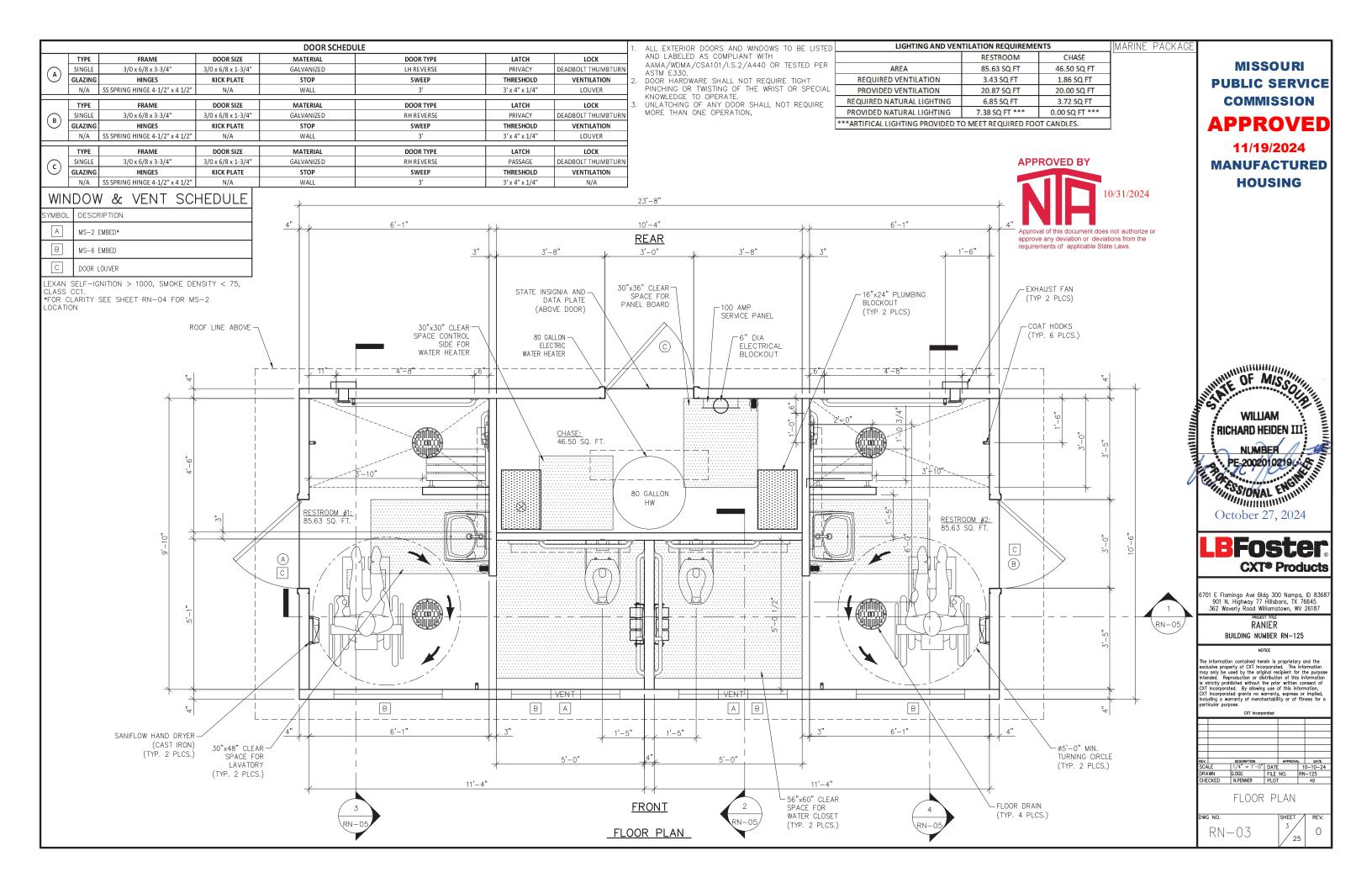
68,800

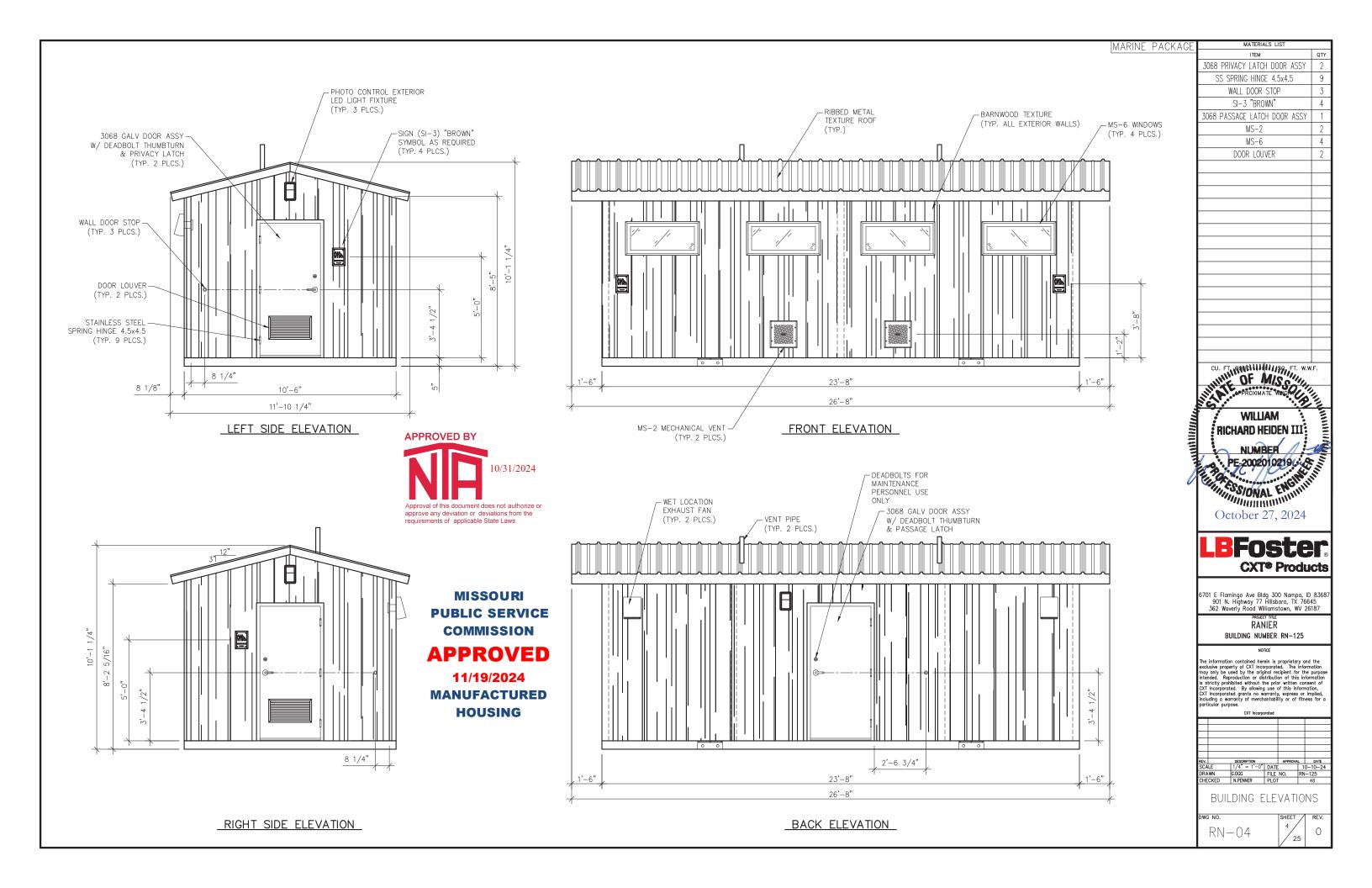
October 27, 2024

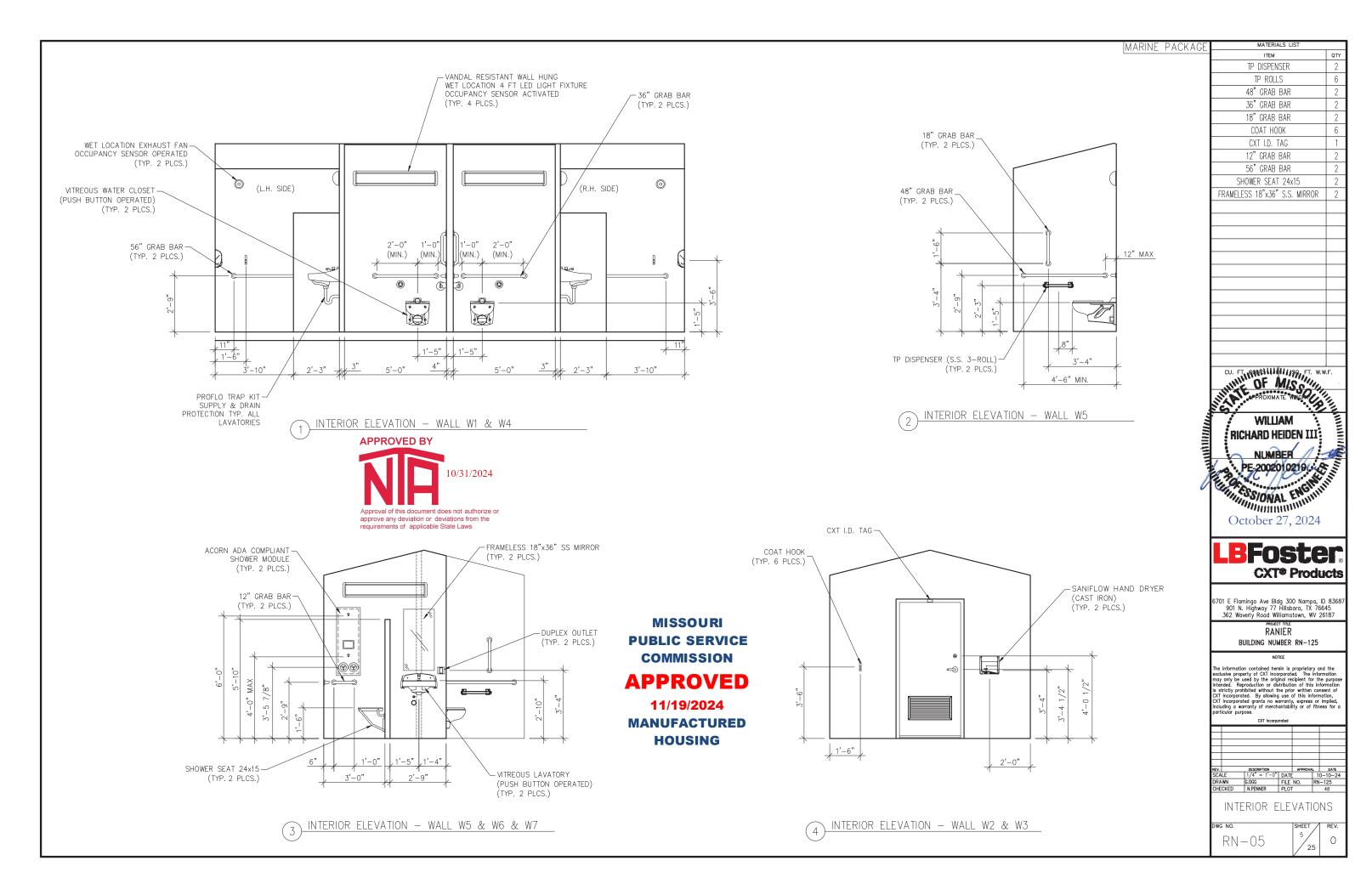
LBFoster CXT® Products

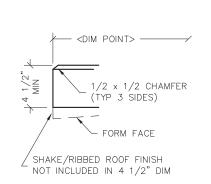
6701 E Flamingo Ave Bldg 300 Nampo, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER

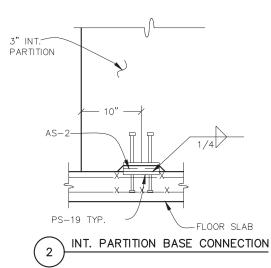

BUILDING NUMBER RN-125

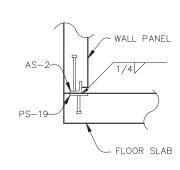

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposition intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

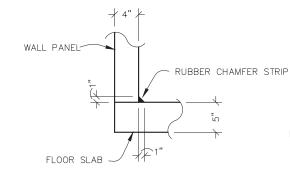

	CXT Incorporated							
REV.		DESCRIPTION		APPROVAL		DATE		
SCA	LE	1/4" = 1'-0"	DATE		1	0-10-24		
DRA	WN	G.OGG	FILE	NO.	R١	I-125		
CHE	CKED	N.PENNER	PL01		Г	48		
	DICCINC DETAIL							

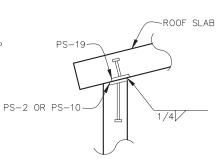

RIGGING DETAIL

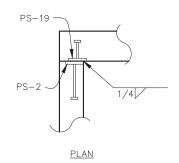
OWG NO. | SHEET | REV. | 2 | 0 | |



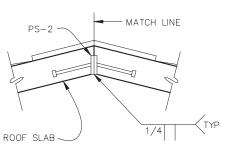


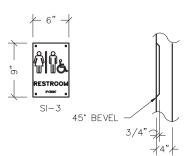


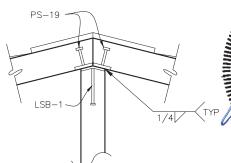



TYP. WALL TO FLOOR SLAB WELDED CONNECTION

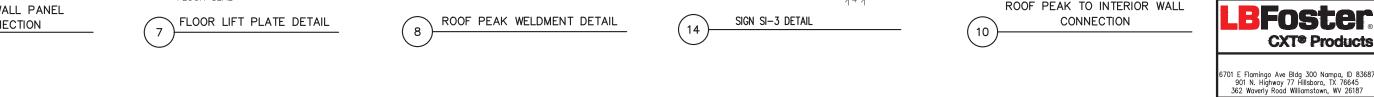

TYP. WALL TO FLOOR SLAB JOINT DETAIL

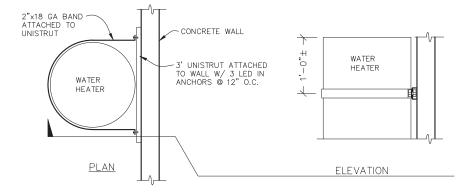



TYP. WALL TO ROOF SLAB WELDED CONNECTION

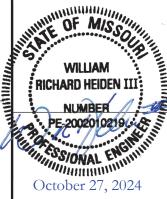


TYP. WALL TO WALL PANEL WELDED CONNECTION





ROOF PEAK TO INTERIOR WALL



MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

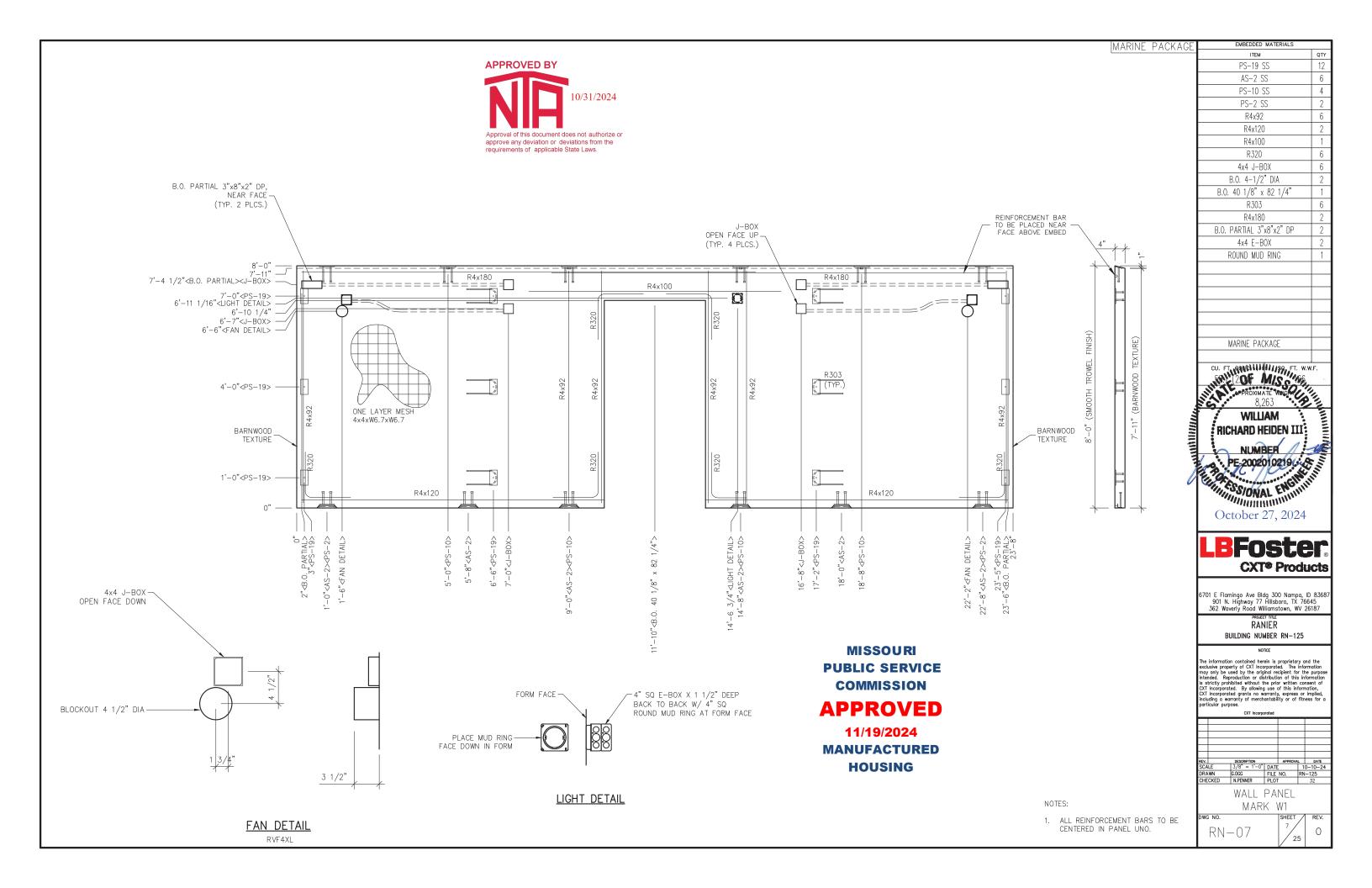
11/19/2024

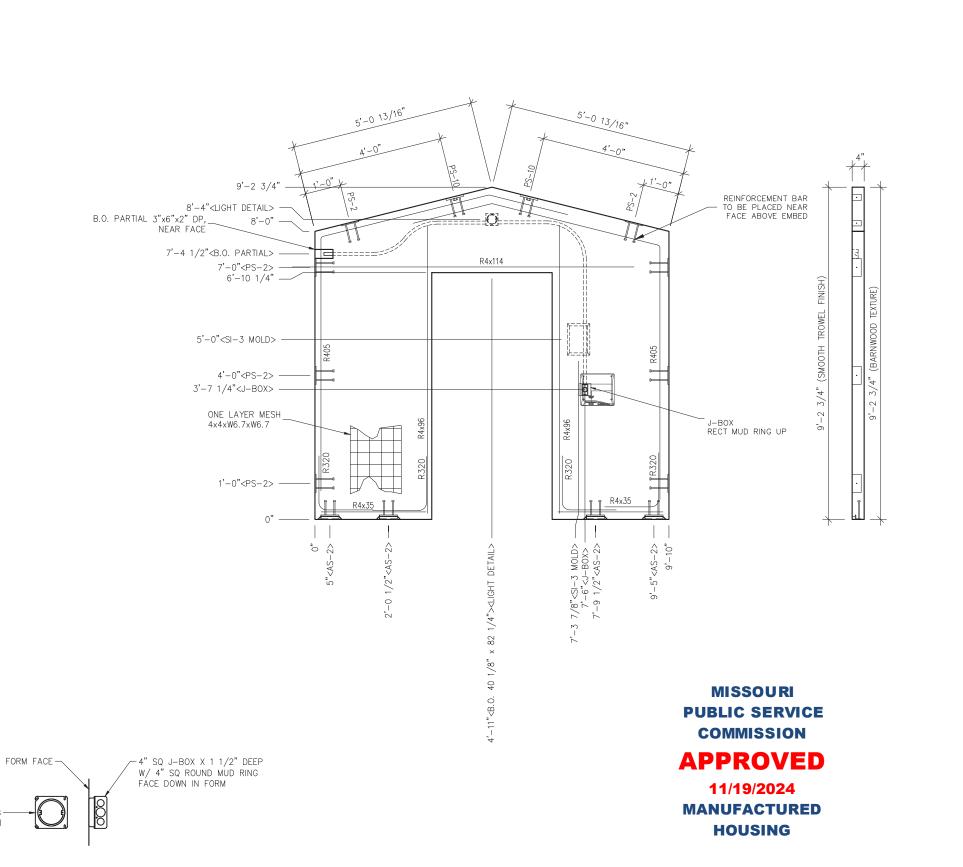
MANUFACTURED HOUSING

RANIER

BUILDING NUMBER RN-125

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposi Intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.


Pur	iculai parp	7000.				
L		CXT Incorpo	orated			
REV.		DESCRIPTION		APPROVA	L	DATE
SCA		3/4" = 1'-0"	DATE		1	0-10-24
DRA	WN	G.OGG	FILE	NO.	R١	I-125
CHE	CKED	N.PENNER	PL01	Г		16


CASTING DETAILS

RN-06

FLOOR MOUNTED WATER HEATER RESTRAINT

APPROVED BY

Approval of this document does not authorize or approve any deviation or deviations from the

PLACE MUD RING-FACE DOWN IN FORM

LIGHT DETAIL

requirements of applicable State Laws.

ITEM AS-2 SS PS-2 SS PS-10 SS R4x114 R405 R4x35 R4x96 SI-3 MOLD B.O. 40 1/8" x 82 1/4" 4x4 J-B0X ROUND MUD RING B.O. PARTIAL 3"x6"x2" DP RECT. MUD RING R320 MARINE PACKAGE CU. FT. GONELIIIIII 99 FT. W.W.F. RICHARD HEIDEN III NUMBER PE 2002010219 October 27, 2024

MARINE PACKAGE

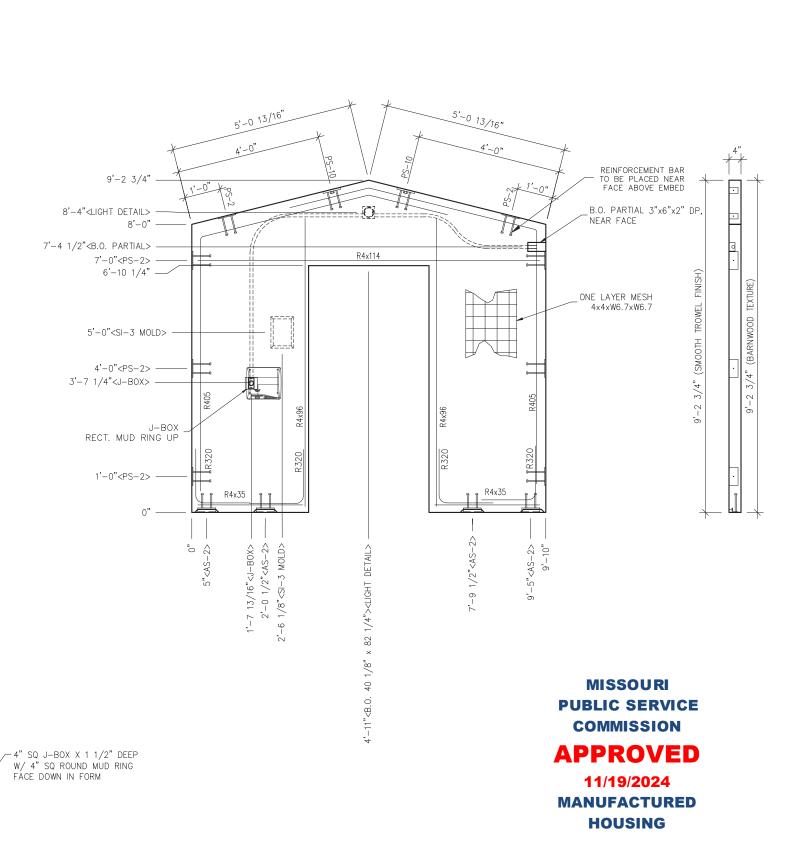
LBFOSTER:
CXT® Products

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

> RANIER BUILDING NUMBER RN-125

> > NOTICE

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposi Intended. Reproduction or distribution of this Information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this Information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a porticular purpose.


part	icular purp	ose.					
		CXT Incorpo	rated				
							_
							Ξ
REV.		DESCRIPTION		APPROVA	L	DATE	Ξ
SCA	LE	3/8" = 1'-0"	DATE		1	0-10-24	
DRA	WN	G.OGG	FILE	NO.	RN-125		
CHE	CKED	N.PENNER	PL01	Γ		32	Ξ
		WALL					
		MAR	< \	N2			
21446				OUEET	$\overline{}$	000	-

0

RN-08

OTES:

1. ALL REINFORCEMENT BARS TO BE CENTERED IN PANEL UNO.

APPROVED BY

Approval of this document does not authorize or approve any deviation or deviations from the

FORM FACE -

LIGHT DETAIL

PLACE MUD RING-FACE DOWN IN FORM

requirements of applicable State Laws.

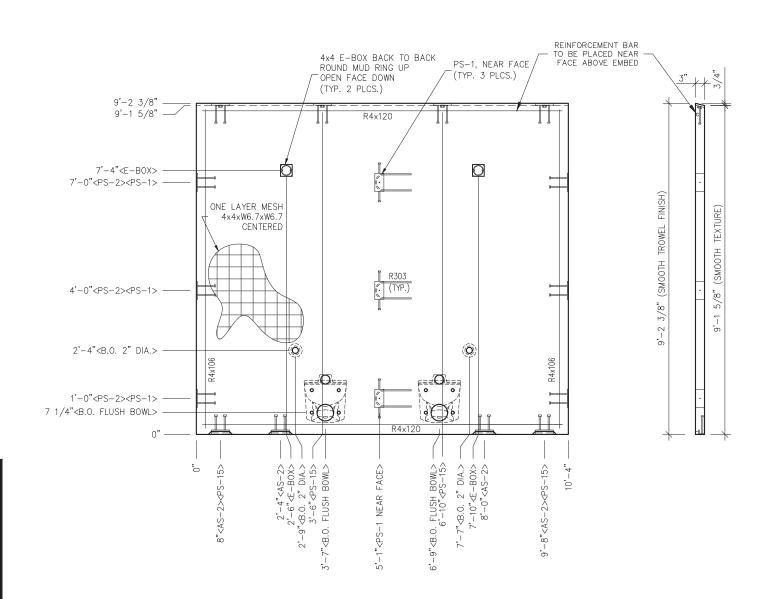
ITEM AS-2 SS PS-2 SS PS-10 SS R4x114 R405 R4x35 R4x96 SI-3 MOLD B.O. 40 1/8" x 82 1/4" 4x4 J-B0X ROUND MUD RING B.O. PARTIAL 3"x6"x2" DP RECT. MUD RING R320 MARINE PACKAGE CU. FT. GONELIIIIII 99 FT. W.W.F. RICHARD HEIDEN III NUMBER

MARINE PACKAGE

PE 2002010219 October 27, 2024

6701 E Flamingo Ave Bldg 300 Nampo, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER BUILDING NUMBER RN-125


The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposi intended. Reproduction or distribution of this information is strictly prohibited without the prior withen consent of CXT incorporated. By allowing use of this information, CXT incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

WALL PANEL MARK W3

RN-09

0

1. ALL REINFORCEMENT BARS TO BE CENTERED IN PANEL UNO.

BLOCKOUT

DETAIL

B.O. 1" DIA -

(TYP. 4 PLCS.)

B.O. 5 1/2"

7 1/4" A.F.F.

FLUSH VALVE BOWL DETAIL

AMERICAN STANDARD 0356.421

B.O. 3" DIA

4 1/2"

Approval of this document does not authorize or approve any deviation or deviations from the requirements of applicable State Laws.

MISSOURI
PUBLIC SERVICE
COMMISSION

APPROVED

11/19/2024 MANUFACTURED

HOUSING

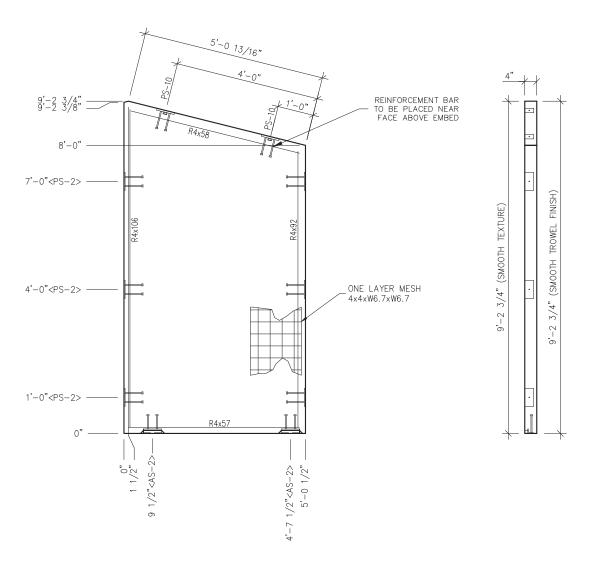
NOTE:

1. ALL REINFORCEMENT BARS TO BE CENTERED IN PANEL UNO.

MARINE	PACKAGE	EMBEDDED MATERIALS	
M// 11 (11 12	171010102	ITEM	QTY
		PS-1 SS	3
		AS-2 SS	4
		PS-15 SS	4
		PS-2 SS	6
		R4x106	2
		R4x120	2
		R303	3
		4x4 E-BOX	4
		ROUND MUD RING	2
		B.O. FLUSH BOWL	2
		B.O. 2" DIA	2
		MARINE PACKAGE	
		CU. FT. GONELLIA 11150, FT. W.W.	ıF.
		38 00 M/S 028	***
		CU. FT. GANSHIII 11/190 FT. W.W. 33 (00) M/S 45. PROXIMATE Wash 3,549	1/2
		3,549	1/2
	7	WILLIAM	E
	111	RICHARD HEIDEN III	Ξ
	=======================================		1
or	1	NUMBER PE-2002010219	W
			1
		E GRAN	1
		SONAL ENGINEER	
		WHITHININ .	
		October 27 2024	

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

PROJECT TITLE
RANIER


BUILDING NUMBER RN-125

NOTICE

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpos intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a porticular purpose.

	icular purp	ose.	an rabii	,		1000 101 4
		CXT Incorpo	orated			
REV.		DESCRIPTION		APPROVA	L	DATE
SCA	LE	3/8" = 1'-0"	DATE		1	0-10-24
DRA	WN	G.OGG	FILE	NO.	RN-125	
CHE	CKED	N.PENNER	PL01	Ī	32	
WALL PANEL						
		MAR	< V			
OWG	NO.			SHEET	/	REV.

RN-10 SHEET R

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

11/19/2024

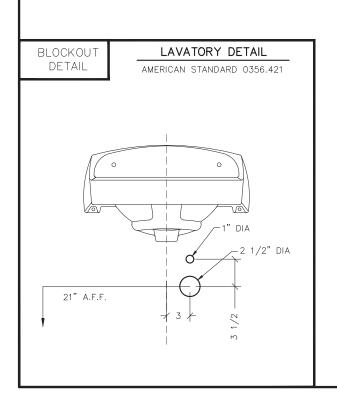
MANUFACTURED HOUSING

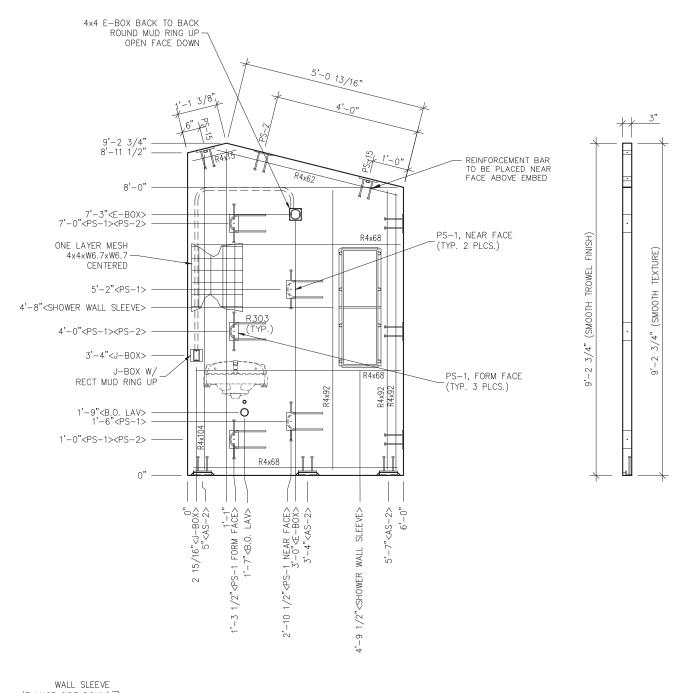
1. ALL REINFORCEMENT BARS TO BE CENTERED IN PANEL UNO.

MARINE	PACKAGE	EMBEDDED MATERIALS	
MIN II VII VE	171010102	ITEM	QTY
		PS-2 SS	6
		PS-10 SS	2
		AS-2 SS	2
		R4x58	1
		R4x92	1
		R4x106	1
		R4x57	1
			_
		MARINE PACKAGE	
		MANINE FACINGE	
		CIL ET GONDALIMINASO ET WW	/ F
		LAN OF MIC 1/44	
		APPROXIMATE WEIGH	· · ·
		CU. FT. GNEW 11199 FT. W.W. 100 FT. W.W. 100 FT. W.W. 124 PROXIMATE VALUE 2,194	1/2
	4	WILLIAM	1
	111	RICHARD HEIDEN III	=
	=	HIGHARD HEIDER III	=
		NUMBER /	1
	7	PE-2002010219008	3
		A Park	11
		October 27, 2024	•
		THINING THE PARTITION OF THE PARTITION O	
		October 27, 2024	
		OCTOBEL 21, 2027	

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER


BUILDING NUMBER RN-125


The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpose intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated groats no worronty, express or implied, including a worranty of merchantability or of fitness for a porticular purpose.

pur t	icular purp	ose.						
	CXT Incorporated							
REV.		DESCRIPTION		APPROVAL		DATE		
SCA	LE	3/8" = 1'-0"	DATE		1	0-10-24		
DRA	WN	G.OGG	FILE	NO.	RN	I-125		
CHE	CKED	N.PENNER	PLOT			32		
WALL PANEL								
	MARK W5							

0

WALL SLEEVE
(FLANGE SIDE DOWN)

FORM FACE

1" THICK BLOCKOUT

WALL SLEEVE BLOCKOUT DETAIL

MISSOURI
PUBLIC SERVICE
COMMISSION

APPROVED

11/19/2024

MANUFACTURED HOUSING

NOTES:

1. ALL REINFORCEMENT BARS TO BE CENTERED IN PANEL UNO.

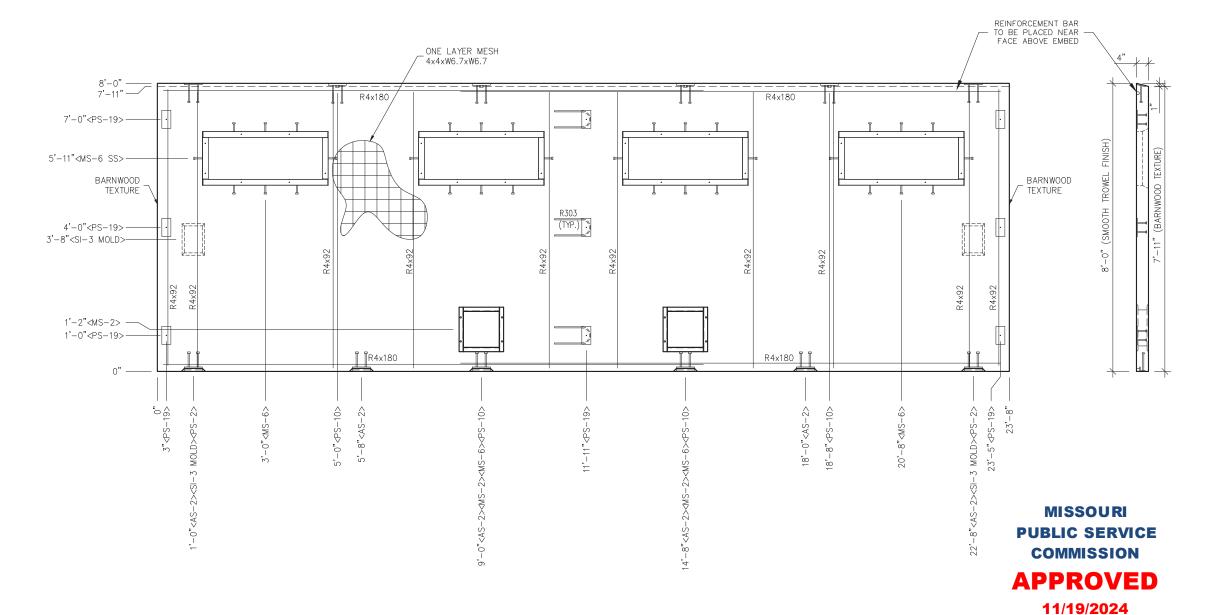
	ITEM	QTY
	PS-2 SS	4
	PS-15 SS	2
	R4x62	1
	R4x15	1
	PS-1 SS	5
	R4x68	3
	AS-2 SS	3
	R4x92	3
	R4x104	1
	R303	5
	4x4 J-BOX	1
	4x4 E-B0X	2
	ROUND MUD RING	1
	RECT MUD RING	1
	SHOWER WALL SLEEVE	1
	B.O. LAV	1
	MARINE PACKAGE	
	CU. FT. COND.	.F.
	Wiscom Mississippi	
	MARINE PACKAGE CU. FT. CONSTITUTION FT. W.W. PROXIMATE WAGE 1,860	1/2
11.	WILLIAM	1
III	AAUTTIVIIAI	=
	RICHARD HEIDEN III	Ξ
	NUMBER /	1
111	PE-2002010219	
Λ		1
	SOMAL ENGINE	7
	SONAL ENGINE	
	October 27, 2024	
	OCTOBEL 21, 2024	

MARINE PACKAGE

6701 E Flamingo Ave Bldg 300 Nampo, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER

BUILDING NUMBER RN-125


NOTI

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpos Intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warronty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

	iding a wa icular purp	rranty of merch ose.	antabil	ity or of	fitn	ess for a	
		CXT Incorpo	orated				
-					-		
REV.		DESCRIPTION		APPROVA	L	DATE	
SCA	LE	3/8"= 1'-0"	DATE	ATE		10-10-24	
DRA	WN	G.OGG	FILE NO.		RN-125		
CHE	CKED	N.PENNER	PLOT		32		
		WALL					
		MARI	< /	V6			
OWG	NO.			SHEET	7	REV.	
	RN-	-12		12/2	5	0	

PS-10 SS 4 PS-2 SS R4x92 R303 MS-2 4 MS-6 SS R4x180 SI-3 MOLD MARINE PACKAGE CU. FT. CONCHINITION, FT. W.W.F.

CO. M.S. 100

PROXIMATE WEIGHT

8.579 RICHARD HEIDEN III NUMBER PE 2002010219C October 27, 2024

PS-19 SS AS-2 SS

MARINE PACKAGE

6701 E Flamingo Ave Bldg 300 Nampo, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

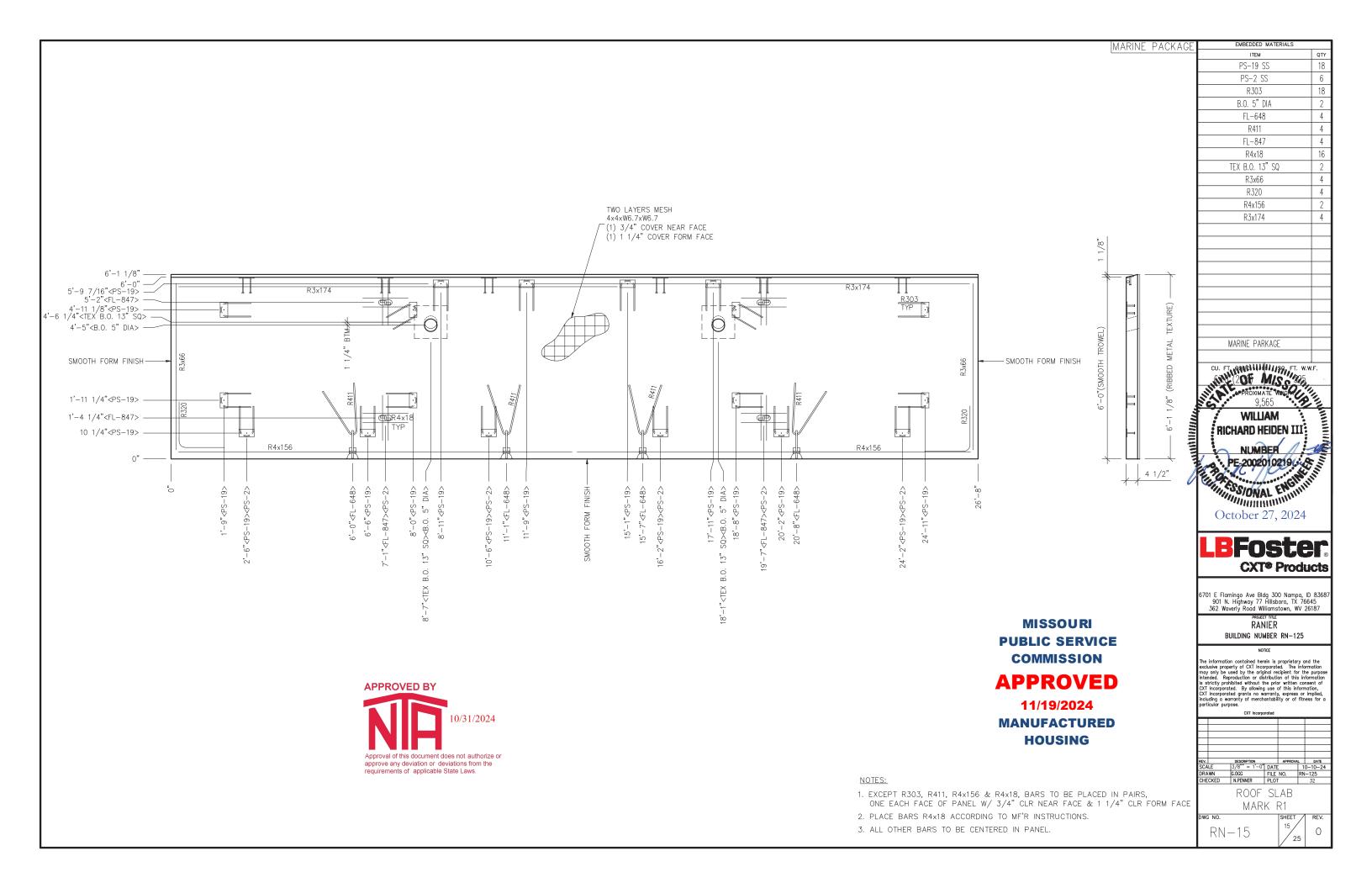
> RANIER BUILDING NUMBER RN-125

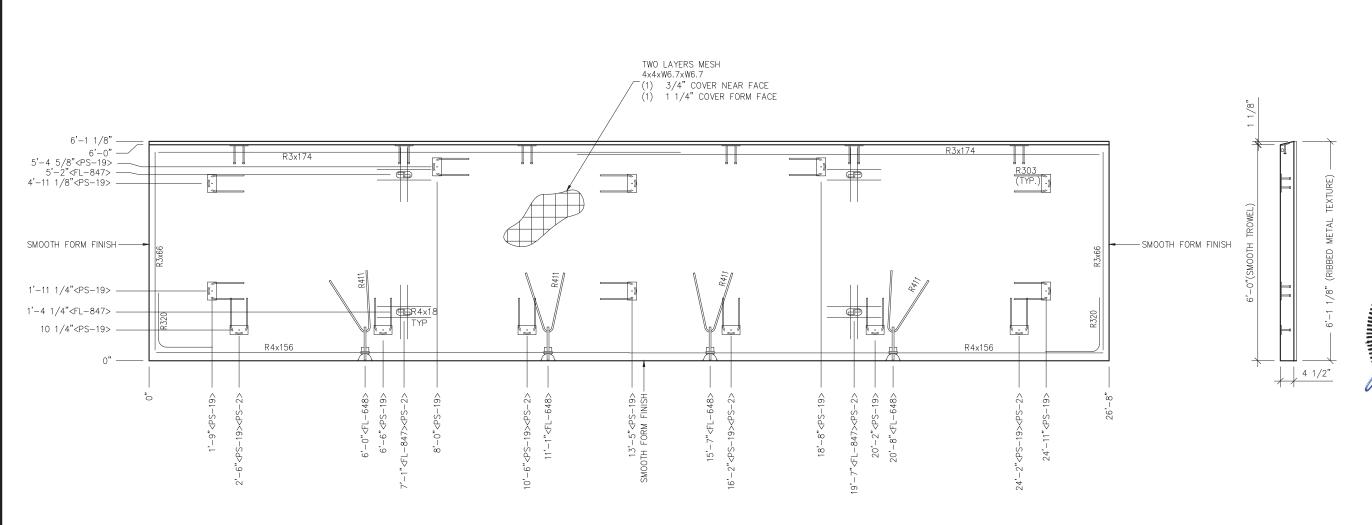
> > NOTOF

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpose intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

purticular purpose.							
		CXT Incorpo	orated				
REV.		DESCRIPTION		APPROVA	L	DATE	
SCA	LE	3/8" = 1'-0"	DATE		1	0 - 10 - 24	
DRA	WN	G.OGG	FILE	NO.	R١	I-125	
CHE	CKED	N.PENNER	PL01	Γ		32	
	WALL PANEL MARK W8						

0


DWG NO.


RN-14

NOTES:

MANUFACTURED HOUSING

1. ALL REINFORCEMENT BARS TO BE CENTERED IN PANEL UNO.

requirements of applicable State Laws.

APPROVED BY 10/31/2024 Approval of this document does not authorize or approve any deviation or deviations from the

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

11/19/2024

MANUFACTURED HOUSING

- 1. EXCEPT R303, R411, R4x156 & R4x18, BARS TO BE PLACED IN PAIRS, ONE EACH FACE OF PANEL W/ 3/4" CLR NEAR FACE & 1 1/4" CLR FORM FACE
- 2. PLACE BARS R4x18 ACCORDING TO MF'R INSTRUCTIONS.
- 3. ALL OTHER BARS TO BE CENTERED IN PANEL.

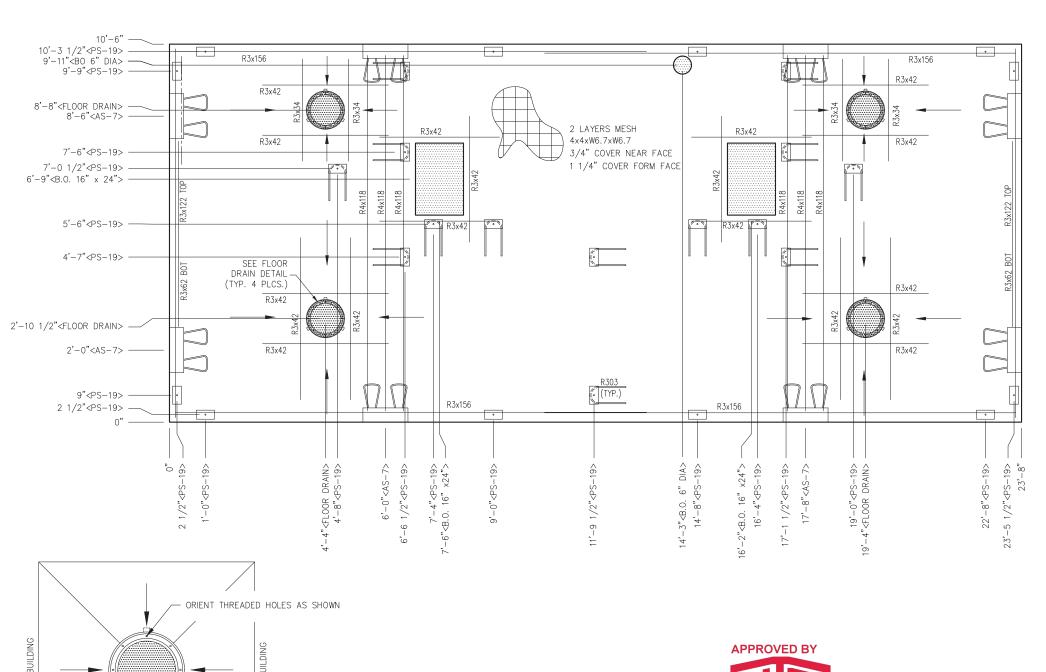
PS-19 SS	14
PS-2 SS	6
R303	14
R3x174	4
FL-648	4
R411	4
FL-847	4
R4x18	16
R4x156	2
R3x66	4
R320	4
MARINE PACKAGE	
CU. FT. CONDITION FT. W.V. (20) M/S (25) PROXIMATE WEGO (9,581) WILLIAM PICHARD HEIDEN TIT	/.F.
SON COF MIS 325	
APPROXIMATE WEIGH	1/2
9,581	- 12
WILLIAM	
RICHARD HEIDEN III	
NUMBER /	AM.
PE-2002010219	
	3
Charles and the second	1.
SONAL ENGINEER	
THE STATE OF A	
October 27, 2024	

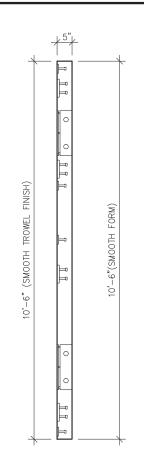
ITEM

MARINE PACKAGE

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER BUILDING NUMBER RN-125


The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposi Intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a porticular purpose.


particular purpose.							
		CXT Incorp	orated				
REV.		DESCRIPTION		APPROVA	L_	DATE	
SCA	LE	3/8"= 1'-0"	DATE		1	0-10-24	
DRA	WN	G.OGG	FILE	NO.	R١	I-125	
CHE	CKED	N.PENNER	PL01	Γ		32	
		ROOF	SL	.AB			

MARK R2

RN-16

0

MARINE PACKAGE

PE 2002010219 October 27, 2024 **BFoster CXT® Products**

ITEM AS-7

PS-19 SS

R303

R3x42

R3x62

R3x122 R3x156

R4x118

B.O. 16"x24"

B.O. 6" DIA

FLOOR DRAIN

R3x34

MARINE PACKAGE

CU. FT. GONDAIN 11/99, FT. W.W.F. 1612 (30F) M/S 497

15,186

RICHARD HEIDEN III NUMBER

26

14

36

4

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER BUILDING NUMBER RN-125

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposi intended. Reproduction or distribution of this information is strictly prohibited without the prior withen consent of CXT incorporated. By allowing use of this information, CXT incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

FLOOR SLAB MARK F1

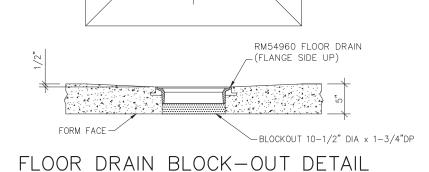
0

DWG NO.

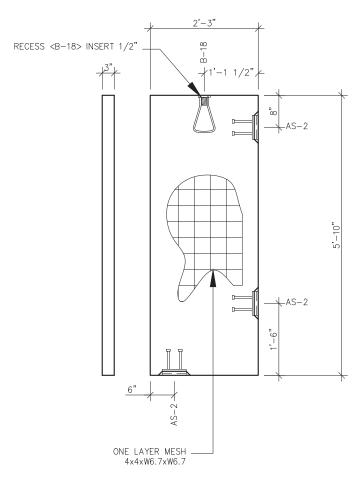
MISSOURI PUBLIC SERVICE COMMISSION APPROVED

11/19/2024

MANUFACTURED HOUSING


0/31/2024

Approval of this document does not authorize or approve any deviation or deviations from the

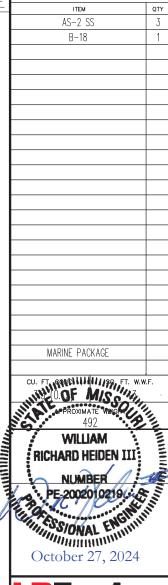

requirements of applicable State Laws.

- 1. SLOPE 1/4" TO FLOOR DRAIN BLOCKOUTS AS INDICATED BY
- ARROWS.
- 2. EXCEPT R3x62, R3x122 & R4x118, REINFORCING BARS TO BE PLACED IN PAIRS, ONE EACH FACE OF PANEL W/ 3/4" CLR NEAR FACE & 1 1/4" CLR FORM FACE.
- 3. R4x118 TO BE PLACED ACCORDING TO MF'R INSTRUCTIONS.
 4. ALL OTHER BARS TO BE CENTERED IN PANEL.

MARINE PACKAGE

MARK P1 - (2 REQUIRED)

MISSOURI PUBLIC SERVICE COMMISSION


APPROVED

11/19/2024

MANUFACTURED HOUSING

NOTES:

- 1. ALL REINFORCEMENT BARS TO BE CENTERED IN PANEL UNO.
- 2. RECESS B-18 INSERTS 1/2", GROUT CLOSED AT FINAL ASSEMBLY.
 3. CUP STONE ALL EDGES.

6701 E Flamingo Ave Bldg 300 Nampo, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER

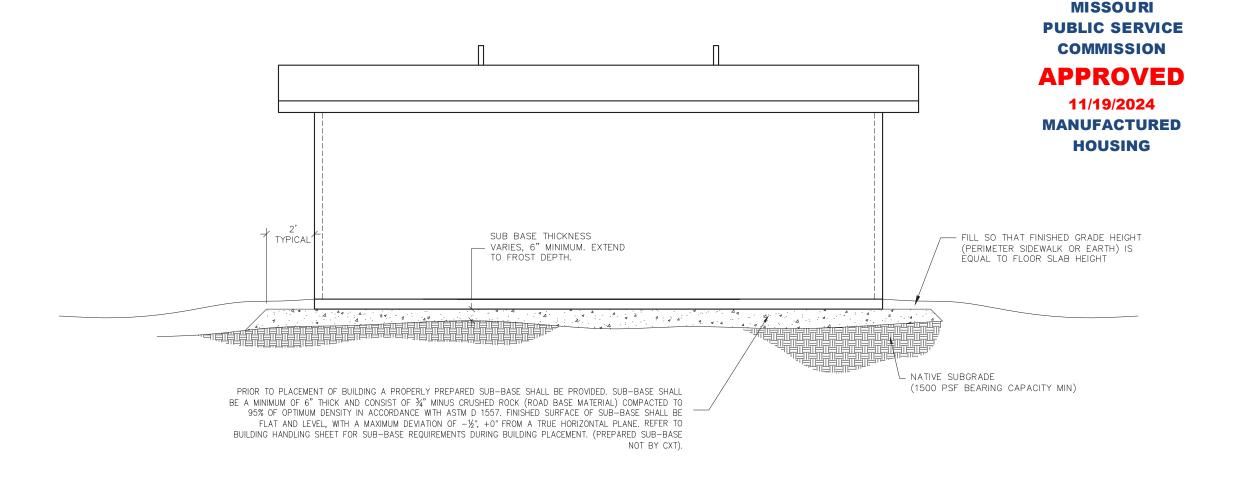
BUILDING NUMBER RN-125

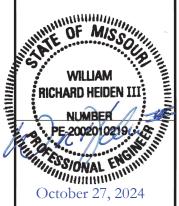
The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpose intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a porticular purpose.

		CAT Incorpt	ratea			
REV.		DESCRIPTION		APPROVA	L	DATE
SCA	LE	1/2" = 1'-0"	DATE		1	0-10-24
DRA	WN	G.OGG	FILE	NO.	R١	I-125
CHE	CKED	N.PENNER	PL01			24
	INIT	FRIAR	DΛ	DTIT	10	M

INTERIOR PARTITION MARK P1

DWG NO. 0


NOTE:


THIS FACTORY ASSEMBLED BUILDING, AS CONSTRUCTED, PROVIDES A RIGID BOX TYPE STRUCTURAL SYSTEM. VERTICAL LOADS ARE TRANSFERRED PRIMARILY THROUGH BEARING WALLS TO THE STRUCTURAL SLAB FLOOR OF THE BUILDING. THE VERTICAL LOADS ARE THEN DISTRIBUTED THROUGH THE REINFORCED CONCRETE FLOOR TO THE PREPARED GRANULAR, NON-FROST SUSCEPTIBLE (NFS) SUB-BASE WHICH DISTRIBUTES THE VERTICAL LOADS IN RELATIVELY UNIFORM FASHION TO THE NATIVE SUB-GRADE. AS WITH MOST CONSTRUCTION, THIS DOES REQUIRE THE NATIVE SUB-GRADE TO BE STRIPPED OF VEGETATION AND TOP SOIL PRIOR TO PLACEMENT OF THE PREPARED GRANULAR SUB-BASE. DUE TO THE INHERENT STIFFNESS OF THE BUILDING, IT WILL REMAIN SAFE AND STRUCTURALLY SOUND IN THE UNLIKELY EVENT OF FREEZING ACTION BELOW THE BUILDING REGARDLESS OF NATURAL FREEZE/ THAW CYCLES ANTICIPATED TO BE ENCOUNTERED IN THE STATE OF MISSOURI.

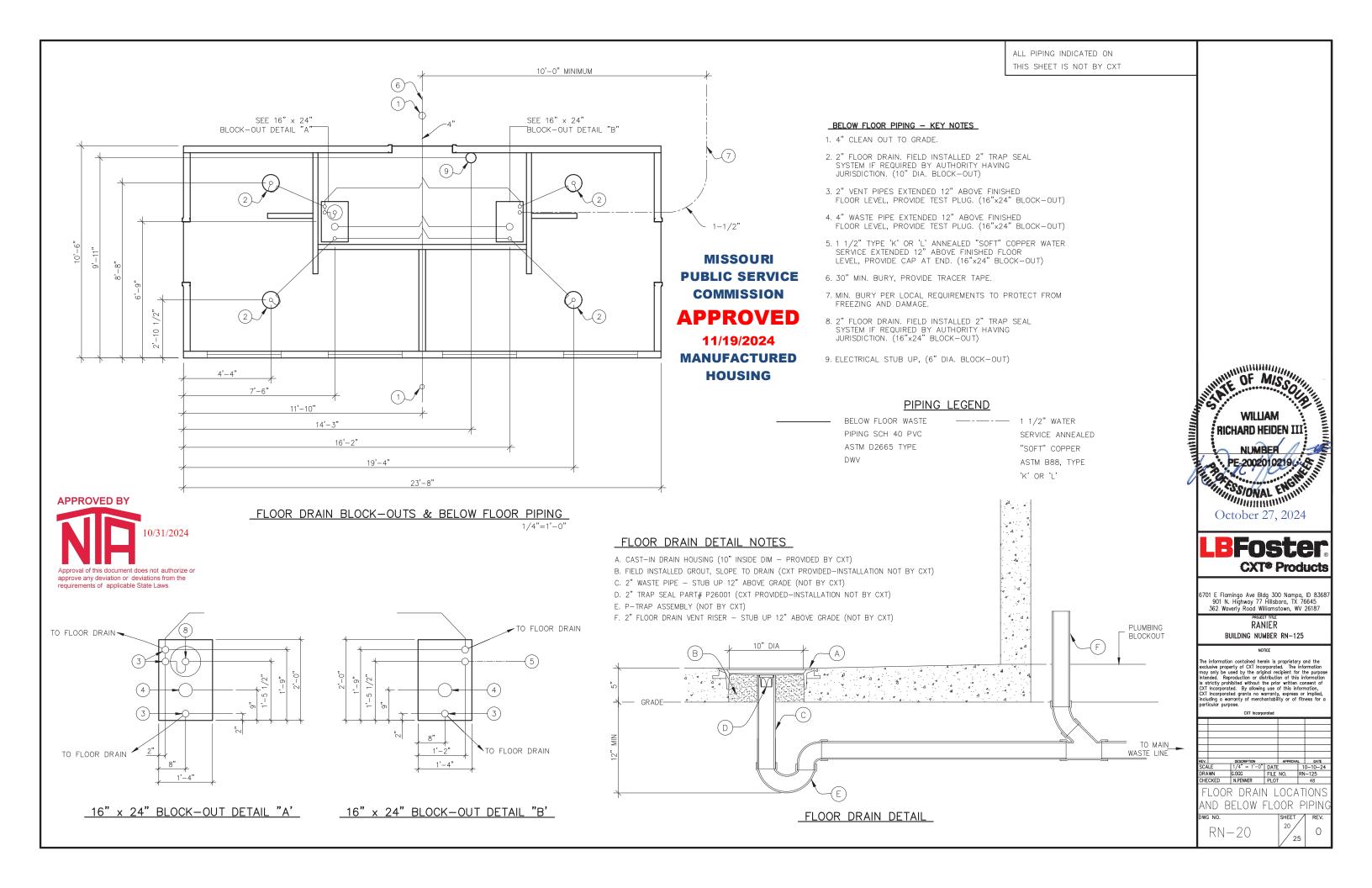
LATERAL LOADS ARE TRANSFERRED TO THE GROUND THROUGH FRICTIONAL RESISTANCE WITHOUT SLIDING OR SHIFTING BETWEEN THE BUILDING FLOOR SLAB AND THE PREPARED SOIL AND GRAVEL SUB—BASE ON WHICH THE BUILDING RESTS. SEISMIC ANALYSES ARE BASED ON LOADS DETERMINED IN ACCORDANCE WITH THE INTERNATIONAL BUILDING CODE USING PARAMETERS, WHICH MEET OR EXCEED THE CODE PRESCRIBED REQUIREMENTS FOR THIS INSTALLATION.

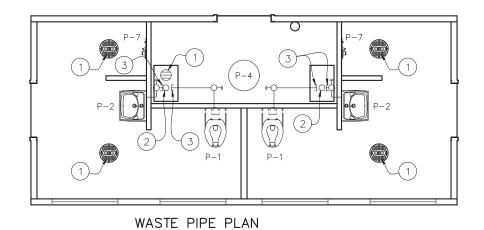
THIS BUILDING AS DESIGNED, RESTING ON A PROPERLY PREPARED GRANULAR SUB-BASE WILL BE SAFE AND STRUCTURALLY SOUND FOR VERTICAL AND LATERAL LOADS AS DISCUSSED ABOVE. A FULL DEPTH FOUNDATION WALL AT THE BUILDING PERIMETER AND AN ANCHORAGE SYSTEM, TYPICAL FOR OTHER TYPES OF BUILDING CONSTRUCTION, ARE NOT REQUIRED FOR THIS BUILDING.

THE "FOUNDATION" FOR THIS STRUCTURE IS ESSENTIALLY THE COMBINATION OF THE COMPACTED SUB-BASE MATERIAL AND THE BUILDING'S REINFORCED SLAB. THE COMBINATION OF THE COMPACTED SUB-BASE MATERIAL AND THE BUILDING'S REINFORCED SLAB NEED TO BE AT LEAST 12" THICK AND THE COMPACTED SUB-BASE MATERIAL SHALL EXTEND BELOW THE LOCAL FROST DEPTH

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

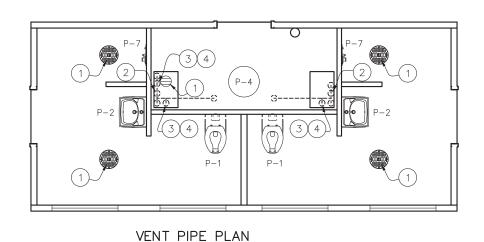
PROJECT TITLE
RANIER
BUILDING NUMBER RN-125

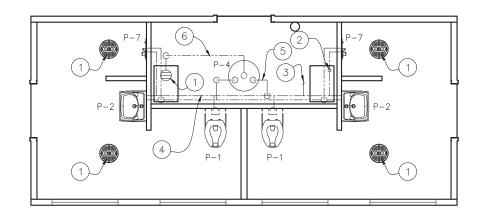

NOTOF


The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposi intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT incorporated. By allowing use of this information, CXT incorporated grains no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

	CXT Incorporated					
REV.		DESCRIPTION		APPROVA	L.	DAT
SCA	LE	NTS	DATE		1	0-10-
DRA	WN	G.OGG	FILE	NO.	RN	-125
CHECKED		N.PENNER	PL0	Г	П	48

FOUNDATION DETAIL


DWG NO. SHEET REV



1/4"=1'-0"

1/4"=1'-0"

WATER PIPE PLAN

1/4"=1'-0"

WASTE PIPING - KEY NOTES

- 2" FLOOR DRAIN, FIELD INSTALLED (NOT BY CXT)
- 2. 4" WASTE THROUGH FLOOR, FIELD INSTALLED (NOT BY CXT)
- 3. PROVIDE TEST PLUG IN END OF WASTE PIPE. CONTINUATION OF PIPING IS FIELD INSTALLED & NOT BY CXT.

VENT PIPING - KEY NOTES

- 1. 2" FLOOR DRAIN, FIELD INSTALLED (NOT BY CXT)
- 2. 3" VENT THROUGH ROOF.
- 3. 2" VENT WITH TEST PLUG. FIELD INSTALLED
- 4. 2" VENT PIPING FROM FLOOR DRAINS. (NOT BY CXT)

PIPING LEGEND

COLD WATER; COPPER.
ASTM B88, TYPE 'K' OR 'L'

HOT WATER; COPPER,
ASTM B88, TYPE 'K' OR 'L'

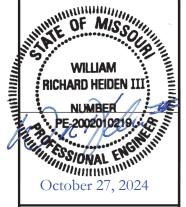
VENT PIPING; SCH 40 PVC,
ASTM D2665, TYPE DWV

WASTE PIPE; SCH 40 PVC,
ASTM D2665, TYPE DWV

FIELD PIPING; (NOT BY CXT)

SPECIAL NOTES:

- 1. TOTAL FIXTURE COUNT: (7)
- 2. FLOWING PRESSURE: 45 PSI MIN, 80 PSI MAX
- 3. APPROXIMATE DEVELOPED PIPE LENGTH = 35'-0"
- 4. INSULATE PIPING WITH 1" (R3.6)
- 5. PER-MOLDED PIPE INSULATION WITH ASJ


WATER PIPING - KEY NOTES

- 1. 2" FLOOR DRAIN, FIELD INSTALLED (NOT BY CXT)
- 2. FIELD INSTALLED 1 1/2" WATER SUPPLY WITH SHUT-OFF VALVE NEAR FLOOR. (NOT BY CXT)
- 3. 3/4" HOSE BIBB WITH VACUUM BREAKER AND WHEEL HANDLE
- 4. WATER PIPING ALONG WALL, SEE DIAGRAM ON RN-22
- 5. 3/4" CW TO WATER HEATER, SEE HOT WATER PIPING RISER DIAGRAM.
- 6. 3/4" RELIEF VALVE DISCHARGE PIPING TO FLOOR DRAIN.

MISSOURI
PUBLIC SERVICE
COMMISSION

APPROVED

11/19/2024
MANUFACTURED
HOUSING

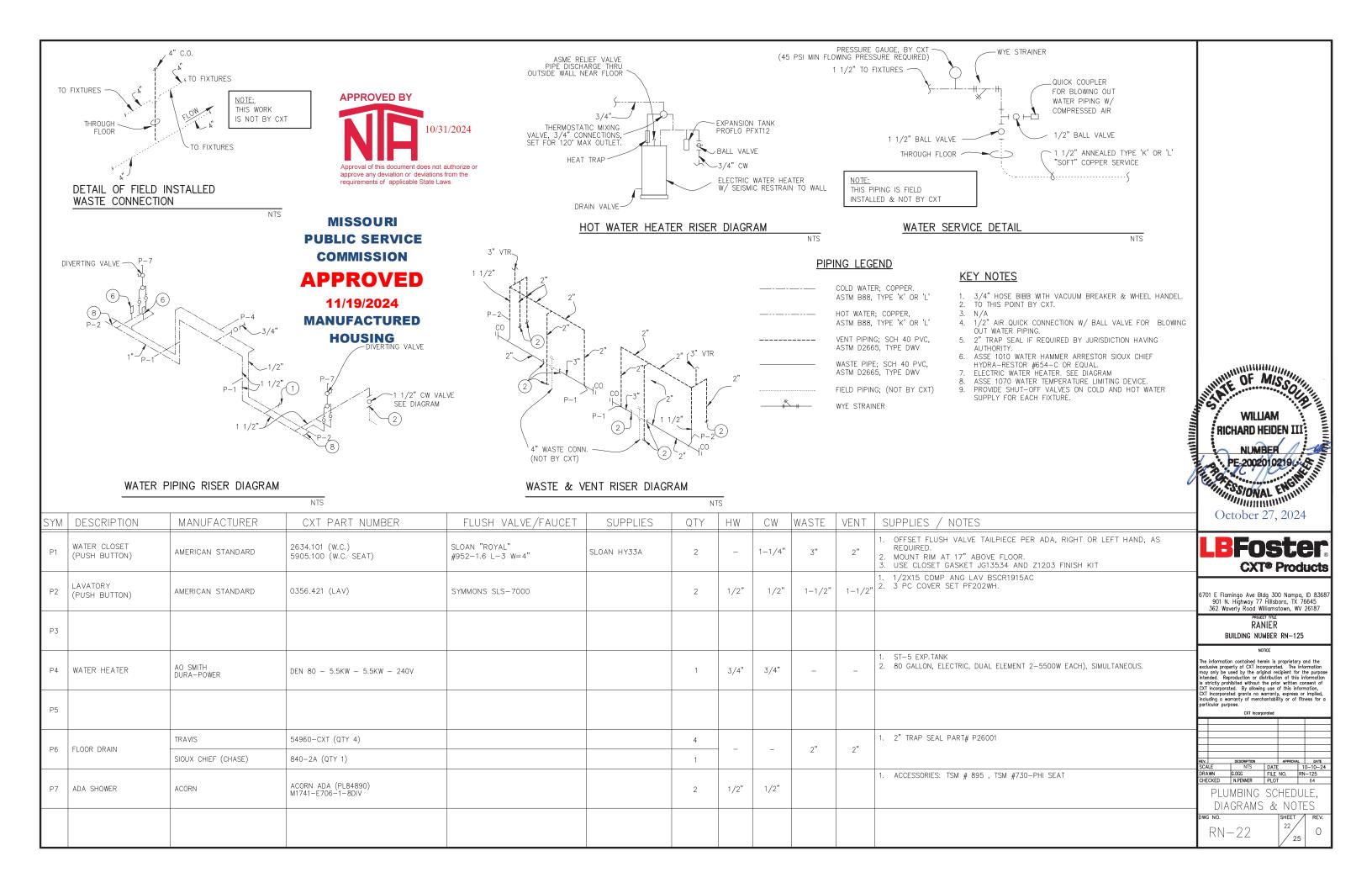
6701 E Flamingo Ave Bldg 300 Nampo, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

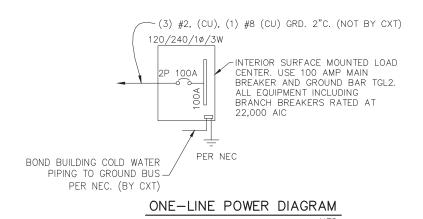
PROJECT TITLE
RANIER

BUILDING NUMBER RN-125

NOTI

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpos intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a porticular purpose.


particular parpoon							
		CXT Incorpo	orated				
REV.		DESCRIPTION		APPROVA	L	DATE	
SCA	LE	3/16" = 1'-0"	DATE		1	0-10-2	
DRA	WN	G.OGG	FILE	NO.	R١	I-125	
CHE	CKED	N.PENNER	PLOT	Γ		64	
1	۸/ ۸ T.C	D 1/// C	TE	۰۵۰	\/	CNIT	


WATER, WASTE & VENT PIPING PLANS & NOTES

RN-21

21 25

0

GENERAL ELECTRICAL NOTES

- 1. RECESSED JUNCTION BOXES FOR SINGLE DEVICES SHALL HAVE SINGLE GANG MUD RINGS CAST IN CONCRETE WALLS.
- 2. ALL RECEPTACLES SHALL BE GFCI PROTECTED BY CIRCUIT BREAKERS OR BY OTHER GFCI RECEPTACLES
- 3. ALL CONDUIT SHALL BE 3/4" MINIMUM, EXPOSED CONDUIT SHALL BE EMT, RECESSED SHALL BE PVC.
- 4. INSTALL ALL WIRING IN CONDUIT OR RELATED ENCLOSURES.
- 5. ALL ELECTRICAL INSTALLATIONS SHALL MEET THE 2017 NATIONAL ELECTRICAL CODE.
- 6. MINIMUM WIRE SIZE SHALL BE #12 AWG COPPER, THHN INSULATION UNLESS NOTED OTHERWISE.
- 7. ROUTE ALL CONDUIT IN UTILITY ROOM AT CEILING OR FACE OF WALLS.
- 8. ELECTRICAL DRAWINGS ARE DIAGRAMMATIC IN NATURE AND MAY NOT SHOW EXACT LOCATIONS OF DEVICES, REFER TO WALL PANEL AND OTHER DRAWINGS FOR EXACT LOCATIONS OF J-BOXES, ETC.
- 9. PROVIDE WATER HEATER WITH A 100 AMP DISCONNECT, AND A DEDICATED TWO POLE 60 AMP CIRCUIT. INSTALL WITH #6 COPPER AWG
- 10. CIRCUIT BREAKER LOCKOUTS REQUIRED FOR EACH HAND DRYER AND EXHAUST FAN.

EXHAUST FAN SCHEDULE									
SYM	MFR	MODEL #	CFM	VOLTS	AMPS	WATTS	NTS.		
EF-1	FANTECH	RVF-4XL	154	120	0.79	91	1		

NOTES:

1. FANS LISTED FOR WET LOCATION, CONTROL VIA MOTION SENSOR. LOCATE OPEN FACE E-BOX ON EXTERIOR SIDE OF PANEL.

CIRCUIT				LOAD				CIRCO		
NO.	DESCRIPTION	OCP	TYPE	(VA)	(A)	PH.	NO.	DESCRIPTION		
1	RECEPTACLE ROOM #1	1P/20A	R	180	1.5	Α	2	RECEPTACLE ROOM #2		
3	LIGHTS AND FAN ROOM #1	1P/20A*	N	141	1.2	В	4	LIGHTS AND FAN ROOM #2		
5	EXTERIOR LIGHTS	1P/20A	С	42	0.4	Α	6	LIGHTS - CHASE		
7	WATER HEATER	2P/60A	С	5,500	45.8	В	8	RECEPTACLE - CHASE		
9	WATER HEATER	2P/60A	С	5,500	45.8	Α	10	HAND DRYER ROOM #1		
11	HAND DRYER ROOM #2	1P/20A*	L	1,140	9.5	В	12			
40							4.4			

NOTE: MAXIMUM ALLOWABLE AIC IS 22K AMPS, PANEL MODIFICATIONS WILL

PANEL SCHEDULE

PANEL

120/240V, 1P, 3W

*PROVIDE LOCKOUT BREAKER (LO) CONFORMING TO NEC 110.25

BE REQUIRED (NOT BY CXT) IF TRANSFORMER CAPACITY EXCEEDS 175 KVA.

LOAD	CONNECTED	CALCULATED
(C)ONTINUOUS	11,042 x1.25	13,803 VA
(R)EC (1ST 10KVA)	540 x1.00	540 VA
(N)ON-CONTINUOUS	307 x1.00	307 VA
(L)ARGEST MOTOR	2,280 x1.25	2,850 VA
TOTAL LOAD	14,169	17,500 VA
		72.9 AMPS

CIRCUIT

TOTAL CONNECTED VA LOAD

TOTAL CALCULATED VA LOAD

OCP

1P/20A

1P/20A*

1P/20A

1P/20A

1P/20A*

14,169

17,500

(A)

1.5

1.2

0.2

1.5

9.5

LOAD

180

141

25

180

1,140

TYPE (VA)

R

N

N

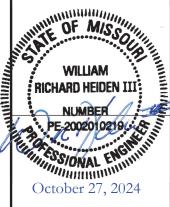
R

AMP 100

15

19

SURFACE MOUNT


MISSOURI PUBLIC SERVICE COMMISSION APPROVED

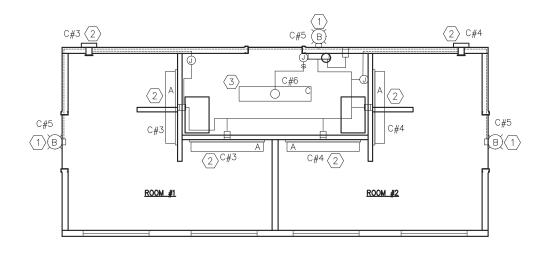
MANUFACTURED HOUSING

11/19/2024

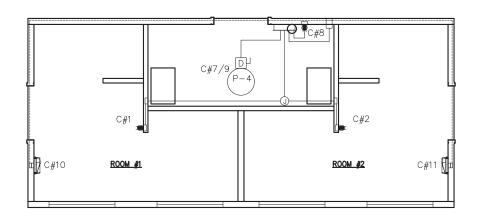
			LIGHTING FIXTURE SCHEDULE
FIXTURE	VOLTAGE	WATTS	DESCRIPTION
А	120	25	LUMINAIRE VPF84 INTERIOR LIGHT FIXTURE, VPF8-4FT-NODIM-25W-40K-MV-CLP-WHT-WL-2OCC SURFACE MOUNTED, LED LAMP 4 FT, WRAP AROUND LENS, LOW TEMPERATURE DRIVER, BUILT IN OCCUPANCY SENSOR ACTIVATED W/ ADDITIONAL OCCUPANCY SENSOR FOR FAN CONTROL
В	120	14	SWOOP YWP610 LED EXTERIOR LIGHT, YWP610-14W HP-3500K-120-CP-BRZ-CAB/PC EXTERIOR, VANDAL RESISTANT, WALL MOUNTED, 14 WATT, CLEAR PRISMATIC LENS, BUILT IN PHOTOELECTRIC CONTROL
С	120	25	LUMINAIRE VPF84 INTERIOR LIGHT FIXTURE, VPF8-4FT-NODIM-25W-40K-MV-CLP-WHT-WL SURFACE MOUNTED, LED LAMP 4 FT, WRAP AROUND LENS, LOW TEMPERATURE DRIVER, SWITCH ACTIVATED

NOTE: THE SOURCE OF EFFICACY OF EXTERIOR LIGHTING IS TO BE A MINIMUM OF 45 LUMENS PER WATT.

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187


RANIER

BUILDING NUMBER RN-125


The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposi intended. Reproduction or distribution of this information is strictly prohibited without the prior withen consent of CXT incorporated. By allowing use of this information, CXT incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a porticular purpose.

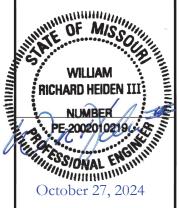
		CXT Incorpo	orated			
٧.		DESCRIPTION		APPROVA	L	DATE
CA	LE	NTS	DATE		1	0-10-24
R۸	WN	G.OGG	FILE	NO.	RN	I-125
ΗE	CKED	N.PENNER	PL01	Ī	П	64
	FLF	-CTRIC	ΔI	NOT	F	S

& SCHEDULES

LIGHTING PLAN

RECEPTACLE, HAND DRYER, & WATER HEATER PLAN

ELECTRICAL - KEY NOTES


- (1.) EXTERIOR LIGHT FIXTURES TO BE CONTROLLED BY PHOTOCELL BUILT INTO FIXTURE. ROUTE WIRING IN CONCEALED CONDUIT.
- $\langle 2. \rangle$ MOTION CONTROLLED RESTROOM LIGHTS AND EXHAUST FANS.
- $\overline{\mbox{3.}}$ Chase lights switch operated.

SYMBOLS

GFCI RECEPTACLE ON / OFF SWITCH J JUNCTION BOX RECESSED JUNCTION BOX ELECTRICAL PANEL WALL MOUNTED LED FIXTURE O X CEILING MOUNTED LED FIXTURE \boxtimes EXTERIOR LIGHT FIXTURE EXHAUST FAN WATER HEATER D SAFETY DISCONNECT CIRCUIT NUMBER C#XX CONCEALED CONDUIT HAND DRYER

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED

HOUSING

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER

BUILDING NUMBER RN-125

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purpose intended. Reproduction or distribution of this information is strictly prohibited without the prior witten consent of CXT incorporated. By allowing use of this information, CXT incorporated grains no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

ELECTRICAL PLAN, LEGEND & NOTES

RN-24

24 25

WALL PANEL W1 EMBEDDED MATERIALS	
ITEM	QTY
PS-19 SS	12
AS-2 SS	6
PS-10 SS	4
PS-2 SS	2
R4x92	2
R4x120	2
R4x100	1
R320	6
4x4 J-BOX	6
B.O. 4-1/2" DIA	2
B.O. 40 1/8" x 82 1/4"	1
R303	6
R4x180	2
B.O. PARTIAL 3"x8"x2" DP	2
4x4 E-BOX	2
ROUND MUD RING	1
MARINE PACKAGE	
CU. FT. CONC. SQ. FT. W.W	.F.
55.1 (2.04) 166	
approximate weight 8,263	

WALL PANEL W2	
EMBEDDED MATERIALS	
ITEM	QTY
AS-2 SS	4
PS-2 SS	8
PS-10 SS	2
R4x114	1
R405	2
R4x35	2
R4x96	2
SI-3 MOLD	1
B.O. 40 1/8" x 82 1/4"	1
4x4 J-B0X	2
ROUND MUD RING	1
B.O. PARTIAL 3"x6"x2" DP	1
RECT. MUD RING	1
R320	4
11020	<u>'</u>
THE BLOWLOS	
MARINE PACKAGE	
T	
cu. ft. conc. sq. ft. w.w 20.6 (0.76) 62	I.F.
20.0 (0.70) 02	

APPROXIMATE WEIGHT

3,086

ROOF SLAB R2

WALL PA		
EMBEDDED	MATERIALS	
ITEM		QTY
AS-2 S		4
PS-2 S		8
PS-10 S	S	2
R4x114		1
R405		2
R4x35		2
R4x96		2 2 1
SI-3 MOL	D	1
B.O. 40 1/8" x	82 1/4"	1
4x4 J-B0)X	2
ROUND MUD	RING	1
B.O. PARTIAL 3">	6"x2" DP	1
RECT. MUD	RING	1
R320		4
MARINE PAC	KAGE	
CU. FT. CONC.	SQ. FT. W.W	F.

APPROXIMATE WEIGHT

3,086

WALL PANEL W4	1	
EMBEDDED MATERIAL	s	
ITEM	QTY	
PS-1 SS	3	
AS-2 SS	4	
PS-15 SS	4	
PS-2 SS	6	
R4x106	2	
R4x120	2	
R303	2 3	
4x4 E-BOX	4	
ROUND MUD RING	2	
B.O. FLUSH BOWL	2 2 2	
B.O. 2" DIA	2	
0.01		
MARINE PACKAGE		
cu. ft. conc. sq. f 23.7 (0.88)	ft. w.w.f. 95	
APPROXIMATE WEIGH	Т	
3,549		
INTERIOR PARTITION	N P1	
EMBEDDED MATERIAL	S	

ITEM	QT
PS-2 S	
PS-10 S	S 2
AS-2 S	5 2
R4x58	1
R4x92	1
R4x106	1
R4x57	1
MARINE PAC	KAGE
CU. FT. CONC.	SQ. FT. W.W.F.
14.6 (0.54)	5Q. FT. W.W.F.
APPROXIMA	
2,1	

WALL PANEL W6		
EMBEDDED MATERIALS		
ITEM	QTY	
PS-2 SS	4	
PS-15 SS	2	
R4x62	1	
R4x15	1	
PS-1 SS	5	
R4x68	3	
AS-2 SS	3	
R4x92	3	
R4x104	3 3 1 5	
R303	5	
4x4 J-BOX	1	
4x4 E-BOX	2	
ROUND MUD RING	1	
RECT MUD RING	1	
SHOWER WALL SLEEVE	1	
B.O. LAV	1	
MARINE PACKAGE		
CU. FT. CONC. SQ. FT. W.W	.F.	
12.4 (0.46) 52		
approximate weight 1,860		

	WALL PANEL W7	
	EMBEDDED MATERIALS	
Υ	ITEM	QTY
	PS-2 SS	4
	PS-15 SS	2
	R4x62	1
	R4x15	1
	PS-1 SS	5
	R4x68	3
	AS-2 SS	3
	R4x92	3
	R4x104	1
	R303	5
	4x4 J-BOX	1
	4x4 E-B0X	2
	ROUND MUD RING	1
	RECT MUD RING	1
	SHOWER WALL SLEEVE	1
	B.O. LAV	1
	MARINE PACKAGE	
	while I Holding	
	CU. FT. CONC. SQ. FT. W.W	.F.
	12.4 (0.46) 52	

APPROXIMATE WEIGHT

1,860

		WALL PA	NEL W8	·
		EMBEDDED	MATERIALS	
QTY		ITEM		QTY
4		PS-19 S		9
2		AS-2 S		6
1		PS-10 S	SS	4
1		PS-2 S	S	2
5		R4x92		10
3		R303		3
3 3 3		MS-2		2
3		MS-6 S	S	4
1		R4x180		4
5		SI-3 MOI		2
1				
2				
1				
1				
1				
1				
		MARINE PAC	VACE	-
		MARINE PAC	NAUE	_
F.		CU. FT. CONC.	SQ. FT. W.W	<u> </u>
Γ.		57.2 (2.12)	189	r.F.
		APPROXIMA		
		8,5		
	'	-,-		

	TE OF MISSON	
S	WILLIAM RICHARD HEIDEN III	MINIMINI
	NUMBER NE-2002010219(**)	
	SONAL ENGINE	IIII
	October 27, 2024	

ROOF S	SLAB R1	
EMBEDDED	MATERIALS	
ITEM		QTY
PS-19 S		18
PS-2 S	S	6
R303		18
B.O. 5" [AIC	2
FL-648	3	4
R411		4
FL-847	7	4
R4x18		16
TEX B.O. 13	3" SQ	2
R3x66		4
R320		4
R4x156)	2
R3x174		4
MARINE PAR	DK V CE	
MANINE LAN	IIIIUL	
CU. FT. CONC.	SQ. FT. W.W	/.F.
63.8 (2.36)	325	

9.565

18 PS-19 SS 1- 6 PS-2 SS 6 18 R303 1- 2 R3x174 4 4 FL-648 4 4 R411 4 4 FL-847 4 16 R4x18 1- 2 R4x156 2 4 R3x66 4	_		
6 PS-2 SS 6 R303 1. R3x174 4 FL-648 4 R411 4 FL-847 4 R4x18 1. R4x156 2 R3x66 4 R320 4 R320 4 R320	TY	QT	QTY
18 R303 1: 2 R3x174 4 4 FL-648 4 4 R411 4 5 FL-847 4 16 R4x18 1: 2 R4x156 2 4 R3x66 4 2 R3x20 4	4	14	
2 R3x174 4 4 FL-648 4 4 R411 4 FL-847 4 16 R4x18 1 2 R4x156 2 4 R3x66 4 2 R3x20 4	ô	6	6
4 FL-648 4 R411 4 FL-847 4 I6 R4x18 1 R4x156 2 R3x66 4 R320 4	4	14	18
4 R411 4 4 FL-847 4 16 R4x18 10 2 R4x156 2 4 R3x66 4 4 R320 4 2 R3x66 4	4	4	2
4 FL-847 4 16 R4x18 10 2 R4x156 2 4 R3x66 4 2 R320 4	4	4	4
16 R4x18 11 R4x156 2 R3x66 4 R320 4	4	4	4
2 R4x156 2 4 R3x66 4 4 R320 4	4	4	4
4 R3x66 4 R320 4	6	16	16
4 R3x66 4 R320 4	2	2	2
2	4	4	
2	4	4	4
4			2
			4
		1	
		1	
		1	
		\top	
MARINE PACKAGE		\top	
		\top	
F. CU. FT. CONC. SQ. FT. W.W.F. 63.9 (2.37) 325		N.F.	F.
APPROXIMATE WEIGHT			
9,581			

FLOOR SLAB F1			
EMBEDDED MATERIALS			
ITEM		QTY	
AS-7		8	
PS-19 S	iS .	26	
R303		14	
R3x42		36	
R3x62		2 2 8	
R3x122		2	
R3x156			
R4x118		6	
B.O. 16"x:	24"	2	
B.O. 6" [NA	1	
FLOOR DR	AIN	4	
R3x34		8	
MARINE PACKAGE			
cu. ft. conc. 101.2 (3.75)	sq. ft. w.w.f. 497		
APPROXIMA			
15,186			

INTERIOR P	ARTITION P1	
EMBEDDED	MATERIALS	
ITEM		QTY
AS-2 S	S	3
B-18		1
MARINE PAC	CKAGF	
MITATION TO		
CU. FT. CONC.	SQ. FT. W.W	
3.3 (0.12)	13	.г.
	TE WEIGHT	
49	1/	

MISSOURI PUBLIC SERVICE COMMISSION APPROVED 11/19/2024

MANUFACTURED HOUSING

- 1	
	LBFoster
	CXT® Products

6701 E Flamingo Ave Bldg 300 Nampa, ID 83687 901 N. Highway 77 Hillsboro, TX 76645 362 Waverly Road Williamstown, WV 26187

RANIER

BUILDING NUMBER RN-125

The information contained herein is proprietary and the exclusive property of CXT Incorporated. The information may only be used by the original recipient for the purposition intended. Reproduction or distribution of this information is strictly prohibited without the prior written consent of CXT Incorporated. By allowing use of this information, CXT Incorporated grants no warranty, express or implied, including a warranty of merchantability or of fitness for a particular purpose.

CXT Incorporated						
EV.		DESCRIPTION		APPROVA	L	DATE
SCA	LE	NTS DATE			10-10-24	
RAWN G.OGG		FILE NO.		RN-125		
CHE	CKED N.PENNER PLOT		Г		-	

EMBEDDED MATERIALS

COMcheck Software Version COMcheckWeb Interior Lighting Compliance Certificate

Project Information

Energy Code: 90.1 (2016) Standard Project Title: **RAINIER RN-125 New Construction** Project Type:

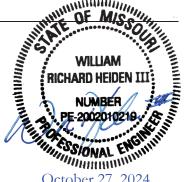
Construction Site: Designer/Contractor: Owner/Agent:

Allowed Interior Lighting Power

	A Area Category	B Floor Area (ft2)	C Allowed Watts / ft2	D Allowed Watts
1-CHASE (Workshop)		47	0.90	42
2-RESTROOM (Office)		202	0.79	160
		To	otal Allowed Watts =	= 202

Proposed Interior Lighting Power

A Fixture ID : Description / Lamp / Wattage Per Lamp / Ballast	B Lamps/ Fixture		D Fixture Watt.	(C X D)
1-CHASE (Workshop) LED: C: LUMINAIRE: Other:	2	1	25	25
2-RESTROOM (Office) LED: A: LUMINAIRE: Other:	2	4	25	100
	Tot	al Propose	nd Watts =	125


Interior Lighting PASSES: Design 38% better than code

Interior Lighting Compliance Statement

Compliance Statement: The proposed interior lighting design represented in this document is consistent with the building plans. specifications, and other calculations submitted with this permit application. The proposed interior lighting systems have been designed to meet the 90.1 (2016) Standard requirements in COMcheck Version COMcheckWeb and to comply with any applicable mandatory requirements listed in the Inspection Checklist.

Name - Title Signature

> **APPROVED BY** 10/31/2024 Approval of this document does not authorize or approve any deviation or deviations from the requirements of applicable State Laws.

October 27, 2024

Date

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

11/19/2024

MANUFACTURED HOUSING

Project Title: **RAINIER RN-125** Report date: 10/24/24

Data filename: Page 1 of 5

COMcheck Software Version COMcheckWeb Exterior Lighting Compliance Certificate

Project Information

Energy Code: 90.1 (2016) Standard
Project Title: RAINIER RN-125
Project Type: New Construction
Exterior Lighting Zone 3 (Other (LZ3))

Approval of this document does not authorize or approve any deviation or deviations from the requirements of applicable State Laws.

Construction Site: Owner/Agent: Designer/Contractor:

Allowed Exterior Lighting Power

A Area/Surface Category	B Quantity	C Allowed Watts /	D Tradable Wattage	E Allowed Watts (B X C)
DOORS (Pedestrian and vehicular entrances and exits)	9 ft of door	21	Yes	189
		Total Tradable Watts (a) =		189
	Total Allowed Watts =			189
	Total Allowed Supplemental Watts (b) =			500

- (a) Wattage tradeoffs are only allowed between tradable areas/surfaces.
- (b) A supplemental allowance equal to 500 watts may be applied toward compliance of both non-tradable and tradable areas/surfaces.

Proposed Exterior Lighting Power

A B C D E
Fixture ID : Description / Lamp / Wattage Per Lamp / Ballast Lamps/ # of Fixture (C X D)
Fixture Fixture Watt.

DOORS (Pedestrian and vehicular entrances and exits, 9 ft of door width): Tradable Wattage

LED: B: SWOOP: Other:

1 3 14 42

Total Tradable Proposed Watts = 42

Exterior Lighting PASSES: Design 94% better than code

Exterior Lighting Compliance Statement

Compliance Statement: The proposed exterior lighting design represented in this document is consistent with the building plans, specifications, and other calculations submitted with this permit application. The proposed exterior lighting systems have been designed to meet the 90.1 (2016) Standard requirements in COMcheck Version COMcheckWeb and to comply with any applicable mandatory requirements listed in the Inspection Checklist.

Name - Title Signature

October 27, 2024

MISSOURI
PUBLIC SERVICE
COMMISSION

Date

APPROVED

11/19/2024
MANUFACTURED
HOUSING

Project Title: RAINIER RN-125 Report date: 10/24/24

Data filename: Page 2 of 5

COM*check* **Software Version COM***check* **Web**

Inspection Checklist

Energy Code: 90.1 (2016) Standard

Requirements: 0.0% were addressed directly in the COMcheck software

Text in the "Comments/Assumptions" column is provided by the user in the COMcheck Requirements screen. For each requirement, the user certifies that a code requirement will be met and how that is documented, or that an exception is being claimed. Where compliance is itemized in a separate table, a reference to that table is provided.

Section # & Req.ID	Plan Review	Complies?	Comments/Assumptions
4.2.2, 8.4.1.1, 8.4.1.2, 8.7 [PR6] ²	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the electrical systems and equipment and document where exceptions are claimed. Feeder connectors sized in accordance with approved plans and branch circuits sized for maximum drop of 3%.	□Complies □Does Not □Not Observable □Not Applicable	
4.2.2, 9.4.3, 9.7 [PR4] ¹	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the interior lighting and electrical systems and equipment and document where exceptions to the standard are claimed. Information provided should include interior lighting power calculations, wattage of bulbs and ballasts, transformers and control devices.	□Complies □Does Not □Not Observable □Not Applicable	
9.7 [PR8] ¹	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the exterior lighting and electrical systems and equipment and document where exceptions to the standard are claimed. Information provided should include exterior lighting power calculations, wattage of bulbs and ballasts, transformers and control devices.	□Complies □Does Not □Not Observable □Not Applicable	

Additional Comments/Assumptions:

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

1 High Impact (Tier 1) 2 Medium Impact (Tier 2) 3 Low Impact (Tier 3)

Project Title: RAINIER RN-125 Report date: 10/24/24

Data filename: Page 3 of 5

Section #	Dough In Electrical Increation	Complies?	Commonts/Assumptions
& Req.ID	Rough-In Electrical Inspection	Complies?	Comments/Assumptions
8.4.2 [EL10] ²	At least 50% of all 125 volt 15- and 20-Amp receptacles are controlled by an automatic control device.	□Complies □Does Not □Not Observable □Not Applicable	
8.4.3 [EL11] ²	New buildings have electrical energy use measurement devices installed. Where tenant spaces exist, each tenant is monitored separately. In buildings with a digital control system the energy use is transmitted to to control system and displayed graphically.	□Complies □Does Not □Not Observable □Not Applicable	
9.4.1.1 [EL1] ²	Automatic control requirements prescribed in Table 9.6.1, for the appropriate space type, are installed. Mandatory lighting controls (labeled as 'REQ') and optional choice controls (labeled as 'ADD1' and 'ADD2') are implemented.	□Complies □Does Not □Not Observable □Not Applicable	
9.4.1.1 [EL2] ²	Independent lighting controls installed per approved lighting plans and all manual controls readily accessible and visible to occupants.	☐Complies ☐Does Not ☐Not Observable ☐Not Applicable	
9.4.1.1f [EL13] ¹	Daylight areas under skylights and roof monitors that have more than 150 W combined input power for general lighting are controlled by photocontrols.	□Complies □Does Not □Not Observable □Not Applicable	
9.4.1.4 [EL3] ²	Automatic lighting controls for exterior lighting installed.	□Complies □Does Not □Not Observable □Not Applicable	
9.4.1.3 [EL4] ¹	Separate lighting control devices for specific uses installed per approved lighting plans.	□Complies □Does Not □Not Observable □Not Applicable	
9.6.2 [EL8] ¹	Additional interior lighting power allowed for special functions per the approved lighting plans and is automatically controlled and separated from general lighting.	□Complies □Does Not □Not Observable □Not Applicable	

Additional Comments/Assumptions:

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

	1 High Impact (Tier 1)	2	Medium Impact (Tier 2)	3	Low Impact (Tier 3)
--	------------------------	---	------------------------	---	---------------------

Project Title: RAINIER RN-125 Report date: 10/24/24
Data filename: Page 4 of 5

Section # & Req.ID	Final Inspection	Complies?	Comments/Assumptions
8.7.1 [FI16] ³	Furnished as-built drawings for electric power systems within 30 days of system acceptance.	\square Complies \square Does Not	
	or system acceptance.	□Not Observable □Not Applicable	
8.7.2 [FI17] ³	Furnished O&M instructions for systems and equipment to the	\square Complies \square Does Not	
building owner or designated representative.		□Not Observable □Not Applicable	
9.2.2.3 [FI18] ¹	Interior installed lamp and fixture lighting power is consistent with what	\square Complies \square Does Not	See the Interior Lighting fixture schedule for values.
	is shown on the approved lighting plans, demonstrating proposed watts are less than or equal to allowed watts.		
9.4.2 [FI19] ¹	Exterior lighting power is consistent with what is shown on the approved	□Complies □Does Not	See the Exterior Lighting fixture schedule for values.
	lighting plans, demonstrating proposed watts are less than or equal to allowed watts.	□Not Observable □Not Applicable	
9.4.4 [FI20] ¹	At least 75% of all permanently installed lighting fixtures in dwelling	□Complies □Does Not	
	units have >= 55 lm/W efficacy or a >= 45 lm/W total luminaire efficacy.	□Not Observable □Not Applicable	

Additional Comments/Assumptions:

MISSOURI
PUBLIC SERVICE
COMMISSION

APPROVED

11/19/2024 MANUFACTURED

HOUSING

1 High Impact (Tier 1) 2 Medium Impact (Tier 2) 3 Low Impact (Tier 3)

Project Title: RAINIER RN-125 Report date: 10/24/24
Data filename: Page 5 of 5

CXT Inc. (Precast Division)

Calculations

RAINIER RN-125 Structural Analysis

Design Loads

400 psf Live Floor Load 250 psf Ground Snow Load Wind Speed – 150 mph Exp. C Seismic Design Category: E

Design Standards

2018 International Building Code ASCE 7-16/ ACI 318-14

> UL-752 Bullet Resistance Classification: Level IV Report #: 2012-647

MISSOURI
PUBLIC SERVICE
COMMISSION

APPROVED

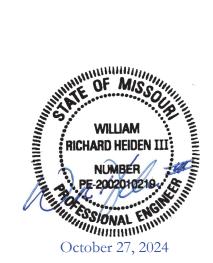
11/19/2024 MANUFACTURED HOUSING

THIS REPORT CONTAINS 33 PAGES, INCLUDING THIS COVER AND THE TABLE OF CONTENTS. ANY ADDITIONS TO, ALTERATIONS OF, OR UNAUTHORIZED USE OF EXCERPTS FROM THIS REPORT ARE EXPRESSLY FORBIDDEN.

Table of Contents

Description	Page(s)
2018 International Building Code	
ASCE 7-16 MWFRS and C&C Wind Loads	1
ASCE 7-16 Snow Loads	2
ASCE 7-16 Seismic Loads	3-4
Roof Panel Analysis	5-8
Wall Panel Analysis	9-28
Floor Analysis	29-30
Building Analysis	31

Appendix: (Provided Upon Request) UL-752 Bullet Resistance Testing



MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED

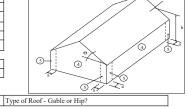
HOUSING

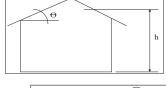
All attached documents are for reference only and designed or approved by others.

THIS REPORT CONTAINS 33 PAGES, INCLUDING THE COVER AND THIS TABLE OF CONTENTS. ANY ADDITIONS TO, ALTERATIONS OF, OR UNAUTHORIZED USE OF EXCERPTS FROM THIS REPORT ARE EXPRESSLY FORBIDDEN.

Page 1 of 31 Date: 10/24/2024

Main Wind Force Resisting System Loads (ASCE 7-16)


	RAINIER RN-125					
Category	II	IBC TABLE 1604.5: Risk Category of Buildings and Other Structures.				
Exposure	C	See § 26.7.3: Exposure Categories, General.				
Velocity	150 mph	See Figure 26.5-1A thru 26.5-2D: Basic Wind Speed (3 second Gust)				
h.wind	7.96 ft	Windward wall height				
h.lee	7.96 ft	Leeward wall height				
W.building	10.5 ft	Width of the building				
L.building	23.67 ft	Length of the building				
H.building	9.69 ft	Height of the building (to the ridge). Enter 0 if unknown.				
Roof Rise	3	Roof pitch (per foot)				
9	14.04 deg	Roof Angle				
Kd	0.85	Wind directionality factor. 0.85 when using load combinations, 1.0 otherwise.				
K ₁	0.00					
K ₂	0.00					
K.	0.00	See Figure 26 8-1: Multipliers for Obtaining Tonographical Factor Kat				


Kzt	1	Topographic factor	
h	8.824 ft	Mean roof height	
n _a	8.50	Natural frequency	
Flexibility	Rigid	Building flexibility	
α	9.5	Terrain factor	
Zg	900 ft	Terrain factor	

Velocity Pressure Exposure Coefficient

K(z)	0.849	at windward eave
Velocity Pres	ssure (27.3.2)	1

K(z)	0.849	a
Velocity Pres	ssure (27.3.2)]
q_z	41.56 psf	

Partially Enclosed if the building meets both of the following conditions:

Gable

1. Total area of openings in one wall exceeds area of openings in the balance of the building by more than 10%.

2 Total area of openings in one wall exceeds 4 sq. ft. or 1% of area of that wall and the total area of openings in the balance of the building does not exceed 20% of the area in the balance of the building.

Zone	Opening Area	Gross Area	Agi	Aoi	Condition 1	Condition 2	Condition 3	Condition 4	Type:
Windward sidewall	0 sq ft	188.4 sq ft	622.2 sq ft	0 sq ft	0.00	0.00	0.00	0.00	Enclosed
Windward endwall	0 sq ft	92.7 sq ft	717.9 sq ft	0 sq ft	0.00	0.00	0.00	0.00	Enclosed
Leeward sidewall	0 sq ft	188.4 sq ft	622.2 sq ft	0 sq ft	0.00	0.00	0.00	0.00	Enclosed
Leeward endwall	0 sq ft	92.7 sq ft	717.9 sq ft	0 sq ft	0.00	0.00	0.00	0.00	Enclosed
Roof	0 sq ft	248.5 sq ft	562.1 sq ft	0 sq ft	0.00	0.00	0.00	0.00	Enclosed

Enclosed

		External Pressure Coefficients		
C_{po}	0.8	See 27.3.3 Roof Overhangs		
	0.8	Windward wall (Use with qz) Fig. 27.3-1		
Ср	-0.500	Leeward wall (wind normal to ridge) (Use with qh)	L/B =	0.44
Ср	-0.287	Leeward wall (wind parallel to ridge) (Use with qh)	L/B =	2.25
	-0.7	Sidewalls (Use with ah) Fig. 27.4-1		

Gust Factor - (26.9)			
G =	0.85		

Internal Pressures:		
Negative:	-7.48 psf	
Positive:	7.48 psf	

	Pos. Windward	Neg. Windward	Leeward	
Roof Pressure Coefficients (Fig 27.3-1) Normal to Ridge when Theta >= 10degrees	-0.180	-0.953	-0.581	
	0 to h/2	h/2 to h	h to 2h	> 2h
Roof Pressure Coefficients (Fig 27.3-1) Normal to Ridge when Theta < 10 deg.	-1.17	-0.76	-0.64	-0.57
Roof Pressure Coefficients (Fig 27.3-1) PARALLEL to Ridge	-0.90	-0.90	-0.50	-0.30

Wall Pressures:	w/ Negative	w/ Positive Internal
Windward	35.74 psf	20.78 psf
Leeward (wind normal)	-16.00 psf	-25.14 psf
Leeward (wind parallel)	-16.00 psf	-17.63 psf
Side Wall	-17.25 psf	-32.21 psf

Additional Overhang Pressure:	28.26 psf

Roof Pressures: Wind Parallel to		
ridge for all roof slopes:		
Location	w/ Positive Internal	
0 to h/2	-39.28 psf	
h/2 to h	-39.28 psf	
h to 2h	-25.14 psf	

Roof Fressures. While Faranci to		
ridge for all roof slopes:		
Location	w/ Positive Internal	
0 to h/2	-39.28 psf	
h/2 to h	-39.28 psf	
h to 2h	-25.14 psf	
Over 2h	-18.08 psf	

Wind Speed:	150 mph	Roof Slope:	3.00 : 12		OMPONE	NTC
		Mean Roof				
Exposure:	С	Height:	8.82 ft	٥	& CLADD	ING
			Effectiv	ve Area		
Zone	10.0) sq ft	100.0 s	q ft		500.0 sq ft
1	-38.21 psf	19.98 psf	-34.05 psf	11.67 psf	-34.05 psf	11.67 psf
2	-71.45 psf	19.98 psf	-50.67 psf	11.67 psf	-50.67 psf	11.67 psf
2oh	-91.44 psf	-	-91.44 psf	-	-91.44 psf	-
3	-108.86 psf	19.98 psf	-83.92 psf	11.67 psf	-83.92 psf	11.67 psf
3oh	-153.78 psf	-	-103.90 psf	-	-103.90 psf	-
4	-46.52 psf	40.76 psf	-38.21 psf	33.70 psf	-34.05 psf	28.29 psf
5	-58.99 psf	40.76 psf	-46.52 psf	33.70 psf	-34.05 psf	28.29 psf
a:	3.00 ft					

Roof Pressures Wind Perpendicular to Ridge w/ \$>= 10 deg			
w/ Negative Internal	1.12 psf		
w/ Positive Internal -41.14 psf			
*WORST CASE LOADING			

Roof Pressures: Wind Perpendicular to ridge for \$ < 10 deg:		
Location	w/ Positive Internal	
0 to h/2	0.00 psf	
h/2 to h	0.00 psf	
h to 2h	0.00 psf	
Over 2h	0.00 psf	

Higher pressures at the ridge line only applies to roof pitches > 7

APPROVED BY 10/31/2024 Approval of this document does not authorize or approve any deviation or deviations from the requirements of applicable State Laws.

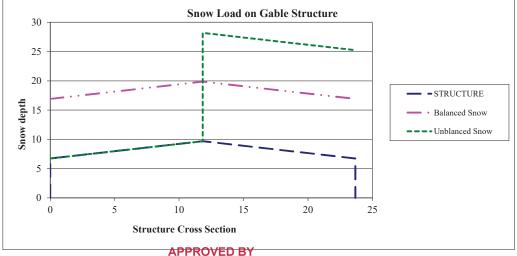
MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

Page 2 of 31 Date: 10/24/2024

ASCE 7-16 SNOW LOAD CALCULATION

Category	II	IBC TABLE 1604.5: Risk Category of Buildings and Other Structures.
Exposure	C	See § 26.7.3: Exposure Categories, General.
Pg	250 psf	See ASCE Figure 7.2-1: Ground Snow Load
W.building	10.5 ft	Length of the building
L.building	23.67 ft	Width of the building
H.building	9.69 ft	Height of the building (to the ridge). Enter 0 if unknown.
Roof Rise (per foot)	3	Roof pitch
в	14.04 deg	Roof Angle


ASCE Table 7.3-2 - Thermal Condition:		
All structures except as indicated below:		
Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R-		
value) between the ventilated space and the heated space exceeds 25*h (deg*sq ft/BTU).	1.1	
Unheated and open air structures	1.2	
Structures intentionally kept below freezing	1.3	
Continuously heated greenhouses with a roof having a thermal resistance value (R-value) less than 2.0*h (deg*sq		
ft/BTU).	0.85	

C_{t}	1.2	(Choose from table above)
Is	1	ASCE Table 1.5-2
Surface	Unobstructed	ASCE § 7.4
Roof type	Gable	
Hor. Eave to Ridge Distance		
- windward	5.25 ft	
Roof Exposure	Partially exposed	ASCE Table 7.3-1
C_{e}	1	ASCE Table 7.3-1
Cs	1	Slope Factor from Figure 7.4-1
Low Sloped?:	Yes	ASCE § 7.3.4
P_{f}	210.00 psf	Flat Roof Snow Load
P_s	210.00 psf	Sloped Roof Snow Load
Use unbalanced?	Yes	ASCE § 7.6.1
$P_{windward}$	0.00 psf	ASCE § 7.6.1
P _{leeward_1}	250.00 psf	ASCE § 7.6.1
P _{leeward_2}	250.00 psf	ASCE § 7.6.1
Distance from Ridge to		
Edge of P _{leeward1} loading	5.3 ft	ASCE Figure 7.6-2

MISSOURI
PUBLIC SERVICE
COMMISSION

APPROVED

γ	30.00 pcf	Snow density	Eq. 7.7-1 of ASCE 7
S	4	Run per rise of 1	ASCE § 7.1
$h_{\rm d}$	10.19 ft	Height of drifting snow	w on leeward side
h _b	7.00 ft	Height of balar	nced snow

Approval of this document does not authorize or approve any deviation or deviations from the requirements of applicable State Laws.

Page 3 of 31 Date: 10/24/2024

Seismic Loads (ASCE 7-16)

		RAINIER RN-125	
Category			
Ss	1.057 g	Max. Earthquake Ground Motion of 0.2 sec Spectral Response Acceleration	ASCE Figure 22-1
S ₁	1.057 g	Max. Earthquake Ground Motion of 1.0 sec Spectral Response Acceleration	ASCE Figure 22-2
Site Class	D (Default)	Site classification (Use D if unknown unless jurisdiction, or geotechnical data determines Site Class E or F.)	ASCE 20.1
T_L	16.0 sec	Long Period Transition Period	ASCE Figure 22-14
Seismic Force			· ·
Resisting System	A.5	Intermediate precast shear walls	48GE T. 11, 12.2.1
R	4.00	Response Modification Factor	ASCE Table 12.2-1
Ω_0	2.5	System Over strength Factor	
C_t	0.02	Approximate period parameter	ASCE Table 12.8-2
х	0.75	Approximate period parameter	ASCE Table 12.8-2
hn	9.03 ft	Height in feet from base to highest level of structure	·

				Value 1*	Value 2*	*=L
Fa	1.2	Interpolated Value	ASCE Table 11.4-1	1.1	1	***
F_{v}	1.7	Interpolated Value	ASCE Table 11.4-2	1.7	1.7	

Used for interpolation *1.2 used per ASCE 11.4-2

$Sms = Fa * S_S$	1.268 g	Adjusted MCE Spectral Response Acceleration at short periods	ASCE 11.4-1
$S_{ml} = F_v * S_l$	1.797 g	Adjusted MCE Spectral Response Acceleration at 1 sec period	ASCE 11.4-2
		(MCE = Maximum considered earthquake)	-

$S_{DS} = 2/3 Sm_s$	0.846 g	Design Spectral Acceleration Parameters	ASCE 11.4-3
$S_{D1} = 2/3 \ Sm_1$	1.198 g	Design Spectral Acceleration Parameters	ASCE 11.4-4

ASCE 11.4-3

т			1000 T 11 1 5 2
1 _E	1	Importance Factor	ASCE Table 1.5-2

Seismic Design Cate	egory	Е
Based on S _{DS}	D	Table 11.6-1
Based on S _{D1}	E	Table 11.6-2

Geotechnical Investigation Report Required?

Yes per ASCE 11.8.2 and 11.8.3, IBC 1803

<u>E</u>	QUIVALENT L	ATERAL FORCE PROCEDURE]
$T_a = C_t * hn^x$	0.10 sec	ASCE 12.8-7	
$T_s = S_{D1}/S_{DS}$	1.42 sec		•
T	0.10 sec	Fundamental period of the structure (can be taken as T	a per ASCE 12.8.2
$C_s = S_{DS}/(R/I)$	0.211	ASCE 12.8-2	
$C_{s.min}$	0.132	ASCE 12.8-5 & 12.8-6	
$C_{s.max}$	2.874	ASCE 12.8-3 & 12.8-4	
Cs	0.211		
k	1.000	ASCE 12.8.3	
W	81.14 kip		
$V = C_s * W$	42.88 kip	ASCE 12.8-1 Shear with snow load	1
$M_o =$	381.8 k-ft	Overturning Moment	with snow load
$V = C_s * W$	35.83 kip	Shear without snow i	oad
M _o =	317.3 k-ft	Overturning Moment	without snow load

			WITH SNOW	12.8-12	12.8-11;11.7			12.10-1		
	P _f (flat roof							V _x (Story		F _{px (diaphragm}
Level	el Story Height h _i or h _x snow load) w _i				w _i *h _i ^k	C_{vx}	F _x	shear)	M_x	force)
Roof	8.82 ft	2 ft 9.03 ft 210 psf		49.22 kip	444.6 k-ft	0.985	42.25 kip	42.25 kip	0.0 k-ft	16.65 kip
Walls	0.00 ft	0.00 ft								
Floor	0.21 ft 0.21 ft		31.92 kip	6.6 k-ft	0.015	0.63 kip	42.88 kip	372.8 k-ft	10.80 kip	
Base	0 ft	0.00 ft	W=	81.14 kip	451.3 k-ft			$M_o =$	381.8 k-ft	

			WITHOUT S	12.8-12	12.8-11;11.7			12.10-1		
			P _f (flat roof				V _x (Story		F _{px (diaphragm}	
Level	Story Height	h _i or h _x	snow load)	Wi	$w_i * h_i^k$	C_{vx}	F _x	shear)	M_x	force)
Roof	8.82 ft	9.03 ft	0 psf	35.88 kip	324.1 k-ft	0.980	35.11 kip	35.11 kip	0.0 k-ft	12.13 kip
Walls	0.00 ft	0.00 ft								
Floor	0.21 ft	0.21 ft		31.92 kip	6.6 k-ft	0.020	0.72 kip	35.83 kip	309.8 k-ft	10.80 kip
Base	Base 0 ft 0.00 ft W= 67.79 kip 330			330.7 k-ft			Mo =	317.3 k-ft		

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

Page 4 of 31 Date: 10/24/2024

Center of Mass & Rigidity

RAINIER RN-125

				X	Y	
	Upper L	eft = 0,0	Lower Right	320	143	
Wall	X Relative	Y Relative	Shear	Force	Dist to CoRx	Dist to CoRy
VV dii	Stiffness	Stiffness	lbs	plf	dx (IN)	dy (IN)
W1	0.00%	41.05%	4,272	181	0.006	64.104
W2	22.33%	0.00%	2,323	236	140.000	3.056
W3	22.33% 0.00%		2,323	236	140.000	3.056
W4	0.00%	12.11%	1,260	122	0.000	6.604
W5	19.53%	0.00%	2,032	400	0.000	25.396
W6	17.91%	0.00%	1,863	311	63.500	24.763
W7	17.91%	0.00%	1,863	311	63.500	24.763
W8	0.00%	46.84%	4,874	206	0.002	57.896
P1-1	0.00%	0.00%			78.500	24.604
P1-2	0.00%	0.00%	-		78.500	24.604

			Left Edge	Top Edge	Right Edge	Bottom Edge	Snow/Live	Center of Gravity		Live	Live
Slab	Thickness	Weight	X	Y	X	Y	(psf)	X	Y	w snow	w/o snow
R1	4.5	9565	0	0	320	71.5	210	160.0	35.8	16238	9565
R2	4.5	9581	0	71.5	320	143	210	160.0	107.3	16254	9581
F1	5	15186	18	8.5	302	134.5	400	160.0	71.5	15186	0
Totolo		22464						160.0	71.1		

_							
	Torsional Eccentricity		Wgt	Wgt		wgt	wgt
Г	ex	ey	(w snow)	(w/o snow)		(w snow)	(w/o snow)
Г	0.00	3.49	81,140	67,793	roof	49,223	35,877
	Center of Gravity				floor	31,917	
Г	X	Y					
	160.0	71.1					
Г	Center of Rigidty						
	X Y						
г	160.0	74.6	l				

	Wall Overturning	Checks Using We	alls			
	Force Transfe	rred by Connectio	ns Between Walls			
	Anchorage Required	Toward L	ower Right	Toward L	Jpper Left	Overturning status
	to Resist Overturning	Anchor F	tesistance	Anchor R	esistance	using just connection
	From Design Moment	Moment		Moment		to adjacent walls
Wall	(kip-ft)	(kip-ft)	check	(kip-ft)	check	,
W1	-24.98	302.82	OK	281.44	OK	None Required
W2	31.67	45.16	OK	41.96	OK	None Required
W3	31.67	45.16	OK	41.96	OK	None Required
W4	7.99	48.25	OK	69.12	OK	None Required
W5	38.40	23.35	Need More	23.35	Need More	TRY BASE ANCHORS
W6	33.70	40.81	OK	37.34	OK	None Required
W7	33.70	33.06	Need More	45.09	OK	TRY BASE ANCHORS
W8	-14.37	246.45	OK	246.45	OK	None Required
P1-1	-0.87	0.00	OK	6.89	OK	None Required
P1-2	-0.87	6.89	OK	0.00	OK	None Required

Overturning resistance considers only the weight of the wall, the weight of the roof supported by the wall, and connection to adjacent walls. Roof weight supported by other walls has not been considered. Connection to adjacent walls is taken as the connection capacity, not to exceed that portion of the adjacent wall weight that can be reasonably attributed to the connection.

		Wall					
		Must investig					
	Design Moment (kip-ft)		ower Right Resistance		Jpper Left tesistance	Combined Loading Unity	Required Tension Capacity per Base Anchor (lb)
Wall	(rap re)	(kip-ft)	check	(kip-ft)	check	Check	()
W1	-24.98	187.46	OK	187.46	OK	OK	(4316)
W2	31.67	57.54	OK	57.54	OK	OK	(523)
W3	31.67	57.54	OK	57.54	OK	OK	(523)
W4	7.99	60.40	OK	60.40	OK	OK	(1948)
W5	38.40	16.59	Try Both	15.37	Try Both	OK	3225
W6	33.70	23.95	Try Both	26.56	Try Both	OK	(389)
W7	33.70	23.95	Try Both	26.56	Try Both	OK	75
W8	-14.37	187.46	OK	187.46	OK	OK	(3674)
P1-1	-0.87	6.07	6.07 OK		OK	OK	(499)
P1-2	-0.87	1.73	OK	6.07	OK	OK	(499)

	W	Wall Overturning Checks Using Base Anchors and Connection to Adjacent Walls									
	Must i	Must investigate ONLY if both base anchor alone and adjacent walls alone are insufficient									
	Base Anchor	Base Anchor		Overturning	Overturning						
	Shear	Tension	Resistar	ice (kip-ft)	Unity C	check of					
	Required	Available	From Bas	e Anchors	Base A	Anchors					
Wall	(% Capacity)	(% Capacity)	Lower Right	Upper Left	Lower Right	Upper Left					
W1	0.0%	100.0%	490.28	468.89	OK	OK					
W2	0.0%	100.0%	102.71	99.50	OK	OK					
W3	0.0%	100.0%	102.71	99.50	OK	OK					
W4	0.0%	100.0%	108.65	129.53	OK	OK					
W5	0.0%	100.0%	39.93	38.72	OK	OK					
W6	0.0%	100.0%	64.76	63.90	OK	OK					
W7	0.0%	100.0%	57.01	71.65	OK	OK					
W8	0.0%	100.0%	433.91	433.91	OK	OK					
P1-1	0.0%	100.0%	6.07	8.62	OK	OK					
P1-2	0.0%	100.0%	8.62	6.07	OK	OK					

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED

requirements of applicable State Laws.

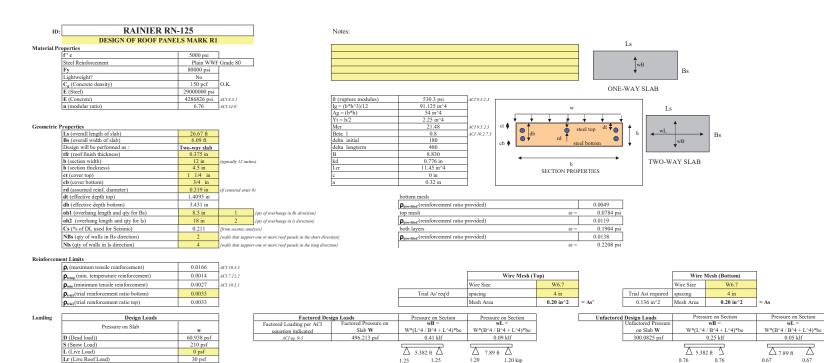
MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

11/19/2024

MANUFACTURED HOUSING

Pressure on Section wL =


0.05 klf

W6.7 x W6.7 x 4 x 4

W6.7 x W6.7 x 4 x 4

 Δ

0.67

5.382 ft

7.89 ft

Pressure on Section wB =

W*(L^4 / B^4 + L^4)*be

0.43

0.43

Pressure on Section wL =

Use 1 Layer of Wire Mesh on Top

Use 1 Layer of Wire Mesh on Bottom

W*(B^4 / B^4 + L^4)*be

0.40

∑ 7.89 ft ∆

0.40

W (Wind Load)

D (Dead load)

S (Snow Load)

Lr (Live Roof Load

E (Earthquake Load)

Sustained Loading

Pressure on slab

108.86 psf

12.88 psf

W

60.938 psf

210 psf

B (Span in the short direction) = Bs-1(oh1)

L (Span in the long direction) = Ls-2(oh2)

Factored Loading per ACI

equation indicated

ASCE7-05 eq CC1b

Factored Sustained Loads

Slab W

165.938 psf

\sim	
at	
ਰ	_
• •	ŢŪ
$\stackrel{-}{=}$	ag
9	ã
Ñ	Ф
4	5
<u>~</u>	0
ö	∽
Ñ	ω

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

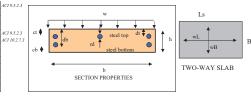
11/19/2024

MANUFACTURED Ls HOUSING

Material Properties 5000 psi Plain WWF Grade 80 Fy Lightweight? 80000 psi C_d (Concrete density) E (Steel) 150 pcf O.K. 29000000 psi 4286826 psi ACI 8.5.1 E (Concrete)

RAINIER RN-125

Geometric Properties


Tropercies			
Ls (overall length of slab)	26.67 ft]	
Bs (overall width of slab)	6.09 ft	1	
Design will be performed as:	Two-way slab]	
tfr (roof finish thickness)	0.375 in		
b (section width)	12 in	(typically 12 inche.	s)
h (section thickness)	4.5 in		
et (cover top)	1 1/4 in		
cb (cover bottom)	3/4 in		
rd (assumed reinf. diameter)	0.319 in	(if centered enter ())
dt (effective depth top)	1.4095 in		
db (effective depth bottom)	3.431 in	1	
oh1 (overhang length and qty for Bs)	8.5 in	1	(qty of overhangs in Bs direction)
oh2 (overhang length and qty for ls)	18 in	2	(qty of overhangs in Is direction)
Cs (% of DL used for Seismic)	0.211	(from seismic anal	lysis}
NBs (qty of walls in Bs direction)	2	(walls that support	t one or more roof panels in the short dire
NIs (qty of walls in ls direction)	4	(walls that support	t one or more roof panels in the long dire

Notes:

requirements of applicable State Laws.

fr (rupture modulus)	530.3 psi	2
$Ig = (b*h^3)/12$	91.125 in^4	
Ag = (b*h)	54 in^4	
Yt = h/2	2.25 in^4	
Mer	21.48	- 2
Beta 1	0.8	- /
delta initial	180	
delta longterm	480	
В	8.830	
kd	0.776 in	
I.cr	11.45 in^4	
c	0 in	
a	0.32 in	

Description (reinforcement ratio provided)		0.0049
top mesh	(i) =	0.0784 ps
Perevided (reinforcement ratio provided)		0.0119
both layers	ω =	0.1904 ps
ρ _{provided} (reinforcement ratio provided)		0.0138
	ω=	0.2208 ps

Flexure

Flexural Moments for Bs	Mu	Tensile Strain	Check ACI 14.8.2.3	фЬ	φMn trial = φf'cbd^2ω(1-0.59ω)	$\Delta M =$ $Mu - \phi M$	φMn =	Check \$\phi Mn > Mu	% allowed
Mpos (positive Moment) = $(wB*B^2) / 8$	1.48 kip-ft	0.036	Tension	0.9	3.96 kip-ft		3.96 kip-ft	O.K.	37.37%

Structural Plain Concrete per ACI 22.5

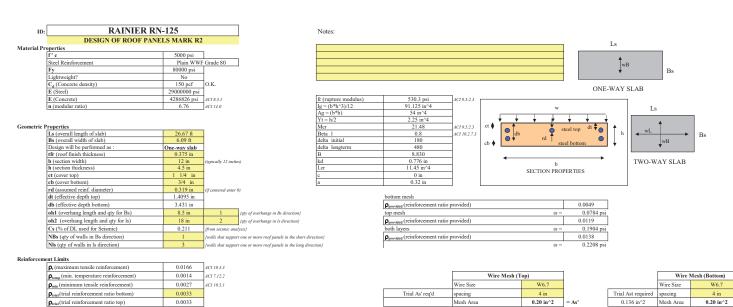
	Mu	S	φb	φMn =	Check	% allowed			
		Elastic Section Modulus	Ψυ	φ5*(f'c*S)^0.5	φMn > Mu				
Mneg (negative Moment) = (wB*oh1^2) / 2	0.103 kip-ft	0.023 ft^3	0.55	0.941 kip-ft	O.K.	10.93%			
Mneg (negative Moment) = (wB*oh2^2) / 2	0.103 kip-ft	0.023 ft^3	0.55	0.941 kip-ft	O.K.	10.93%			
Flexural Moments for Is	Mu	Tensile Strain	Check ACI 14.8.2.3	41-	φMn trial =	$\Delta M =$	φMn =	Check	% allowed
		Tensile Strain	CHECK ACT 14.8.2.3	Ψυ	ofcbd^2ω(1-0.59ω)	Mu - øM	'	óMn ≥ Mu	
Mpos (positive Moment) = $(wL*L^2)/8$	0.700 kip-ft	0.036	Tension	0.9	3.96 kip-ft		3.96 kip-ft	O.K.	17.69%

Flexural Moments for Is	Mu	Tensile Strain	Check ACI 14.8.2.3	φb	φίνιιι (rai – φίτcbd^2ω(1-0.59ω)	Mu - øM	$\phi Mn =$	óMn > Mu	% allowed
Mpos (positive Moment) = $(wL*L^2) / 8$	0.700 kip-ft	0.036	Tension	0.9	3.96 kip-ft		3.96 kip-ft	O.K.	17.69%
							-		
			Structural Plain Con-	crete per ACI 22.5	·		_		

		Structural Plain Concrete per ACI 22.3				
	Mu	S Elastic Section Modulus	φb	$\phi Mn = \\ \phi 5*(f'c*S)^0.5$	Check øMn > Mu	% allowed
Mneg (negative Moment) = (wL*oh1^2) / 2	0.10125	0.023 ft^3	0.55	0.941 kip-ft	O.K.	10.76%
Mneg (negative Moment) = (wL*oh2^2) / 2	0.10125	0.023 ft^3	0.55	0.941 kip-ft	O.K.	10.76%
	<u> </u>					
Maximum Shear for Bs	Vu	φv	Vc	φVc	Check	% allowed
		per ACI 9.3.2.3	per ACI 11.3.1.1	· ·	$\phi Vc > Vu$	
Vu = wB (B/2)	1.10 kip	0.85	5.82 kip	4.95 kip	O.K.	22.29%
			per ACI 22.8			
Vu for side overhang 1 = wB*oh1	0.29 kip	0.55	2.98 kip	1.64 kip	O.K.	17.71%
Vu for side overhang 1 = wB*oh1	0.29 kip	0.55	2.98 kip	1.64 kip	O.K.	17.71%
Shear for Ls	Vu	φv	Vc	φVc	Check	% allowed

Vu for side overhang 1 = wB*oh1	0.29 kip	0.55	2.98 kip	1.64 kip	O.K.	17.71%	
Shear for Ls	Vu	φv	Vc	φVc	Check	% allowed	
Silical Iol Ls	v u	per ACI 9.3.2.3	per ACI 11.3.1.1	φvc	φVc > Vu	76 allowed	
Vu = wL (L/2)	0.12 kip	0.85	5.82 kip	4.95 kip	O.K.	2.39%	
			per ACI 22.8				
Vu for end overhang 2 = wL*oh2	0.05 kip	0.55	2.98 kip	1.64 kip	O.K.	2.74%	
Vu for end overhang 2 = wL*oh2	0.05 kip	0.55	2.98 kip	1.64 kip	O.K.	2.74%	

		Sustained	
Span type:	K	Load Duration	Epsilon
Simple span	1	6 months	1.2


	Service Loads														
								Long-Term	Δ total long-term			Check	Check total		% allowed -
Span	Mserv	M.sus	Leff.serv	Leff.sustained	Immediate Deflection Ai			Deflection Δ	deflection (Δi + Δl-		Δ allow	short term	long term	% allowed	total long
						Pcomp	λ	t	t)	Δ allow (immediate)	(long term)	deflection	deflection	- short term	term
В	1.48 kip-ft	0.507 kip-ft	91.13 in^4	91.13 in^4	0.007 in	0.0049	0.9639	0.007 in	0.013 in	0.3588 in	0.1345 in	O.K.	O.K.	1.89%	4.85%
L	0.7 kip-ft	0.233 kip-ft	91.13 in^4	91.13 in^4	0.000 in	0.0049	0.9639	0.007 in	0.013 in	0.5260 in	0.1973 in	O.K.	O.K.	0.00%	3.31%

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

11/19/2024 **MANUFACTURED**

HOUSING

Loading	

Design Loads			
Pressure on Slab	w		
D (Dead load))	60.938 psf		
S (Snow Load)	210 psf		
L (Live Load)	0 psf		
Lr (Live Roof Load)	30 psf		
W (Wind Load)	108.86 psf		
E (Earthquake Load)	12.88 psf		

Sustained Loading	
Pressure on slab	w
D (Dead load)	60.938 psf
S (Snow Load)	210 psf
Lr (Live Roof Load)	30 psf

Factored Des		Pressure on Section	Pressure on Section
Factored Loading per ACI	Factored Pressure on	wB =	wL =
equation indicated	Slab W	W*(L^4 / B^4 + L^4)*be	W*(B^4 / B^4 + L^4)*be
ACI eq. 9-3	496.213 psf	0.5 klf	0 klf
		∑ 5.382 ft ∑	∑ 11.835 ∆

B (Span in the short dir L (Span in the long dire

equation indicated

ASCE7-05 eq CC1b

		△ 5.3	882 ft △	Δ :	11.835 🛆
		1.52	1.52	0.00	0.00 kip
(Span in the short direction) = I	3s-1(oh1)		5.382 ft	1	
(Span in the long direction) = L			11.835 ft		
Factored Susta	ined Loads	Pres	sure on Section	Pro	essure on Section
Factored Loading per ACI	Factored Pressure on		wB =		wL =

Jaus	i ressure on section	i ressure on section
tored Pressure on	wB =	wL =
Slab W	W*(L^4 / B^4 + L^4)*be	W*(B^4 / B^4 + L^4)*be
165.938 psf	0.17 klf	0 klf
	∑ 5.382 ft ∆ 0.52 0.52	11.835 A

Unfactored Desig		Press	ure on Section	Pressure of	n Section
Unfa	ctored Pressure		wB =	wL	
	on Slab W	W*(L^4	/ B^4 + L^4)*be	W*(B^4 / B^4	4 + L^4)*be
30	00.0825 psf		0.81 klf	0 k	lf
		△ 5.38	2 ft \(\Delta\)	△ 11.835	ft \triangle
		2.47	2.47	0.00	0.00

SUN	IMAKT
Use	1 Layer of Wire Mesh on Top
Use	1 Layer of Wire Mesh on Bottom

W6.7 x W6.7 x 4 x 4 W6.7 x W6.7 x 4 x 4

MISSOURI PUBLIC SERVICE COMMISSION

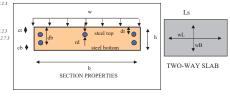
APPROVED

11/19/2024

MANUFACTURED Ls HOUSING

Material Properties 5000 psi Plain WWF Grade 80 Fy Lightweight? 80000 psi C_d (Concrete density) E (Steel) 150 pcf O.K. E (Concrete)

RAINIER RN-125


29000000 psi 4286826 psi ACI 8.5.1

Ls (overall length of slab)	26.67 ft		
Bs (overall width of slab)	6.09 ft		
	One-way slab		
tfr (roof finish thickness)	0.375 in		
b (section width)	12 in	(typically 12 inche.	5)
h (section thickness)	4.5 in		
et (cover top)	1 1/4 in		
eb (cover bottom)	3/4 in		
rd (assumed reinf. diameter)	0.319 in	(if centered enter ()
dt (effective depth top)	1.4095 in		
db (effective depth bottom)	3.431 in		
oh1 (overhang length and qty for Bs)	8.5 in	1	(qty of overhangs in Bs direction)
oh2 (overhang length and qty for ls)	18 in	2	(qty of overhangs in Is direction)
Cs (% of DL used for Seismic)	0.211	from seismic anal	ysis)
NBs (qty of walls in Bs direction)	1	(walls that support	one or more roof panels in the short dir

requirements of applicable State Laws.

fr (rupture modulus)	530.3 psi	ACI 9.5.2.3
$Ig = (b*h^3)/12$	91.125 in^4	
Ag = (b*h)	54 in^4	
Yt = h/2	2.25 in^4	
Mcr	21.48	ACI 9.5.2.3
Beta 1	0.8	ACI 10.2.7.3
delta initial	180	
delta longterm	480	
В	8.830	
kd	0.776 in	
Ler	11.45 in^4	
С	0 in	
a	0.32 in	

bottom mesh		
ρ _{provided} (reinforcement ratio provided)		0.0049
top mesh	ω =	0.0784 psi
ρ _{provided} (reinforcement ratio provided)		0.0119
both layers	ω =	0.1904 psi
ρ _{provided} (reinforcement ratio provided)		0.0138
	ω =	0.2208 nsi

0.00%

Flexure

NIs (qty of walls in ls direction)

Vu for end overhang 2 = wL*oh2 Vu for end overhang 2 = wL*oh2

One-way slab	Mu	Tensile Strain	Check ACI 14.8.2.3	фЬ	φMn trial = φfcbd^2ω(1-0.59ω)	$\Delta M =$ $Mu - \phi M$	$\phi Mn =$	Check	% allowed	
Mpos (positive Moment) = (wB*B^2) / 8	1.81 kip-ft	0.036	Tension	0.9	3.96 kip-ft		3.96 kip-ft	O.K.	45.71%	
			Structural Plain Con	crete per ACI 22.5						

	Mu	S Elastic Section Modulus	фЬ	$\phi Mn = \phi 5*(f'c*S)^0.5$	Check	% allowed
Mneg (negative Moment) = (wB*oh1^2) / 2	0.125 kip-ft	0.023 ft^3	0.55	0.941 kip-ft	O.K.	13.33%
Mneg (negative Moment) = (wB*oh2^2) / 2	0.125 kip-ft	0.023 ft^3	0.55	0.941 kip-ft	O.K.	13.33%
			•			

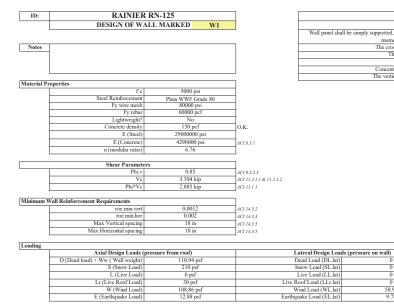
Notes:

	Mu	Tensile Strain	Check ACI 14.8.2.3	фЪ	φMn trial = φfcbd^2ω(1-0.59ω)	$\Delta M = Mu - \phi M$	φMn =	Check	% allowed
Mpos (positive Moment) = $(wL*L^2) / 8$	0.000 kip-ft	0.036	Tension	0.9	3.96 kip-ft		3.96 kip-ft	O.K.	0.00%

2.98 kip

Structural Plain Concrete per ACI 22.5

			Structurai Piain Con	crete per ACI 22.5		
	Mu	S Elastic Section Modulus	φb	φMn = φ5*(f'c*S)^0.5	Check øMn > Mu	% allowed
Mneg (negative Moment) = (wL*oh1^2) / 2	0	0.023 ft^3	0.55	0.941 kip-ft	O.K.	0.00%
Mneg (negative Moment) = (wL*oh2^2) / 2	0	0.023 ft^3	0.55	0.941 kip-ft	O.K.	0.00%
One-way slab	Vu	φv	Vc	φVc	Check	% allowed
Olic-way siab	v u	per ACI 9.3.2.3	per ACI 11.3.1.1	φνε	$\phi Vc > Vu$	70 anowed
Vu = wB (B/2)	1.35 kip	0.85	5.82 kip	4.95 kip	O.K.	27.18%
			per ACI 22.8			-
Vu for side overhang 1 = wB*oh1	0.35 kip	0.55	2.98 kip	1.64 kip	O.K.	21.60%
Vu for side overhang 1 = wB*oh1	0.35 kip	0.55	2.98 kip	1.64 kip	O.K.	21.60%
Shear for Ls	Vu	φv	Vc	137	Check	% allowed
Silical for Es	v u	per ACI 9.3.2.3	per ACI 11.3.1.1	φVc	$\phi V_c > V_u$	76 allowed
Vu = wL (L/2)	0.00 kip	0.85	5.82 kip	4.95 kip	O.K.	0.00%
			per ACI 22.8			


0.00 kip 0.00 kip

		Sustained	
Span type:	K	Load Duration	Epsilon
Simple span	1	6 months	1.2

		Service Loads														
Г									Long-Term	Δ total long-term			Check	Check total		% allowed -
	Span	Mserv	M.sus	I.eff.serv	Leff.sustained	Immediate Deflection Δi			Deflection Δ	deflection (Δi + Δl-		Δ allow	short term	long term	% allowed	total long
							Pcomp	λ	t	t)	Δ allow (immediate)	(long term)	deflection	deflection	- short term	term
Г	В	1.81 kip-ft	0.615 kip-ft	88.50 in^4	91.13 in^4	0.008 in	0.0049	0.9639	0.008 in	0.016 in	0.3588 in	0.1345 in	O.K.	O.K.	2.29%	5.88%
	L	0 kip-ft	0 kip-ft	0.00 in^4	0.00 in^4	0.000 in	0.0049	0.9639	0.008 in	0.016 in	0.7890 in	0.2959 in	O.K.	O.K.	0.00%	2.68%

1.64 kip 1.64 kip

Page 9 of 31 Date: 10/24/2024

ACI's Alternate Design of Slender Walls	ACI 14.8
Assumptions from this methodology:	1
Wall panel shall be simply supported, axially loaded, and subject to out-of-plane uniform lateral loading where maximum	ACI 14.8.2.1
moments and deflections occur at mid-height of the wall.	14.0.2.7
The cross section is constant over the height of the wall panel.	ACI 14.8.2.2
The wall cross sections shall be tension controlled.	ACI 14.8.2.3
Phi*Mn>= Mcr	ACI 14.8.2.4
Concentrated gravity loads are distributed over the wall length	ACI 14.8.2.5
The vertical stress Pu/Ag at mid-height shall not exceed 0.06*fc	ACI 14.8.2.6

Geometric Prope		
	X Corridinate	18
	Y Corridinate	10.5
	Direction of Wall	X
	Center of gravity X	160.006
	Center of gravity Y	10.500
	Wall Weight	8263.000 lbs.
	Central wall?	Yes
	Wall that supports 2 roof panels?	No
	lop (length of opening on wall)	0 ft
	H (height of wall)	95.5 in
	Lh (length of wall)	23.667 ft
i i	Analysis will be performed as:	One-way slab
[b (section width)	12 in
	h (section thickness)	4 in
	ct (cover top)	1.708 in
	cb (cover bottom)	1.708 in
	rd (assumed reinf. diameter)	0.292 in
	dt (effective depth top)	2 in
	db (effective depth bottom)	2 in
1	Cs (% of DL used for Seismic)	0.196
	Eccentricity - Axial Load	1 in
İ	Is wall Split	No

Dead Load (DL.lat)	0 psf
Snow Load (SL.lat)	0 psf
Live Load (LL.lat)	0 psf
Live Roof Load (LLr.lat)	0 psf
Wind Load (WL.lat)	
Earthquake Load (EL.lat)	9.78 psf

W6.7	Wire Size
4 in	spacing
0.20 in^2	Mesh Area

Wire Mech

= As

ractored Lo	ading per ACI	ACI eq. 9-3
Factored Pressu	e on Roof Wr	496.213
	Axial Pressure on So	ection
	PuB	1.71 kip
	Assumption chec	rk
	Pu/Ag	35.625 psi
	0.06*fc	300 psi

Factored Loading per ACI Vu = wuB*(Bw-2db) / 2

Phi*Vc/2 Check Shear ACI 11.5.5.1

Shear

APPROVED 1.13 kip

ACI eq. 9-3

108.86 psf 12.88 psf

11/19/2024

MISSOURI PUBLIC SERVICE

COMMISSION

MANUFACTURED HOUSING

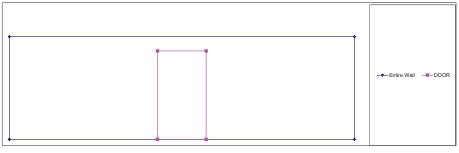
Flexure

erally Applied Loads	
Factored Loading per ACI	ACI eq. 9-4
Factored Pressure on Wall Ww	94.38 psf

	$Lw = W*(L^4 / H^4 + L^4)$	0 klf				
	Hw = W*(L^4 / H^4 + L^4)	0.09 klf				
Unfactored Laterally Applied Loads						
	Unfactored Pressure on Wall uWw	58.99 psf				

	***** F***
Lateral Pressure	
$Lw = W*(L^4 / H^4 + L^4)$	0 klf
Hw = W*(L^4 / H^4 + L^4)	0.06 klf

		ACI 14.8.
Service Lo		
Axial	1.13 kip	
Lateral	0 klf	
Allowed service deflection	0.64 in	
Msa	0.565 kip-in	
M	0.567 kip-in	
Ds	0.002 in	
Check deflection	OK	ĺ


Allowable Capacity	
$Ig = (b*h^3)/12$	64 in^4
Ag = (b*h)	
Yt = h/2	
fr (rupture modulus)	530.330 psi
Mer	16.971 kip-in
Beta_1	0.8
Trial Ast req'd	0.079 in^2
В	8.836162648
kd	
I.cr	3.52 in^4
e _c	0.003
e _s	0.005
a	0.33483 psi
c	0.419 in
Ase	
Icrdeflection	4.19 in^4
Ie	
delta	150
r _t (maximum tensile reinforcement)	0.0166
r _{temp} (min. temperature reinforcement)	
r _{min} (minimum tensile reinforcement)	
r _{trial} (trial reinforcement ratio bottom)	
p _{provided} (reinforcement ratio provided)	0.0080
·	

Flexure			
	Assump	tion check	
	Span	Hw	Lw
	net Tensile Strain	0.011	0.011
	Check ACI 14.8.2.3	Tension	Tension
	Mua	0.781 kip-ft	
	ACI e	q. (14-6)	
	Mu	0.890 kip-ft	0.000 kip-ft
	ACI	19.3.2	
	fb	0.9	
	Ib		0.9
	$fMn trial = \phi AsFy(dt - a/2)$	2.210 kip-ft	2.210 kip-ft
	DM =Mpos - \phi M	0.000 kip-ft	0.000 kip-ft
	As Add'l req'd	0.00 in^2	0.00 in^2
	Additional reinf req'd	0.00 in^2	0.00 in^2
	Add'l bar size:	3	3
	qty req'd	0	0
	or spacing of:	0	0
	As add'l =	0.000 kip-ft	0.000 kip-ft
	715 4441		
	Ast = As + As add'l	0.20 in^2	0.20 in^2
	$fMn = \phi AsFy(db - a/2)$	2.209 kip-ft	2.209 kip-ft
	Check $\phi Mn > Mu$	O.K.	O.K.
_	% allowed	40.29%	0.00%

Deflection

Page 10 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.05 ksf

Material Properties					
db (effective depth bottom)	2 in				
a (block of strain)	0.33483 psi				
	a=As * fy / (0.85 * f c *b)				

Factorized Moment

DOOR

	violitent							
Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12
DOOR	10.16 ft	0 ft	3.34 ft	1.1 ft	1145.34	0.06 klf	0.47 klf	0.44 kip-ft

Flexure						
Opening	φb	As rea'd	Bar size	qty req'd:	φMn =	Check
	7-			1, 1	φAsFv(db - a/2)	φMn > Mu
DOOR	0.9	0.009 in^2	No. 3	1	5.73 kin-ft	O.K.

CONNECTIONS

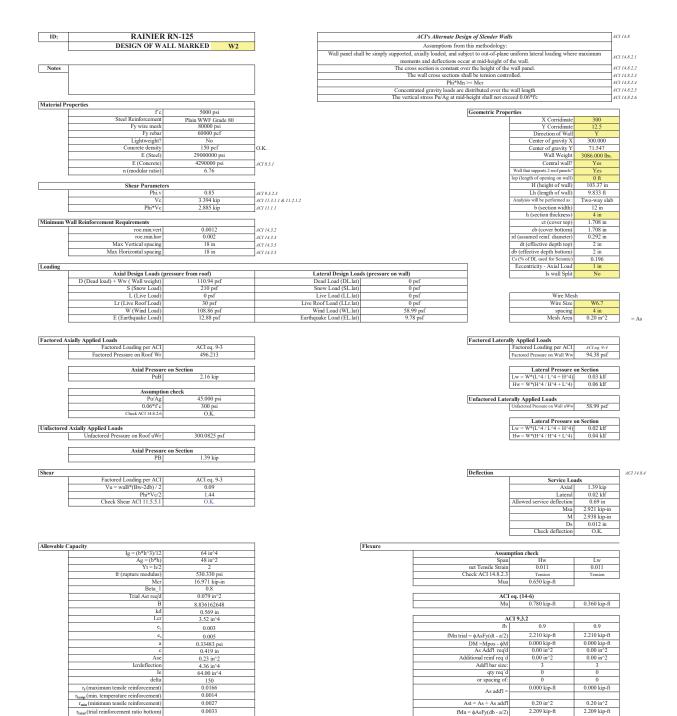
				Fu	I Resistance Value		
					Overturning		
Base Anchors			Lateral	Base /	Anchors	Wall-Wall C	onnection
Quantity	Quantity Maximum Maximum		Shear	Moment +	Moment -	Moment +	Moment -
in Shear R - Distance L - Distance		kip	kip - ft	kip - ft	kip - ft	kip - ft	
1 6	272	272	73 254	187 46	187 46	302.82	281 44

Total Tension			Base A	nchors			
21.846	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -	
Base Anchor 1	12 in	3.64	12.21	272 in	0.161 kip*ft	82.529 kip*ft 52.045 kip*ft	
Base Anchor 2	68 in	3.64	12.21	216 in	5.158 kip*ft		
Base Anchor 3	108 in	3.64	12.21	176 in	13.011 kip*ft	34.554 kip*ft	
Base Anchor 4	176 in	3.64	12.21	108 in	34.554 kip*ft	13.011 kip*ft	
Base Anchor 5	216 in	3.64	12.21	68 in	52.045 kip*ft	5.158 kip*ft	
Base Anchor 6	272 in	3.64	12.21	12 in	82.529 kip*ft	0.161 kip*ft	

					Wall Connections					
	Quantity of Anchors	Capacity of each	Countering Dead Load from	% of wall to	Adjoining Wall	Dist (inches)	L - Dist	Allowable Force	Overturning Moment Resistance (kip-ft)	
	Of Afficions	Anchor	Adjoining Wall	use					Up Left	Low Right
Wall Connection 1	3	2.703	8.624	50.00%	W3	2	282.000	8.109	1.352	190.562
Wall Connection 2	3	2.703	3.224	26.04%	W7	78.5	205.500	3.224	21.092	55.215
Wall Connection 3	3	2.703	5.245	42.36%	W6	205.5	78.500	5.245	89.816	34.309
Wall Connection 4	3	2.703	8 624	50.00%	W2	282	2.000	8.109	190.562	1.352

Shear	Connections at Bas	se	Wa	II Shear Capacity	Required Shear Capacity (lb) per		
Design	Capacity	Reserve	Design	Resistance		Base Connector	
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check		

RIGIDITY


	CALCUL	ATED VALUES	79% Final		15.16315906	
					-	
Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
Entire Wall	284	95.5	Y	Y	19.105	0.052
A'	284	82.3	Y	Y	22.379	0.045
A	121.92	82.3	Y	Y	8.574	0.117
В	122	82.3	Y	Y	8.581	0.117
0	0	0		N	0.000	0.000
0	0	0		N	0.000	0.000
n	0	n		N	0.000	0.000

			Combir	Combine Logic				
	First Segment Second Segment Re-Name Combine/Subtract Method Entire Wall A' A'a - Deflection		Method	Combined				
DOOR	Entire Wall	A'	A'a	-	Deflection	0.008		
	A	В	AB	+	Stiffness	17.155		
	A'a	AB	Final	+	Deflection	0.066		
	0	0	0			0.000		
	0	0	0			0.000		
	0	0	0			0.000		

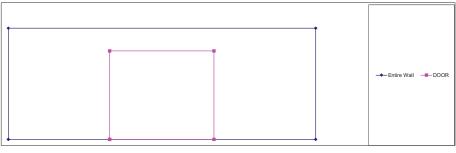
MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

Page 11 of 31 Date: 10/24/2024

0.0080

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024

O.K.


35.31%

Check \$\phi Mn > Mu
% allowed

O.K.

16.30%

Page 12 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading							
Pu (factorized load from roof)	0.41 klf						
Ww (weight of panel per sq ft)	0.05 ksf						

Material Properties							
db (effective depth bottom)	2 in						
a (block of strain)	0.33483 psi						
	a=As * fy / (0.85 * f c *b)						

Factorized Moment

DOOR

r actorized :								
Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12
DOOR	3.24 ft	0 ft	3.34 ft	1.76 ft	1144.65	0.09 klf	0.5 klf	0.46 kip-ft

	Flexure						
Г	Opening	φb	As reg'd	Bar size	qty req'd:	φMn =	Check
	-16	ψυ	, is requ	Dui Size	qiy requ.	φAsFv(db - a/2)	φMn > Mu
Г	DOOR	0.9	0.005 in^2	No. 3	1	9.67 kip-ft	O.K.

CONNECTIONS

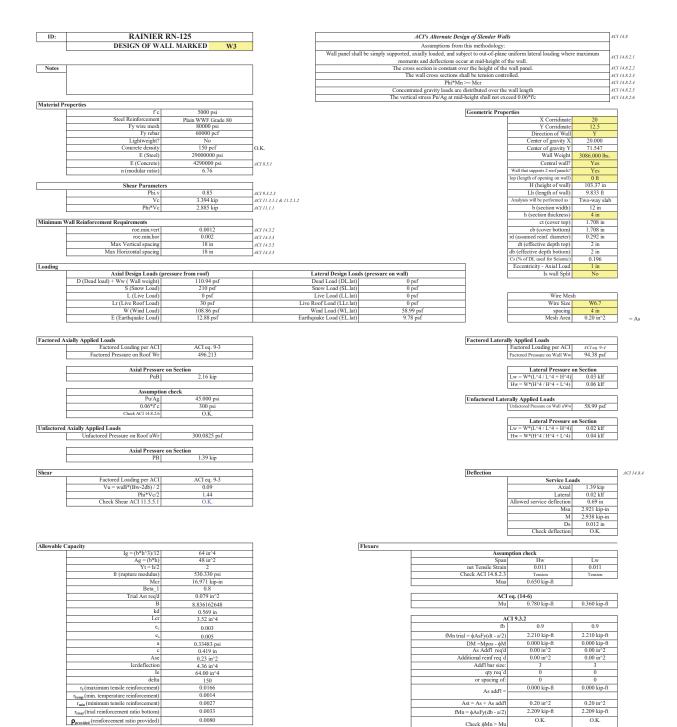
			Full Resistance Value						
			Overturning						
Base Anchors			Lateral	Base /	Anchors	Wall-Wall Connection			
Quantity	Maximum	Maximum	Shear	Moment +	Moment -	Moment +	Moment -		
in Shear	in Shear R - Distance L - Distance		kip	kip - ft	kip - ft	kip - ft	kip - ft		
4	113	113	35 030	57.54	57.54	45.16	41.96		

Total Tension	Base Anchors								
14.162	Dist	Tension (kip)	ision (kip) Shear		Moment +	Moment -			
Base Anchor 1	5 in	3.44	5.31	113 in	0.063 kip*ft	32.393 kip*ft			
Base Anchor 2	24.5 in	3.64	12.21	93.5 in	1.612 kip*ft	23.474 kip*ft			
Base Anchor 3	93.5 in	3.64	12.21	24.5 in	23.474 kip*ft	1.612 kip*ft			
Base Anchor 4	113 in	3 44	5.31	5 in	32.393 kin*ft	0.063 kin*ft			

		Wall Connections									
	Quantity of Anchors	Capacity of each	Countering Dead Load from	% of wall to	Adjoining Wall	Dist (inches)	L - Dist	Allowable Force	Resista	ning Moment Ince (kip-ft)	
		Anchor	Adjoining Wall	use		,			Up Left	Low Right	
Wall Connection 1	3	1.531	4.267	14.17%	Wl	0	118.000	4.267	0.000	41.961	
Wall Connection 2	3	1.531	7.713	25.35%	W8	118	0.000	4 593	45 165	0.000	

		Wall Sh	near Checks				
Shear	Connections at Bas	se	Wa	all Shear Capacity		Required Shear Capacity (lb) per	
Design	Capacity	Reserve	Design	Resistance		Base Connector	R
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check	Base Connector	C

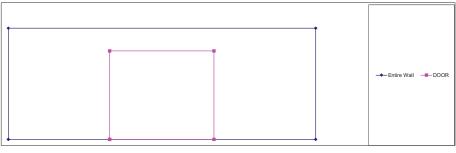
RIGIDITY


	CALCUL	ATED VALUES	38%	Final	2.287854839	
Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
Entire Wall	118	103.37	Y	Y	6.060	0.165
A'	118	82.25	Y	Y	8.231	0.121
A	38.88	82.25	Y	Y	1.265	0.791
В	39.04	82.25	Y	Y	1.276	0.784

		Combine Logic											
	First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined							
DOOR	Entire Wall	A'	A'a	-	Deflection	0.044							
	A	В	AB	+	Stiffness	2.541							
	A'a	AB	Final	+	Deflection	0.437							

Page 13 of 31 Date: 10/24/2024

PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING


MISSOURI

% allowed

35.31%

16.30%

Page 14 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.05 ksf

Material Properties						
db (effective depth bottom)	2 in					
a (block of strain)	0.33483 psi					
	a=As * fy / (0.85 * f c *b)					

Factorized Moment

DOOR

r actorized :								
Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12
DOOR	3.24 ft	0 ft	3.34 ft	1.76 ft	1144.65	0.09 klf	0.5 klf	0.46 kip-ft

	Flexure						
Г	Opening	φb	As reg'd	Bar size	qty req'd:	φMn =	Check
		ψυ	7 E Tequ	Dan Silve	qı, requ.	φAsFv(db - a/2)	φMn > Mu
Г	DOOR	0.9	0.005 in^2	No. 3	1	9.67 kip-ft	O.K.

CONNECTIONS

			Full Resistance Value						
					Overturning				
	Base Anchor	S	Lateral	Base Anchors		Wall-Wall Connection			
Quantity	Maximum	Maximum	Shear	Moment +	Moment -	Moment +	Moment -		
in Shear	R - Distance	L - Distance	kip	kip - ft	kip - ft	kip - ft	kip - ft		
4	113	113	35.030	57.54	57.54	45.16	41.96		

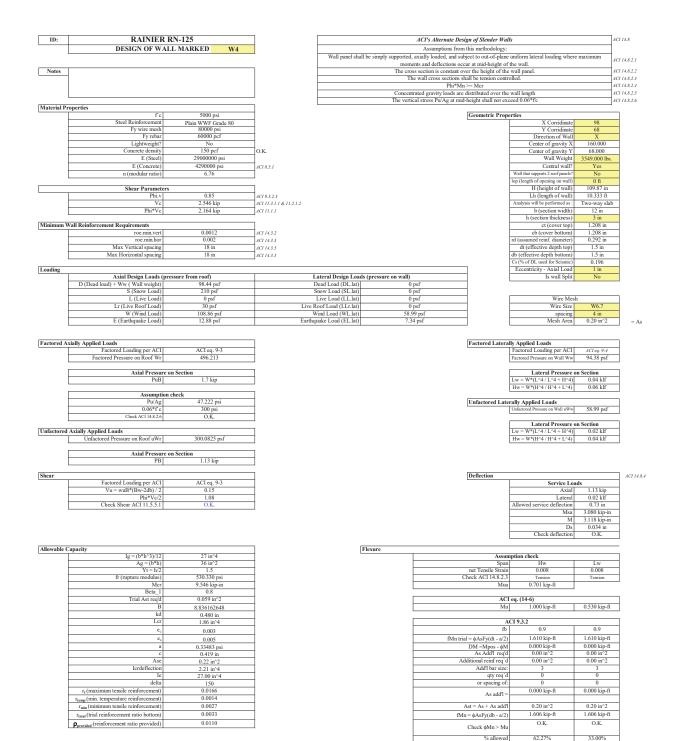
Total Tension		Base Anchors									
14.162	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -					
Base Anchor 1	5 in	3.44	5.31	113 in	0.063 kip*ft	32.393 kip*ft					
Base Anchor 2	24.5 in	3.64	12.21	93.5 in	1.612 kip*ft	23.474 kip*ft					
Base Anchor 3	93.5 in	3.64	12.21	24.5 in	23.474 kip*ft	1.612 kip*ft					
Base Anchor 4	113 in	3 44	5.31	5 in	32,393 kip*ft	0.063 kip*ft					

					Wall Connections					
	Quantity of Anchors	Capacity	Countering Dead	% of	Adjoining	Dist		Allowable	Overturning Moment	
		of each	Load from	wall to	Wall (inches)	L - Dist	Force	Resistance (kip-ft)		
	OI AIICIOIS	Anchor	hor Adjoining Wall use	wan	(IIICIICS)			Up Left	Low Right	
Wall Connection 1	3	1.531	4.267	14.17%	WI	0	118.000	4.267	0.000	41.961
Wall Connection 2	3	1.531	7.713	25.35%	W8	118	0.000	4.593	45.165	0.000

Г	Shear	Connections at Bas	se	Wa	all Shear Capacity	Required Shear Capacity (lb) per			
	Design	Capacity	Reserve	Design	Resistance		Base Connector		
L	Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check			

1656 (28406) OI

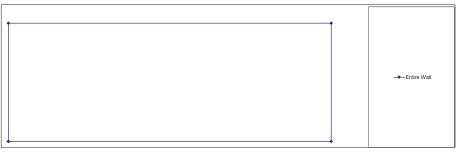
RIGIDITY


	CALCUL	ATED VALUES	38%	Final	2.287854839	
Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
Entire Wall	118	103.37	Y	Y	6.060	0.165
A'	118	82.25	Y	Y	8.231	0.121
A	38.88	82.25	Y	Y	1.265	0.791
В	39.04	82.25	Y	Y	1.276	0.784

		Combine Logic										
	First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined						
DOOR	Entire Wall	A'	A'a	-	Deflection	0.044						
	A	В	AB	+	Stiffness	2.541						
	A'a	AB	Final	+	Deflection	0.437						

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

Page 15 of 31 Date: 10/24/2024



PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

MISSOURI

Page 16 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.04 ksf

Material Properties						
db (effective depth bottom)	1.5 in					
a (block of strain)	0.33483 psi					
	a=As * fy / (0.85 * f c *b)					

Factorized Moment

Opening Horizontal Location Vertical Location L length of	ening H height above opening (-) Weight Opening (I	
---	--	--

riexure						
Opening	άb	As rea'd	Bar size	atv rea'd:	φMn=	Check
-18	Ψυ	Asicqu	Dai Sizc	qty requ.	φAsFv(db - a/2)	φMn ≥ Mu

CONNECTIONS

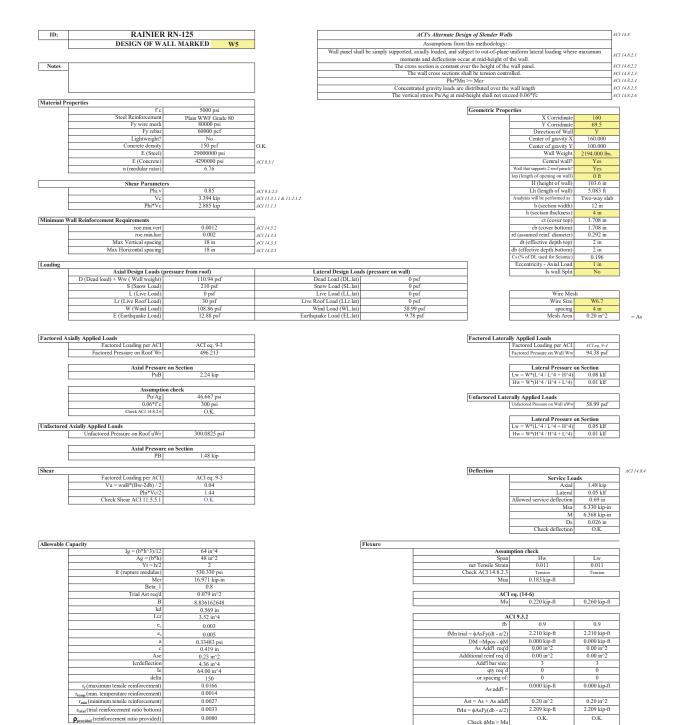
			Full Resistance Value						
					Overturning				
Base Anchors			Lateral	ral Base Anchors			Wall-Wall Connection		
Quantity	Maximum	Maximum	Shear	Moment +	Moment -	Moment +	Moment -		
in Shear	R - Distance	L - Distance	kip	kip - ft	kip - ft	kip - ft	kip - ft		
4	116	116	40.946	60.40	60.40	48.25	69.12		

Total Tension		Base Anchors							
14.334	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -			
Base Anchor 1	8 in	3.53	8.26	116 in	0.162 kip*ft	34.085 kip*ft			
Base Anchor 2	28 in	3.64	12.21	96 in	2.051 kip*ft	24.106 kip*ft			
Base Anchor 3	96 in	3.64	12.21	28 in	24.106 kip*ft	2.051 kip*ft			
Base Anchor 4	116 in	3.53	8.26	8 in	34.085 kip*ft	0.162 kip*ft			

			Wall Connections								
		Quantity	Capacity	Countering Dead	% of	Adjoining	Dist		Allowable	Overturn	ning Moment
		of Anchors	of each	Load from	wall to	Wall	(inches)	L - Dist	Force	Resista	ince (kip-ft)
		Of Afficions	Anchor	Adjoining Wall	use	wan	(IIICIIC3)		1 0100	Up Left	Low Right
	Wall Connection 1	3	1.531	4.385	35.42%	W7	0	124.000	4.385	0.000	45.311
	Wall Connection 2	3	2.703	4.609	50.00%	W5	62	62.000	4.609	23.813	23.813
[Wall Connection 3	3	1.531	2.364	19.10%	W6	124	0.000	2.364	24.432	0.000

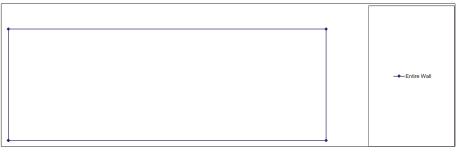
		Wall Sh	near Checks					
Shear	Connections at Bas	se	Wa	II Shear Capacity		Required Shear Capacity (lb) per	l	
Design	Capacity	Reserve	Design	Resistance		Base Connector	l	Reserve
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check		I	Capacity
4088	40946	36858	305	15274	OK	1022	(36858)	OK

RIGIDITY


le? Stiffness (k) Deflection
) (1000 kip / IN) (in / 1000 kip)
4.473 0.224

Combine Logic								
First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined			
Entire Wall	n	Final			4 473			

Page 17 of 31 Date: 10/24/2024



MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

% allowed

Page 18 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.05 ksf

Material Pro	Material Properties						
db (effective depth bottom)	2 in						
a (block of strain)	0.33483 psi						
	a=As * fy / (0.85 * f c *b)						

Factorized Moment

Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12

riexure						
Opening	фЬ	As req'd	Bar size	qty req'd:	$\phi Mn = \phi AsFv(db - a/2)$	Check
					⊕AsFv(db - a/2)	wiviii - iviu

CONNECTIONS

			Full Resistance Value					
					Overturning			
	Base Anchor	S	Lateral	Base /	Anchors	Wall-Wall Connection		
Quantity	Maximum	Maximum	Shear	Moment +	Moment -	Moment +	Moment -	
in Shear	in Shear R - Distance L - Distance		kip	kip - ft	kip - ft	kip - ft	kip - ft	
2	56	51	15.543	16.59	15.37	23.35	23.35	

Total Tension	Base Anchors								
7.024	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -			
Base Anchor 1	10 in	3.58	10.24	51 in	0.533 kip*ft	15.232 kip*ft			
Base Anchor 2	56 in	3.44	5.31	5 in	16.053 kip*ft	0.141 kip*ft			

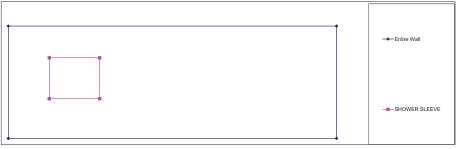
						Wall Connections					
		Quantity	Capacity	Countering Dead Load from	% of	Adjoining	Dist	L - Dist	Allowable		ing Moment nce (kip-ft)
		of Anchors	of each Anchor	Adjoining Wall	wall to use	Wall (inches) Force		Force	Up Left	Low Right	
	Wall Connection 1	3	1.531	8.942	50.00%	W4	0	61.000	4.593	0.000	23.348
	Wall Connection 2	3	1 531	14 998	49 30%	W8	61	0.000	4 593	23 348	0.000

		Wall Sh	near Checks					
Shear	Connections at Bas	se	W	all Shear Capacity		Required Shear Capacity (lb) per		
Design	Capacity	Reserve	Design	Resistance		Base Connector		Reser
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check	Dasc Connector		Capac
E660	155/2	0000	000	20265	OK	2830	(0002)	OK

RIGIDITY


Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
Entire Wall	61	103.6	Y	Y	2.001	0.500

	Combine Logic							
First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined			
Entine Motell	0	Final			2.004			


Page 19 of 31 Date: 10/24/2024

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024

Page 20 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.04 ksf

Material Pro	perties
db (effective depth bottom)	1.5 in
a (block of strain)	0.33483 psi
	a=As * fy / (0.85 * f c *b)

Factorized Moment

Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12
SHOWER SLEEVE	0.75 ft	3.08 ft	0.92 ft	2.45 ft	109.25	0.1 klf	0.51 klf	0.04 kip-ft

	Flexure						
	Opening	44	As reg'd	Bar size	qty req'd:	φMn =	Check
	Opening	фЬ	Astequ	Dai Size	qty requ.	φAsFv(db - a/2)	φMn > Mu
ſ	SHOWER SLEEVE	0.9	0 in^2	No. 3	0	0 kip-ft	O.K.

CONNECTIONS

				Full Resistance Value						
				Overturning						
Е	Base Anchors			Lateral	Base /	Anchors	Wall-Wall Connection			
Е	Quantity	Maximum	Maximum	Shear	Moment +	Moment -	Moment +	Moment -		
	in Shear R - Distance L - Distance 3 67 67		kip	kip - ft	kip - ft	kip - ft	kip - ft			
- 1			22 821	23 95	26.56	40.81	37.34			

Total Tension		Base Anchors								
10.521	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -				
Base Anchor 1	5 in	3.44	5.31	67 in	0.107 kip*ft	19.207 kip*ft				
Base Anchor 2	32 in	3.64	12.21	40 in	4.637 kip*ft	7.246 kip*ft				
Base Anchor 3	67 in	3.44	5.31	5 in	19.207 kip*ft	0.107 kip*ft				

					Wall Connections						
	Quantity of Anchors	Capacity of each	Countering Dead Load from	% of wall to	Adjoining Wall	Dist (inches)	L - Dist	Allowable Force		ning Moment Ince (kip-ft)	
	OI MICHOIS	Anchor	Adjoining Wall	use	wan	(IIICHES)		Force	Up Left	Up Left Low Right	
Wall Connection 1	3	1.531	10.787	35.83%	WI	0	72.000	4.593	0.000	27.558	
Wall Connection 2	2	2.703	3.961	100.00%	P1-1	61	11.000	3.961	20.135	3.631	
Wall Connection 3	3	2 703	4 471	25.00%	W4	55.5	16 500	4 471	20.677	6 147	

			Wall Sh	ear Checks			
Г	Shear Connections at Base			Wa	all Shear Capacity	Required Shear Capacity (lb) per	
	Design	Capacity	Reserve	Design	Resistance		Base Connector
	Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check	Dasc Connector
	5150	22821	17671	776	13814	OK	1717

Reserve

RIGIDITY

l		CALCULATED VALUES		Final	1.834990701	
Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
Entire Wall	72	104.36	Y	Y	2.029	0.493
A'	72	38	Y	Y	8.669	0.115
A	9	38	Y	Y	0.171	5.862
В	51.96	38	Y	Y	5.802	0.172
	Label	Pier Length Label (inches) Entire Wall 72 A' 72 A 9	Pier	Pier	Label (inches) (ry/N) (Y/N) Entire Wall 72 104.36 Y Y A' 72 38 Y Y A 9 38 Y Y	Pier Length Height Fixed Top? Useable? Stiffness (k) Label (inches) (inches) (Y/N) (Y/N) (1000 kip / IN) Entire Wall 72 104.36 Y Y 2.029 A' 72 38 Y Y 8.669 A 9 38 Y Y 0.171

			Combir	ne Logic		
	First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined
SHOWER	Entire Wall	A'	A'a	-	Deflection	0.378
	A	В	AB	+	Stiffness	5.973
	A'a	AB	Final	+	Deflection	0.545

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

Page 21 of 31 Date: 10/24/2024

ID:	RAINIER	RN-125			ACI's Alternate Design of Slender Wa	ells	AC
	DESIGN OF WAI				Assumptions from this methodology:		
				Wall panel shall be simply support	ed, axially loaded, and subject to out-of-plan		maximum
				me	ments and deflections occur at mid-height of	f the wall.	AC.
Notes				The c	ross section is constant over the height of th	e wall panel.	AC
					The wall cross sections shall be tension cont	rolled.	AC
					Phi*Mn>= Mcr		AC
					entrated gravity loads are distributed over the		AC
				The ve	rtical stress Pu/Ag at mid-height shall not ex	tceed 0.06*fc	AC
Material Pr							
	fc	5000 psi			Geometric Prop		
	Steel Reinforcement	Plain WWF Grade 80				X Corridinate	96.5
	Fy wire mesh	80000 psi				Y Corridinate	12.5
	Fy rebar	60000 pcf				Direction of Wall	96,500
	Lightweight?	No 150 6	—			Center of gravity X	
	Concrete density	150 pcf	O.K.			Center of gravity Y	49.840
	E (Steel)	29000000 psi	_			Wall Weight	1860.000 lbs.
	E (Concrete)	4290000 psi	ACI 8.5.1			Central wall?	Yes
	n (modular ratio)	6.76				Wall that supports 2 roof panels?	Yes
	al P		_			lop (length of opening on wall)	0 ft
	Shear Parameters	0.85				H (height of wall)	104.36 in 6.000 ft
	Phi.v		ACI 9.3.2.3			Lh (length of wall)	
	Vc	2.546 kip	ACI 11.3.1.1 & 11.2.1.2			Analysis will be performed as:	Two-way slab
	Phi*Vc	2.164 kip	ACI 11.1.1			b (section width)	12 in
	V HD 1 4		_			h (section thickness)	3 in
VIIIImum V	Wall Reinforcement Requirements	0.0012				ct (cover top)	1.208 in
	roe.min.vert	0.0012	ACI 14.3.2			cb (cover bottom)	1.208 in 0.292 in
	roe.min.hor		ACI 14.3.3			rd (assumed reinf. diameter)	
	Max Vertical spacing	18 in	ACI 14.3.5			dt (effective depth top)	1.5 in
	Max Horizontal spacing	18 in	ACI 14.3.5			db (effective depth bottom)	1.5 in
F P						Cs (% of DL used for Seismic)	0.196
Loading	AJI.DJ T	occurs from wood		Latanal Dagian Lands (D.	Eccentricity - Axial Load	l in
	Axial Design Loads (pr			Lateral Design Loads (pressure on wal		Is wall Split	No
	D (Dead load) + Ww (Wall weight) S (Snow Load)	98.44 psf 210 psf	-	Dead Load (DL.lat) Snow Load (SL.lat)	0 psf 0 psf		
	S (Snow Load) L (Live Load)	210 psf 0 psf	-	Live Load (LL.lat)	0 psf	Wire Mes	h
	Lr (Live Roof Load)	30 psf	Line	Roof Load (LLr.lat)	0 psf	Wire Size	W6.7
	W (Wind Load)	108.86 psf			8.99 psf		4 in
	E (Earthquake Load)	12.88 psf	Earth		7.34 psf	spacing Mesh Area	0.20 in^2
	E (Enruiquine Eouu)	12.00 psi	Land	quine Loud (LL.idi)	par	Mesii / treu	0.20 III 2
Factored A	xially Applied Loads				Factored Later	ally Applied Loads	
	Factored Loading per ACI	ACI eq. 9-3				Factored Loading per ACI	ACI eq. 9-4
	Factored Pressure on Roof Wr	496.213				Factored Pressure on Wall Ww	94.38 psf
							•
	Axial Pressure	on Section				Lateral Pressure of	n Section
	PuB	2.16 kip				$Lw = W*(L^4 / L^4 + H^4)$	0.08 klf
		- 1				Hw = W*(H^4 / H^4 + L^4)	0.02 klf
	Assumption	check					
	Pu/Ag	60.000 psi			Unfactored Late	erally Applied Loads	
	0.06*f c	300 psi				Unfactored Pressure on Wall uWw	58.99 psf
	Check ACI 14.8.2.6	O.K.					•
			_			Lateral Pressure of	n Section
Unfactored	Axially Applied Loads						in occuon
						$Lw = W*(L^4 / L^4 + H^4)$	0.05 klf
	Unfactored Pressure on Roof uWr	300.0825 psf				$Lw = W*(L^4 / L^4 + H^4)$ $Hw = W*(H^4 / H^4 + L^4)$	0.05 klf 0.01 klf
	Unfactored Pressure on Roof uWr	-				$Lw = W*(L^4 / L^4 + H^4)$	0.05 klf
	Unfactored Pressure on Roof uWr Axial Pressure	on Section				$Lw = W*(L^4 / L^4 + H^4)$	0.05 klf
	Unfactored Pressure on Roof uWr	-				$Lw = W*(L^4 / L^4 + H^4)$	0.05 klf
Shear	Unfactored Pressure on Roof uWr Axial Pressure	on Section			Deflection	$Lw = W*(L^4 / L^4 + H^4)$	0.05 klf
Shear	Unfactored Pressure on Roof uWr Axial Pressure	on Section	<u> </u> 		Deflection	$\begin{split} Lw &= W^*(L \wedge 4 + H \wedge 4) \\ Hw &= W^*(H \wedge 4 / H \wedge 4 + L \wedge 4) \end{split}$	0.05 kif 0.01 kif
Shear	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI	n Section 1.39 kip ACI eq. 9-3			Deflection	Lw = W*(L^4 / L^4 + H^4) Hw = W*(H^4 / H^4 + L^4)	0.05 kif 0.01 kif
Shear	Unfactored Pressure on Roof uWr Axial Pressure - PB Factored Loading per ACI Vu = wuB*(Bw-2db)/2	on Section 1.39 kip			Deflection	$\begin{split} Lw &= W^*(L \wedge 4 + H \wedge 4) \\ Hw &= W^*(H \wedge 4 / H \wedge 4 + L \wedge 4) \end{split}$	0.05 klf 0.01 klf uds 1.39 kip
Shear	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI	1.39 kip ACI eq. 9-3 0.12			Deflection	Lw = W*(L^4 / L^4 + H^4) Hw = W*(H^4 / H^4 + L^4) Service Los Axial	0.05 kif 0.01 kif
Shear	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Bw-2db) / 2 Ph*Vv2	ACI eq. 9-3 0.12 1.08			Deflection	$\begin{split} Lw &= W^*(L/4 + L/4 + L/4) \\ Hw &= W^*(H/4 + L/4) \\ \\ &= W^*(H/4 + L/4) \\ \\ &= Service \ Los \\ \\ &= Axial \\ \\ Lateral \end{split}$	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in
Shear	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Bw-2db) / 2 Ph*Vv2	ACI eq. 9-3 0.12 1.08			Deflection	Lw = W*(L^4 / L^4 + H^4)	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in
Shear	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Bw-2db) / 2 Ph*Vv2	ACI eq. 9-3 0.12 1.08			Deflection	Lw = W*(L^4 + [L^4 + [L^4] Hw = W*(H^4 / H^4 + L^4] Service Los Axial Lateral Allowed service deflection Msa	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in
Shear	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Bw-2db) / 2 Ph*Vv2	ACI eq. 9-3 0.12 1.08			Deflection	Lw = W*(L^4 / L^4 + H^4) Hw = W*(H^4 / H^4 + L^4) Service Los Axial Lateral Allowed service deflection Msa Msa	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in
	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuB*(18w-2db) / 2 Phi*Ve2 Check Shear ACI 11.5.5.1	ACI eq. 9-3 0.12 1.08			Deflection	Lw = W*(L*4 [L*4 + H*4)] Hw = W*(H*4 / H*4 + L*4) Service Lo. Axial Lateral Allowed service deficies Msa Msa	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 0.063 in
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuBr(Bw-2db) / 2 Ph*Ve/2 Check Shear ACI 11.5.5.1	on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K.		Flexure		Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Los Axial Allowed service deflection Msa M Ds Check deflection	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 0.063 in
	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuB*(18w-2db) / 2 Phi*Ve2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h*3)/12	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K.		Flexure	Assu	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Loo Axial Lateral Allowed service deflection Maa Ds Check deflection	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 0.063 in O.K.
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*r(Bw-2db) / 2 Pb*rV 2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h^3)/12 Ag = (b*h)</td <td>on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2</td> <td></td> <td>Flexure</td> <td>Assuu Spat</td> <td>Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Lot Axial Allowed service deflection Masa Mbas Ds Check deflection mption check HW</td> <td>0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 0.063 in 0.K.</td>	on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2		Flexure	Assuu Spat	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Lot Axial Allowed service deflection Masa Mbas Ds Check deflection mption check HW	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 0.063 in 0.K.
	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuB*(18w-2db) / 2 Phi*Ve2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h*3)/12 Ag = (b*h) Y(= b2)	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.K. 27 in 4 36 in 2 1.5		Flexure	Assu Span net Tensile Strai	Lw = W*(L^4 L^4 + H^4) Hw = W*(H^4 / H^4 + L^4) Service Loo Axial Lateral Allowed service deflection Masa M D Check deflection mption check HW D O008	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in 0.K.
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*r(Bw-2db) / 2 Ph*vVc2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h^3)/12 Ag = (b*h) Yt = h/2 fr (rupture modulus)	on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2 1.5 530.330 psi		Fiexure	Assur Spar net Tensie Strar Check ACI 148.2.3	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Lot Axial Allowed service deflection Maa Mos Check deflection mption check Hw 0.008 Hw 0.008 Hw 1	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 0.063 in 0.K.
	Unfactored Pressure on Roof uWr	on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2 1.5 530.330 psi 9.546 kip-in		Flexure	Assu Span net Tensile Strai	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Lot Axial Allowed service deflection Maa Mos Check deflection mption check Hw 0.008 Hw 0.008 Hw 1	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in 0.K.
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(fkw-2db) / 2 Ph*V*v2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h^3)/12 Ag = (b*h) Yt = h/2 ff (rupture modulus) Mcr Beta 1	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in'4 36 in'2 1.5 530.30 psi 9.546 kip-in 0.8		Flexure	Assur Spar net Tensil Strim Check ACI 14.8.2.2 Mu	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Los Axial Allowed service deflection Axial Allowed service deflection Mass	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in 0.K.
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuBy(Bw-2db) / 2 Ph*V=2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h*3)/12 Ag = (b*h) Ag = (b*h) Grupture modulus) Mer Beta_I Trial Ax reg'd	on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2 1.5 530.330 psi 9.546 kip-in 0.8 0.059 m'2		Fieure	Assu Span net Tensile Strair Check ACI 14.8.2.3 Mu AC	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 / H*4 + L*4) Service Loo Axial Lateral Allowed service deflection Mata Ds Check deflection mption check 1 Hw 1 0.008 1 Tension 1 0.280 km-ft	0.05 klf 0.01 klf 1.39 kip 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Bw-2db) / 2 Ph*Ve/2 Check Shear ACI 11.5.5.1 Lig = (b*h*3)/12 Ag = (b*h) Yt = b/2 fr (nupture modulus) Mer Beta_I Trial Ast reedd B	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.K. 27 in 4 36 in 2 1.5 530.330 psi 9.546 kip-in 0.8 0.059 m 2 8.836162648		[Flexure	Assur Spar net Tensil Strim Check ACI 14.8.2.2 Mu	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 / H*4 + L*4) Service Loo Axial Lateral Allowed service deflection Mata Ds Check deflection mption check 1 Hw 1 0.008 1 Tension 1 0.280 km-ft	0.05 klf 0.01 klf 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in 0.K.
	Unfactored Pressure on Roof uWr	on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in "4 36 in "2 1.5 330.330 psi 9.546 kip-in 0.8 0.059 m"2 8.836162648 0.480 in		Flexure	Assu Span net Tensile Strait Check ACT14.8.2.3 Mu ACC Mt	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Lot	0.05 klf 0.01 klf 1.39 kip 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension
	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuBY(Bw-2db) / 2 Ph*Ve2 Check Shear ACI 11.5.5.1 Lag = (b*h*3)/12 Ag = (b*h) Y(= h) fr (upture modulus) Mer Beta 1 Trial Act regid B dd Lef	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.K. 27 in 4 36 in 2 1.5 530.330 psi 9.546 kip in 0.8 0.89 0.89 m/2 8.836162648 0.480 in 1.86 in 4		Flexure	Assur Spanson net Tensile Strain Check ACI 14.8.2.1 Mus ACI	Lw = W*(L*4 L*4 + H*4)	0.05 klf 0.01 klf 1.39 kip 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 6.455 kip-in 0.06 kip Uw 0.008 Temsion
	Unfactored Pressure on Roof uWr	on Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in "4 36 in "2 1.5 330.330 psi 9.546 kip-in 0.8 0.059 m"2 8.836162648 0.480 in		Flexure	Assur Spar net Tensile Strain Check ACI 14.8.2.2 Mu AC Mt	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Los	0.05 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 in 6.455 kip-in 0.063 in O.K. Lw 0.008 Tension
	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuBY(Bw-2db) / 2 Ph*Ve2 Check Shear ACI 11.5.5.1 Lag = (b*h*3)/12 Ag = (b*h) Y(= h) fr (upture modulus) Mer Beta 1 Trial Act regid B dd Lef	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2 1.5 530.30 psi 9.546 kip-in 0.8 0.8 0.8 0.480 in 1.86 in 4 0.003		Flexure	Assur Spanson net Tensile Strain Check ACI 14.8.2.1 Mus ACI	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Los	0.05 klf 0.01 klf 1.39 kip 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 6.455 kip-in 6.455 kip-in 0.06 kip Uw 0.008 Temsion
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Ew-2db) / 2 Ph*V*v2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h*3)*/12 Ag = (b*h) Yt = h/2 fr (rupture modulus) Mer Beta_1 Trial Ast regd B kd Ler c_c	01 Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.K. 27 in'4 36 in'2 1.5 530.330 psi 9.546 kip-im 0.8 0.059 in'2 8.836162648 0.480 in 1.86 in'4 0.003 0.005		Flexure	Assum Spanier Strain net Tensile Strain Check ACT 14.8.2.2 Check ACT 48.2.2 Mu AC Mu fb fb fMn trial = \$AsFy(dt = 2), DM = Mpos = \$M\$	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Los	0.05 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in 0.K. Lw 0.008 Tension 0.360 kip-ft
	Unfactored Pressure on Roof uWr	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2 1.5 530.30 psi 9.546 kip-in 0.8 0.480 in 1.86 in 4 0.003 0.005		Flexure	Assum Spanier Strain net Tensile Strain Check ACT 14.8.2.2 Check ACT 48.2.2 Mu AC Mu fb fb fMn trial = \$AsFy(dt = 2), DM = Mpos = \$M\$	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Service Los	0.05 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension 0.360 kip-ft 0.9 1.610 kip-ft 0.000 kip-ft
	Unfactored Pressure on Roof uWr	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in 4 36 in 2 1.5 530.330 psi 9.546 kip-in 0.8 0.059 in 2 8.836 162648 0.480 in 1.86 in 4 0.003 0.003 0.005 0.33483 psi 0.419 in		Fiexure	Assu Span Ref Tensile Strair Check ACT 14.8.2.2. Mu AC Mt Mu Mn Mn Mn Mn Mn Mn Mn Mn Mn	Lw = W*(L*4 L*4 + L*4)	0.05 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension 0.360 kip-ft 0.9 1.610 kip-ft 0.000 kip-ft
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Bw-2db) / 2 Ph*Ve2 Check Shear ACI 11.5.5.1 Lag = (b*h*3)/12 Ag = (b*h) Yt = b/2 fr (nupture modulus) Mer Beta_I Trial Ast reed B kd Ler c, c, c, a a c Axe	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in'4 36 in'2 1.5 530.30 psi 9.546 kip-in 0.8 0.480 in 1.86 in'4 0.003 0.005 0.3483 psi 0.419 in 0.23 in'2		Flexure	Assu Spain	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Axial Allowed service deflection Axial Allowed service deflection Mais M	0.05 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension 0.360 kip-ft 0.9 1.610 kip-ft 0.000 kip-ft
	Unfactored Pressure on Roof uWr	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in '4 36 in '2 1.5 530.30 psi 9.546 kip-in 0.8 0.059 m'2 8.836 (162648 0.480 in 1.86 in '4 0.003 0.005 0.33483 psi 0.419 in 0.23 in '2 2.29 in '4		Fiexure	Assur Span net Tensile Strair Check ACI 14.8.2.2 Check ACI 14.8.2.2 Mu AC Mt Mt AC Mt Mn Mn Mn Mn Mn Mn Mn Mn Mn	Lw = W*(L*4 L*4 + H*4)	0.05 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension 0.360 kip-ft 0.90 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 in 2 0.00 in 2 0.00 in 2
	Unfactored Pressure on Roof uWr	01 Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.18 27 in 4 36 in 2 1.5 530.330 psi 9.546 kip in 0.8 0.89 0.89 in 2 8.836162648 0.480 in 1.86 in 4 0.003 0.005 0.33483 psi 0.419 in 0.23 in 2 2.29 in 4 2.20 in 4		Flexure	Assu Span Span Span Active Active Mu Active Min Min Min Min Min Min Min Mi	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Axial Allowed service deflection Axial Allowed service deflection Axial Allowed service deflection Mass M	0.05 kif 0.01 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 im 6.367 kip-in 0.063 in 0.K. Lw 0.063 in 0.K. Lw 0.008 Tension 0.360 kip-ft 0.000 kip-ft
	Unfactored Pressure on Roof uWr	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 O.K. 27 in '4 36 in '2 1.5 530.330 psi 9.546 kip-in 0.8 0.059 m'2 8.836162648 0.480 in 1.86 in '4 0.003 0.005 0.33483 psi 0.419 in 0.23 in '2 2.29 in '4 27.00 in '4 150		Fiexure	Assur Span net Tensile Strair Check ACI 14.8.2.2 Check ACI 14.8.2.2 Mu AC Mt Mt AC Mt Mn Mn Mn Mn Mn Mn Mn Mn Mn	Lw = W*(L*4 L*4 + H*4)	0.05 klf 0.01 klf 1.39 kip 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.068 Tension 0.360 kip-ft 0.9 1.610 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 in 2 0.00 in 2 0.00 in 2 0.00 in 2
	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuB*(18w-2db) / 2 Ph*Ve2 Check Shear ACI 11.5.5.1 Ig = (b*h'3)/12 Ag = (b*h) Yu = NuB*(18w-2db) Ag = (b*h) Yu = NuB*(18w-2db) fr (rupture modulus) Mer Beta_I Trial Ast reqd Beta_I Trial Ast reqd Ler c_c c_c c_s a c c c c_s c_s lerdeflection le delta r_t(maximum tensile reinforcement)	01 Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.K. 27 in'4 36 in'2 1.5 530.330 psi 9.546 kip-in 0.8 0.89 0.99 in'2 8.836162648 0.480 in 1.86 in'4 0.003 0.005 0.33483 psi 0.419 in 0.23 in'2 2.29 in'4 27.00 in'4 1.50 0.0166		Flexure	Assu Span Span Span Active Active Mu Active Min Min Min Min Min Min Min Mi	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) Axial Allowed service deflection Axial Allowed service deflection Axial Allowed service deflection Mass M	0.05 kif 0.01 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 im 6.367 kip-in 0.063 in 0.K. Lw 0.063 in 0.K. Lw 0.008 Tension 0.360 kip-ft 0.000 kip-ft
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Ew-2db) / 2 Phi*Ve/2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h*3)*/12 Ag = (b*h) Yt = h/2 fr (rupture modulus) Mer Beta_1 Trial Ast redd Beta_1 Company Geta_1 Trial Ast redd Ler Geta_1 Fr (unaximum tensile reinforcement)	01 Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.18 0.18 0.19 1.08 0.19 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		Flexure	Assum Span net Tensile Strain Check ACT14.8.2.2 Mu ACC Mi ACC Mi Mi Mi Mi Mi Mi Mi Mi Mi	Lw = W*(L*4 L*4 + H*4) Hw = W*(H*4 H*4 + L*4) W*(H*4 H*4 + L*4) Axial Lateral Allowed service deflection Maa Mb Check deflection Mwin Mwin Mwin 0.008 1	0.05 klf 0.01 klf 1.39 kip 1.39 kip 0.05 klf 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.063 in O.K. 1.39 kip 0.05 klf 0.70 in 0.637 kip-in 0.063 in O.K. 1.40 in 0.008 Temsion 1.510 kip-ft 0.00 in ² 0.00 in ² 0.00 in ² 3 0 0.000 kip-ft
	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuB*r(Bw-2db) / 2 Ph*rVe2 Check Shear ACI 11.5.5.1 Lag = (b*h*3)/12 Ag = (b*h) Y(= h2) fr (rupture modulus) Mer Beta 1 Trial Ast regd Beta 1 Trial Ast regd Ler c, a c c, 01 Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.K. 27 in'4 36 in'2 1.5 530.330 psi 9.546 kip-im 0.8 0.059 in'2 8.836162648 0.480 in 1.86 in'4 0.003 0.005 0.33483 psi 0.419 in 0.23 in'2 2.29 in'4 27,00 in'4 1.50 0.0166 0.0014		Flexure	Assum Span Inet Tensile Strair Check ACT 14.8.2.2 ACT Mu ACT Mis ACT Mis Mu ACT Mis Min trial = \phi_Asiry(dt - a/2) DM = Mpos - \phi_A As Addi req' Additional rein freq' Additional Ass Addi req' Additional Assume As	Lw = W*(L*4 L*4 + L*4) Hw = W*(H*4 H*4 + L*4) Hw = W*(H*4 H*4 + L*4) Axial Lateral Allowed service deflection Axial Lateral Allowed service deflection Maia Ds Check deflection Hw 0.008 Tension 1 0.420 kip-ft 0.420 kip-ft 0.420 kip-ft 0.9 1.610 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0 0.000 kip-ft 0 0 0	0.05 kif 0.01 kif 0.01 kif 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension 0.360 kip-ft 0.90 in-2 0.00 in-2 0.00 in-2 0.00 in-2 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft	
	Unfactored Pressure on Roof uWr Axial Pressure PB Factored Loading per ACI Vu = wuB*(Ew-2db) / 2 Phi*Ve/2 Check Shear ACI 11.5.5.1 Capacity Ig = (b*h*3)*/12 Ag = (b*h) Yt = h/2 fr (rupture modulus) Mer Beta_1 Trial Ast redd Beta_1 Company Geta_1 Trial Ast redd Ler Geta_1 Fr (unaximum tensile reinforcement)	n Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.18 0.18 0.18 0.18 0.19 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		Flexure	Assum Span net Tensile Strain Check ACT14.8.2.2 Mu ACC Mi ACC Mi Mi Mi Mi Mi Mi Mi Mi Mi	Lw = W*(L*4 L*4 + L*4) Hw = W*(H*4 H*4 + L*4) Hw = W*(H*4 H*4 + L*4) Axial Lateral Allowed service deflection Axial Lateral Allowed service deflection Maia Ds Check deflection Hw 0.008 Tension 1 0.420 kip-ft 0.420 kip-ft 0.420 kip-ft 0.9 1.610 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0 0.000 kip-ft 0 0 0	0.05 kif 0.01 kif 1.39 kip 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension 0.360 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft 0.000 kip-ft
Shear Allowable C	Unfactored Pressure on Roof uWr Axial Pressure. PB Factored Loading per ACI Vu = wuB*r(Bw-2db) / 2 Ph*rVe2 Check Shear ACI 11.5.5.1 Lag = (b*h*3)/12 Ag = (b*h) Y(= h2) fr (rupture modulus) Mer Beta 1 Trial Ast regd Beta 1 Trial Ast regd Ler c, a c c, 01 Section 1.39 kip ACI eq. 9-3 0.12 1.08 0.K. 27 in'4 36 in'2 1.5 530.330 psi 9.546 kip-im 0.8 0.059 in'2 8.836162648 0.480 in 1.86 in'4 0.003 0.005 0.33483 psi 0.419 in 0.23 in'2 2.29 in'4 27,00 in'4 1.50 0.0166 0.0014		Flexure	Assum Span Inet Tensile Strair Check ACT 14.8.2.2 ACT Mu ACT Mis ACT Mis Mu ACT Mis Min trial = \phi_Asiry(dt - a/2) DM = Mpos - \phi_A As Addi req' Additional rein freq' Additional Ass Addi req' Additional Assume As	Lw = W*(L*4 L*4 + L*4)	0.05 kif 0.01 kif 0.01 kif 1.39 kip 0.05 kif 0.70 in 6.367 kip-in 0.063 in O.K. Lw 0.008 Tension 0.360 kip-ft 0.90 in-2 0.00 in-2 0.00 in-2 0.00 in-2 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft	

MISSOURI PUBLIC SERVICE COMMISSION APPROVED

22.42%

 $Check\ \varphi Mn \geq Mu$ % allowed

Page 22 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.04 ksf

Material Properties								
db (effective depth bottom)	1.5 in							
a (block of strain)	0.33483 psi							
	a=As * fy / (0.85 * f c *b)							

Factorized Moment

Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12
SHOWER SLEEVE	0.75 ft	3.08 ft	0.92 ft	2.45 ft	109.25	0.1 klf	0.51 klf	0.04 kip-ft

Ae ro	ald Bareiza	atv reald:	φMn=	Check
Asic	qu Bai size	qty requ.	φAsFv(db - a/2)	$\phi Mn > Mu$
0 in^	'2 No. 3	0	0 kip-ft	O.K.
9		*	1 17 1	As req'd Bar size qty req'd:

CONNECTIONS

				Full Resistance Value						
_						Overturning				
	Base Anchors			Lateral	Base /	Anchors	Wall-Wall Connection			
Е	Quantity Maximum Maximum in Shear R - Distance L - Distance 3 67 67		Shear	Moment +	Moment -	Moment +	Moment -			
			kip	kip - ft	kip - ft	kip - ft	kip - ft			
-			22 821	23 95	26.56	33.06	45.09			

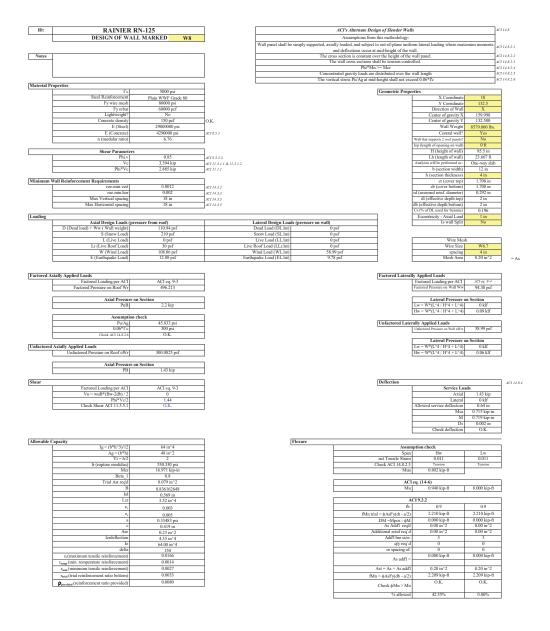
Total Tension		Base Anchors								
10.521	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -				
Base Anchor 1	5 in	3.44	5.31	67 in	0.107 kip*ft	19.207 kip*ft				
Base Anchor 2	32 in	3.64	12.21	40 in	4.637 kip*ft	7.246 kip*ft				
Base Anchor 3	67 in	3.44	5.31	5 in	19.207 kip*ft	0.107 kip*ft				

					Wall Connections					
	Quantity of Anchors	Capacity of each	Countering Dead Load from	% of wall to	Adjoining Wall	Dist (inches)	L - Dist	Allowable Force		ning Moment Ince (kip-ft)
	Of Afficions	Anchor	Anchor Adjoining Wall use	wan	(IIICHES)		Force	Up Left	Low Right	
Wall Connection 1	3	1.531	10.787	35.83%	Wl	0	72.000	4.593	0.000	27.558
Wall Connection 2	2	2.703	3.961	100.00%	P1-2	37.5	34.500	3.961	12.378	11.388
Wall Connection 3	3	2 703	4 471	25.00%	W4	55.5	16 500	4 471	20.677	6 147

Shear	Connections at Bas	se	Wa	Il Shear Capacity	Required Shear Capacity (lb) per	
Design	Capacity	Reserve	Design	Resistance		Base Connector
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check	Dasc Connector
5150	22821	17671	776	13814	OK	1717

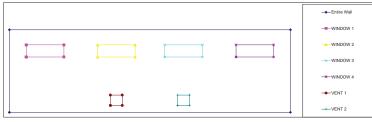
Reserve

RIGIDITY


		CALCUL	ATED VALUES	90%	rinai	1.834990701	
	Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
	Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
	Entire Wall	72	104.36	Y	Y	2.029	0.493
SHOWER SLEEVE	A'	72	38	Y	Y	8.669	0.115
	A	9	38	Y	Y	0.171	5.862
	В	51.96	38	Y	Y	5.802	0.172

		Combine Logic									
	First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined					
SHOWER	Entire Wall	A'	A'a	-	Deflection	0.378					
	A	В	AB	+	Stiffness	5.973					
	A'a	AB	Final	+	Deflection	0.545					

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING


Page 23 of 31 Date: 10/24/2024

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

Page 24 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

	Loading			
г	Pu (factorized load from roof)	0.41 klf		
г	Ww (weight of panel per sq ft)	0.05 ksf		

Material Properties						
db (effective depth bottom)	2 in					
a (block of strain)	0.33483 psi					
	a=As * fy / (0.85 * f c *b)					

Factorized Momen

	Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12
ı	WINDOW 1	1.42 ft	5.33 ft	3.17 ft	1.46 ft	185.18	0.07 klf	0.48 klf	0.4 kip-ft
ſ	WINDOW 2	7.42 ft	5.33 ft	3.17 ft	1.46 ft	185.18	0.07 klf	0.48 klf	0.4 kip-ft
	WINDOW 3	13.08 ft	5.33 ft	3.17 ft	1.46 ft	185.18	0.07 klf	0.48 klf	0.4 kip-ft
-[WINDOW 4	19.08 ft	5.33 ft	3.17 ft	1.46 ft	185.18	0.07 klf	0.48 klf	0.4 kip-ft
	VENT 1	8.5 ft	0.67 ft	1 ft	6.29 ft	49.92	0.31 klf	0.72 klf	0.06 kip-ft
	VENT 2	14.17 ft	0.67 ft	1 ft	6.29 ft	49.92	0.31 klf	0.72 klf	0.06 kip-ft

Flexure

Opening	ób	As regid	Bar size	qty req'd:	Mn -	Check
Opening	90	As requ	Dar size	qty req a:	φAsFv(db - a/2)	φMn > Mu
WINDOW 1	0.9	0.006 in^2	No. 3	1	7.88 kip-ft	O.K.
WINDOW 2	0.9	0.006 in^2	No. 3	1	7.88 kip-ft	O.K.
WINDOW 3	0.9	0.006 in^2	No. 3	1	7.88 kip-ft	O.K.
WINDOW 4	0.9	0.006 in^2	No. 3	1	7.88 kip-ft	O.K.
VENT 1	0.9	0 in^2	No. 3	0	0 kip-ft	O.K.
VENT 2	0.9	0 in^2	No 3	0	0 kip-ft	O.K

CONNECTIONS

					Ful	Resistance Value		
						Overturning		
Base Anchors			Lateral	Base /	Anchors	Wall-Wall Connection		
	Quantity Maximum Maximum in Shear R - Distance L - Distance		Shear	Moment +	Moment -	Moment +	Moment -	
			kip	kip - ft	kip - ft	kip - ft	kip - ft	
	6	272	272	73.254	187.46	187.46	246.45	246.45

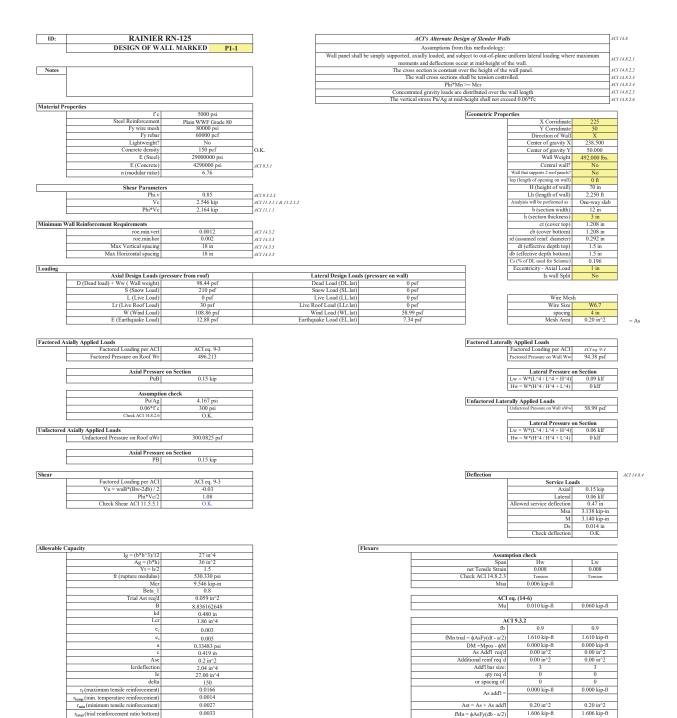
Base Anchors							
Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -		
12 in	3.64	12.21	272 in	0.161 kip*ft	82.529 kip*ft		
68 in	3.64	12.21	216 in	5.158 kip*ft	52.045 kip*ft		
108 in	3.64	12.21	176 in	13.011 kip*ft	34.554 kip*ft		
176 in	3.64	12.21	108 in	34.554 kip*ft	13.011 kip*ft		
216 in	3.64	12.21	68 in	52.045 kip*ft	5.158 kip*ft		
272 in	3.64	12.21	12 in	82.529 kip*ft	0.161 kip*ft		
	12 in 68 in 108 in 176 in	12 in 3.64 68 in 3.64 108 in 3.64 176 in 3.64 216 in 3.64	Dist Tension (kip) Shear 12 in 3.64 12.21 68 in 3.64 12.21 108 in 3.64 12.21 176 in 3.64 12.21 216 in 3.64 12.21	12 in 3.64 12.21 272 in 68 in 3.64 12.21 216 in 108 in 3.64 12.21 176 in 176 in 3.64 12.21 108 in 216 in 3.64 12.21 68 in 216 in 3.64 12.21 68 in 216 in 3.64 12.21 216 in 3.64 12.21 3.64 12.21 3.64 3.	Digit Tension (89) Shear L-Digit Monment +		

					Wall Connections					
	Quantity of Anchors	Capacity of each	Countering Dead Load from	% of wall to	Adjoining Wall	Dist (inches)	L - Dist	Allowable Force		ning Moment ance (kip-ft)
	of Anchors	Anchor	Adjoining Wall	use	******	(monos)		1 0100	Up Left	Low Right
of Ar Wall Connection 1 Wall Connection 2	3	2.703	8.624	50.00%	W3	2	282.000	8.109	1.352	190.562
Wall Connection 2	3	2.703	4.609	50.00%	W5	142	142.000	4.609	54.540	54.540
W-H C	2	2 702	0.004	EO 000/	W/2	202	2 000	0.400	400 560	1 252

Shear (Connections at Bas	9	Wa	all Shear Capacity		Required Shear Capacity (lb) per		
Design	Capacity	Reserve	Design	Resistance		Base Connector		Reserve
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check			Capacity
14451	73254	58803	515	18439	OK	2409	(58803)	OK

RIGIDITY

		CALCUI	LATED VALUES	91%	Final	17.29892936	
						-	
	Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
	Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
	Entire Wall	284	95.5	Y	Y	19.105	0.052
WINDOW 1	A'	284	14.02	Y	Y	134.936	0.007
	A	17.04	14.02	Y	Y	6.611	0.151
	В	228.92	14.02	Y	Υ	108.718	0.009
WINDOW 2	B'	284	14.02	Y	Y	134.936	0.007
	C	89.04	14.02	Y	Y	41.992	0.024
	D	156.92	14.02	Y	Y	74.419	0.013
WINDOW 3	C'	284	14.02	Y	Υ	134.936	0.007
	E	156.96	14.02	Y	Υ	74.438	0.013
	F	89	14.02	Y	Y	41.973	0.024
WINDOW 4	D'	284	14.02	Y	Y	134.936	0.007
	G	228.96	14.02	Y	Y	108.737	0.009
	H	17	14.02	Y	Υ	6.590	0.152
VENT 1	E'	284	11.98	Y	Υ	157.947	0.006
		102	11.98	Y	Y	56.501	0.018
	J	170	11.98	Y	Y	94.446	0.011
VENT 2	F'	284	11.98	Y	Y	157.947	0.006
	L	170.04	11.98	Y	Y	94.468	0.011
	M	101.96	11.98	Y	Y	56.479	0.018


			Combin	ne Logic		
	First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined
WINDOW 1	Entire Wall	A'	A'a	-	Deflection	0.045
	A	В	AB	+	Stiffness	115.329
	A'a	AB	A'b	+	Deflection	0.054
WINDOW 2	A'b	B'	B'a	-	Deflection	0.046
	С	D	CD	+	Stiffness	116.412
	B'a	CD	B'b	+	Deflection	0.055
WINDOW 3	B'b	C'	C'a	-	Deflection	0.047
	E	F	EF	+	Stiffness	116.412
	C'a	EF	Съ	+	Deflection	0.056
WINDOW 4	C'b	D'	D'a	-	Deflection	0.049
WINDOW 4	G	Н	GH	+	Stiffness	115.327
	D'a	GH	D'b	+	Deflection	0.057
VENT 1	D'b	E'	E'a	-	Deflection	0.051
	1	J	IJ	+	Stiffness	150.947
	E'a	IJ	E'b	+	Deflection	0.058
VENT 2	E'b	F	F'a	-	Deflection	0.051
WINDOW 3 WINDOW 4 VENT 1	L	M	LM	+	Stiffness	150.947
	F'a	LM	Final	+	Deflection	0.058

MISSOURI
PUBLIC SERVICE
COMMISSION

APPROVED

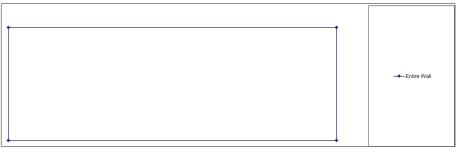
Page 25 of 31 Date: 10/24/2024

0.0110

PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

MISSOURI

O.K.


0.62%

Check \$\phi Mn > Mu
% allowed

O.K.

3.74%

Page 26 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.04 ksf

Material Pro	perties
db (effective depth bottom)	1.5 in
a (block of strain)	0.33483 psi
	a=As * fy / (0.85 * f c *b)

Factorized Moment

1 actorized								
Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12

ricxure						
Opening	φb	As reg'd	Bar size	atv rea'd:	φMn =	Check
	T-			45 4	φAsFv(db - a/2)	φMn≥ Mu

CONNECTIONS

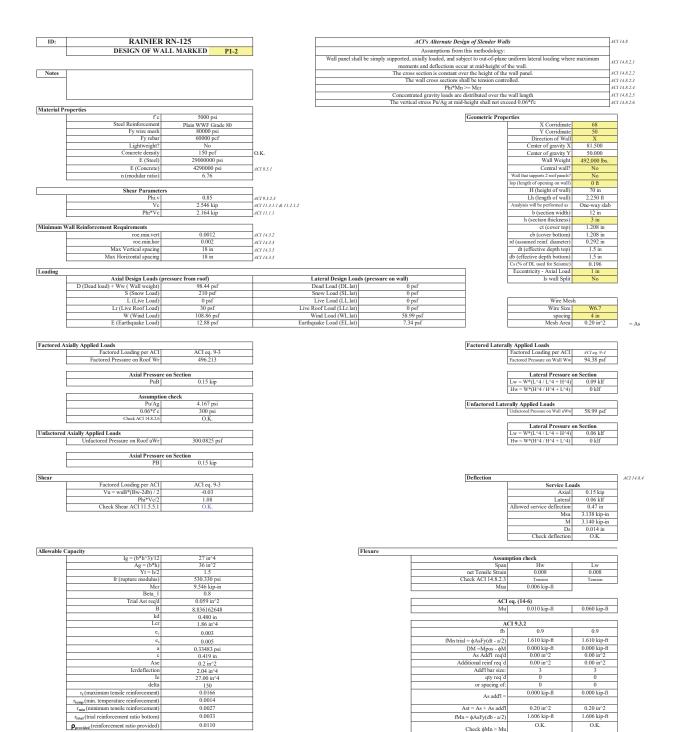
				Ful	Resistance Value		
					Overturning		
	Base Anchor	S	Lateral	Base /	Anchors	Wall-Wall C	onnection
Quantity	Maximum	Maximum	Shear	Moment +	Moment -	Moment +	Moment -
in Shear	R - Distance	L - Distance	kip	kip - ft	kip - ft	kip - ft	kip - ft
1	21	6	6.292	6.07	1.73	0.00	6.89

Total Tension		Base Anchors								
3.469	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -				
Base Anchor I	21 in	3.47	6.29	6 in	6.071 kip*ft	1.735 kip*ft				

					Wall Connections						
	Quantity of Anchors	Capacity of each	Countering Dead Load from	% of wall to	Adjoining Wall	Dist (inches)	L - Dist	Allowable Force	Resista	ing Moment nce (kip-ft)	
		Anchor	Adjoining Wall	use					Up Left	Low Right	
Wall Connection 1	2	1.531	4.772	38.54%	W6	0	27.000	3.062	0.000	6.890	

		vvali Si	lear Checks					
Shear	Connections at Bas	se	Wa	all Shear Capacity		Required Shear Capacity (lb) per	1	
Design	Capacity	Reserve	Design	Resistance		Base Connector		
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check	Base Connector		
130	6292	6162	0	15274	OK	130	(6162)	

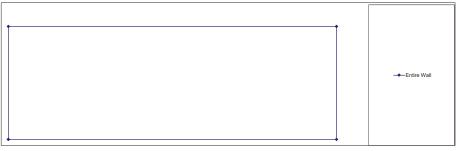
RIGIDITY


	CALCULATED VALUES		100%	Final	0	
Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
Entire Wall	27	70	l N	Y	0.194	5.166

		Combi	ne Logic		
First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined
Entire Wall	n	Final			0.194

Page 27 of 31 Date: 10/24/2024

PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING


MISSOURI

% allowed

0.62%

3.74%

Page 28 of 31 Date: 10/24/2024

REINFORCEMENT AT OPENINGS

Loading	
Pu (factorized load from roof)	0.41 klf
Ww (weight of panel per sq ft)	0.04 ksf

Material Prop	erties		
db (effective depth bottom)	1.5 in		
a (block of strain)	0.33483 psi		
	a=As * fy / (0.85 * f c *b)		

1 actorized								
Opening	Horizontal Location	Vertical Location	L length of opening	H height above opening	(-) Weight of Opening (LBS)	Pw total factorized panel load	wu total factorized load	Mu (wu*L^2)/12

Opening bb As red'd Bar size atv red'd: \$\delta Mn = \]	Flexure	
45 required (d) - a/2)	Opening	Check φMn > Mu

CONNECTIONS

			Full Resistance Value						
				Overturning					
	Base Anchor	S	Lateral	Base /	Base Anchors Wall-Wall Connec				
Quantity	Maximum	Maximum	Shear	Moment +	Moment -	Moment +	Moment -		
in Shear	R - Distance	L - Distance	kip	kip - ft	kip - ft	kip - ft	kip - ft		
1	6	21	6.292	1.73	6.07	6.89	0.00		

Total Tension							
3.469	Dist	Tension (kip)	Shear	L - Dist	Moment +	Moment -	
Base Anchor 1	6 in	3.47	6.29	21 in	1.735 kip*ft	6.071 kip*ft	

	Wall Connections										
	Quantity of Anchors	Capacity of each	Countering Dead Load from	% of wall to	Adjoining Wall	Dist (inches)	L - Dist	Allowable Force	Resista	ing Moment nce (kip-ft)	
		Anchor	Adjoining Wall	use					Up Left	Low Right	
Wall Connection 1	2	1.531	4.772	38.54%	W7	27	0.000	3.062	6.890	0.000	

		vvali Si	lear Checks					
Shear	Connections at Bas	se	Wa	all Shear Capacity				
Design	Capacity	Reserve	Design	Resistance		Required Shear Capacity (lb) per Base Connector		Reserv
Force (lb)	(lb)	Capacity	(PLF)	(PLF)	check	Base Connector		Capaci
130	6292	6162	0	15274	OK	130	(6162)	OK

RIGIDITY

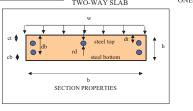
	CALCUL	ATED VALUES	100%	Final	0	
Pier	Length	Height	Fixed Top?	Useable?	Stiffness (k)	Deflection
Label	(inches)	(inches)	(Y/N)	(Y/N)	(1000 kip / IN)	(in / 1000 kip)
Entire Wall	27	70	N	Y	0.194	5.166

	Combine Logic							
First Segment	Second Segment	Re-Name	Combine/Subtract	Method	Combined			
Entire Wall	n	Final			0.104			

rroperues	
f'c	5000 psi
Steel Reinforcement	Plain WWF Grade 80
Fy	80000 psi
Lightweight?	No
C _d (Concrete density)	150 pcf O.K.
E (Steel)	29000000 psi
E (Concrete)	4286826 psi ACI 8.5.1
n (modular ratio)	6.76 ACI 14.0

Geometric

23.67 ft	
10.5 ft	
Two-way slab	
0 in	
12 in	(typically 12 inches)
5 in	
3/4 in	
1 1/4 in	
0.319 in	(if centered enter 0)
40.577 in	
0.910 in	
3.431 in	
0 in	(qty of overhangs in Bs direction)
0 in	(qty of overhangs in ls direction)
0.211	{from seismic analysis}
8	{either walls of vaults or enter "8" if no vault}
4	{either walls of vaults or enter "4" if no vault}
	10.5 ft Two-way slab 0 in 12 in 12 in 5 in 3/4 in 1 1/4 in 0.319 in 40.577 in 0.910 in 3.431 in 0 in 0 in 0 in


ement Limits			
ρ _t (maximum tensile reinforcement)	0.0166	ACI 10.3.3	
ρ _{temp} (min. temperature reinforcement)	0.0014	ACI 7.12.2	
ρ _{min} (minimum tensile reinforcement)	0.0027	ACI 10.5.1	
ρ _{trial} (trial reinforcement ratio bottom)	0.0033		
ρ _{trial} (trial reinforcement ratio top)	0.0033		

W6.7

4 in 0.20 in^2

fr (rupture modulus)	530.3 psi	ACI 9.5.2.3
Ig = (b*h^3)/12	125 in^4	
Ag = (b*h)	60 in^4	
Yt = h/2	2.5 in^4	
Mcr	26.51650429	ACI 9.5.2.3
Beta_1	0.8	ACI 10.2.7.3
delta initial	180	
delta longterm	480	
В	8.830	
kd	0.355 in	
I.cr	0.60 in^4	
c	0 in	
a	0.32 in	

p _{provided} (reinforcement ratio provided)		0.0049
	ω=	0.0781
ρ _{provided} (reinforcement ratio provided)		0.0154
	ω=	0.2469
ρ _{provided} (reinforcement ratio provided)		0.0041
	ω=	0.0655

	w –	0.0055
ρ _{provided} (reinforcement ratio provided)		0.0118
	ω =	0.1893
W: W.		

spacing

	Wire Me	esh (Bottom)]
	Wire Size	W6.7	
Trial Ast required	spacing	4 in	
0.136 in^2	Mesh Area	0.20 in^2	= /

Loading

Design Loads	
Pressure on Slab	w
D (Dead load))	62.5 psf
S (Snow Load)	0 psf
L (Live Load)	0 psf
LF (Live Floor Load)	400 psf
W (Wind Load)	0 psf
E (Earthquake Load)	13.21 psf

Sustained Loadin	g
Pressure on slab	w
D (Dead load)	62.5 psf
S (Snow Load)	0 psf
Lr (Live Floor Load)	400 psf

Factored Design	1 Loads	Pressure on Section	Pressure on Section	
Factored Loading per ACI	Factored Pressure on	wB =	wL =	ı
equation indicated	Slab W	W*(L^4 / B^4 + L^4)*be	W*(B^4 / B^4 + L^4)*be	
ACI eq. 9-3	715 psf	0.33 klf	0.38 klf	
		∑ 3.500 ft ∆ 0.58 0.58	∑ 3.38 ft ∑ 0.64 kip	

Trial As' req'd

B (Span in the short direction) = (Bs/NsB-1) - 0(oh1)		3.500 ft]
L (Span in the long direction) = (L	s/NsL-1) - 0(oh2)	3.38 ft	
Factored Sustain	ed Loads	Pressure on Section	Pressure on Section
Factored Loading per ACI equation indicated	Factored Pressure on Slab W	wB = W*(L^4 / B^4 + L^4)*be	wL = W*(B^4 / B^4 + L^4)*be
ASCE7-05 eq CC1a	462.5 psf	0.215 klf	0.247 klf
		∑ 3.500 ft △	∑ 3.38 ft ∑

Unfactored	l Design Loads	Pressure on Section	Pressure on Section
	Factored Pressure	wB =	wL =
	on Slab W	W*(L^4 / B^4 + L^4)*be	W*(B^4 / B^4 + L^4)*be
	400 psf	0.19 klf	0.21 klf
		△ 3.500 △	∆ 3.38 ft ∆
		0.33 0.33	0.36 0.36

Efficiency can be enhanced if Ast is diminished

SUMMARY Use 1 Layer of Wire Mesh on Top W6.7 x W6.7 x 4 x 4
Use 1 Layer of Wire Mesh on Bottom W6.7 x W6.7 x 4 x 4

APPROVED BY 10/31/2024 Approval of this document does not authorize or approve any deviation or deviations from the requirements of applicable State Laws.

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

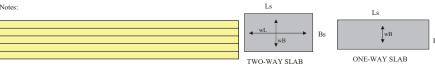
11/19/2024

MANUFACTURED HOUSING

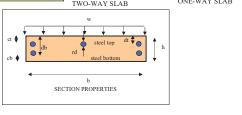
Approval of this document does not authorize of	
approve any deviation or deviations from the	
requirements of applicable State Laws.	

RAINIER RN-125 DESIGN OF FLOOR PANEL F1

Material Properties


f'c	5000 psi	
Steel Reinforcement	Plain WWF	Grade 80
Fy	80000 psi	
Lightweight?	No	
C _d (Concrete density)	150 pcf	O.K.
E (Steel)	29000000 psi	
E (Concrete)	4286826 psi	ACI 8.5.1
n (modular ratio)	6.76	ACI 14.0

Geometric Properties


ric Properties		_
Ls (overall length of slab)	23.67 ft	
Bs (overall width of slab)	10.5 ft	
Design will be performed as:	Two-way slab	
tfr (floor finish thickness)	0 in	
b (section width)	12 in	(typically 12 inches)
h (section thickness)	5 in	
ct (cover top)	3/4 in	
cb (cover bottom)	1 1/4 in	
rd (assumed reinf. diameter)	0.319 in	(if centered enter 0)
I (length of slab for deflection)	40.577 in	
dt (effective depth top)	0.910 in	
db (effective depth bottom)	3.431 in	
oh1 (overhang length and qty for Bs)	0 in	(qty of overhangs in Bs direction)
oh2 (overhang length and qty for Ls)	0 in	(qty of overhangs in ls direction)
Cs (% of DL used for Seismic)	0.211	{from seismic analysis}
NsL (Num. of supports along Ls)	8	{either walls of vaults or enter "8" if no vault}
NsB (Num. of supports along Bs)	4	{either walls of vaults or enter "4" if no vault}
		•

Span type: Simple span

Notes:

fr (rupture modulus)	530.3 psi	ACI 9.5.2.3
Ig = (b*h^3)/12	125 in^4	
Ag = (b*h)	60 in^4	
Yt = h/2	2.5 in^4	
Mcr	26.51650429	ACI 9.5.2.3
Beta 1	0.8	ACI 10.2.7.
delta initial	180	
delta longterm	480	
В	8.830	
kd	0.355 in	
I.cr	0.60 in^4	
С	0 in	
a	0.32 in	

ρ _{provided} (reinforcement ratio provided)		0.0049
	ω=	0.0781
ρ _{provided} (reinforcement ratio provided)		0.0154
	ω=	0.2469

pprovided (reinforcement ratio provided)		0.0041
	ω =	0.0655
ρ _{provided} (reinforcement ratio provided)		0.0118
	ω=	0.1893

Flexure

	Flexural Moments for Bs	Mu	Tensile Strain	Check ACI 14.8.2.3	фЬ	ϕ Mn trial = ϕ fcbd^2 ω (1-0.59 ω)	$\Delta M = Mu - \phi M$	$\phi \mathbf{M} \mathbf{n} =$	Check	% allowed
**	Mpos (positive Moment) = $(wB*B^2)*0.08$	0.32 kip-ft	0.036	Tension	0.9	3.95 kip-ft		3.95 kip-ft	O.K.	8.19%
**	Mneg (negative Moment) = (wB*B^2)*0.1	0.40 kip-ft	0.036	Tension	0.9	4.74 kip-ft		4.74 kip-ft	O.K.	8.53%
	**continuous beam moment coefficients used			Structural Plain Conc	rete per ACI 22.5					
		Mu	S	φb	φMn =	Check	% allowed			
		Mu	Elastic Section Modulus	φο	φ5*(f'c*S)^0.5	φMn ≥ Mu	76 anowed			
	Moh1 (Moment at oh1) = 0	0.00 kip-ft	0.029 ft^3	0.55	1.046 kip-ft	O.K.	0.00%			
		Mu	Tensile Strain	Check ACI 14.8.2.3	фЬ	φMn trial =	$\Delta M =$	$\phi Mn =$	Check	% allowed
	Flexural Moments for Ls		Tensile Strain	Check ACI 14.6.2.5	φυ	óf'cbd^2ω(1-0.59ω)	Mu - φM	ψivin –	φMn ≥ Mu	70 anowed
	Mpos (positive Moment) = $(wL*L^2)*0.078$	0.34 kip-ft	0.036	Tension	0.9	3.95 kip-ft		3.95 kip-ft	O.K.	8.57%
**	Mneg (negative Moment) = (wB*B^2)*0.106	0.40 kip-ft	0.036	Tension	0.9	4.74 kip-ft		4.74 kip-ft	O.K.	8.43%
	**continuous beam moment coefficients used			Structural Plain Conc	crete per ACI 22.5					
		Mu	S	φb	$\phi Mn =$	Check	% allowed			
		Mu	Elastic Section Modulus	φο	φ5*(f'c*S)^0.5	φMn ≥ Mu	/6 allowed			
	Moh1 (Moment at oh1) = 0	0.00 kip-ft	0.029 ft^3	0.55	1.046 kip-ft	O.K.	0.00%			

Epsilon 1.2

MISSOURI PUBLIC SERVICE COMMISSION

APPROVED

11/19/2024 **MANUFACTURED HOUSING**

Shear

		Vu	φv	Vc	φVc	Check	% allowed
	Maximum Shear for Bs		per ACI 9.3.2.3	per ACI 11.3.1.1	1	φVc > Vu	
**	VuB = wB * B * 0.6	0.69 kip	0.85	5.82 kip	4.95 kip	O.K.	14.00%
				per ACI 22.8			
**	Voh1 = 0	0.00 kip	0.55	2.98 kip	1.64 kip	O.K.	0.00%
	**continuous beam shear coefficients used						
		Vu	φv	Ve	AXV-	Check	% allowed
	Shear for Ls	vu	per ACI 9.3.2.3	per ACI 11.3.1.1	φVc	φVc > Vu	76 allowed
**	VuL = wL * L * 0.605633802816901	0.51 kip	0.85	5.82 kip	4.95 kip	O.K.	10.22%
				per ACI 22.8			
**	Voh2 = 0	0.00 kip	0.55	2.98 kip	1.64 kip	O.K.	0.00%

Sustained Load Duration

6 months

Deflection

_		Service Loads														
Г									Long-Term	∆ total long-				Check long		
	Span	Mserv	M.sus	Leff.serv	Leff.sustained	Immediate Deflection			Deflection	term deflection	∆ allow	∆ allow	Check short	term	% allowed	% allowed -
	1					Δi	ρ_{comp}	λ	Δl-t	$(\Delta i + \Delta l - t)$	(immediate)	(long term)	term deflection	deflection	- short term	long term
	В	0.32 kip-ft	0.33 kip-ft	125.00 in	125.00 in	0.001 in	0.0049	0.9646	0.001 in	0.003 in	0.2333 in	0.0875 in	O.K.	O.K.	0.58%	1.49%
	L	0.34 kip-ft	0.35 kip-ft	125.00 in	125.00 in	0.001 in	0.0049	0.9646	0.001 in	0.003 in	0.2253 in	0.0845 in	O.K.	O.K.	0.60%	1.55%

Page 31 of 31 Date: 10/24/2024

RAINIER RN-125

Geometric properties				
Bs (width of roof panel)	11.92 ft			
Ls (Length of roof panel)	26.67 ft			
Ar Area of Roof	317.78 ft^2			
H (height of building)	9.69 ft			
Lb (length of building)	23.67 ft			
Wb (width of building)	10.5 ft			
Ab (Area of building)	248.54 ft^2			
Nv (quantity of vaults)	0			
Avl (Area of Vault Lips)	0.00 ft^2			
Av (Area of Vault)	0.00 ft^2			
Vh (Vault height)	0 ft			
Cab (Closed Area of building)	237.22 ft^2			
Hw (depth of floodwater)	1 ft			

μ (sliding factor)

0 lb 19146 lb
33461 lb
15186 lb
67793 lb
67793 lb
210 psf
400 psf
1500 psf
38.41 psf
51.74 psf
62.4 pcf

FS (factor of safety required)

august nocumativity in the community of
CHECK SLIDING RESISTANCE

	.7*Vseismic (from seismic analysis with snow)	12007.0 lb
Shear	.7*Vseismic (from seismic analysis without snow)	10032.0 lb
	Vwind = WLlat * max(Wb,Lb)*H	11867.8 lb

^{*} Load adjustment per IBC 1605.3 load combinations.

Sliding Resistance with Snow	Pslide = u*(.6*We+.75*PSFr*Ar)	Pslide =	36290.32 lb				
Fsreqd							
Factor of Safety	FSwind = Pslide / Vwind	FSwind =	3.1	≥	1.0	O.K.	
ractor or safety	FSseismic = Pslide / Vseismic	Fseismic =	3.0	≥	1.0	O.K.	
Sliding Resistance with No Snow	Pslide = u*.6*We	Pslide =	16270.32 lb	16270.32 lb			
	Fsreqd						
Factor of Safety	FSwind = Pslide / Vwind	Fswind =	1.4	IV	1.0	O.K.	
Factor of Safety	FSseismic = Pslide / Vseismic	Fseismic =	1.6	$ \cdot $	1.0	O.K.	

CHECK OVERTURNING RESISTANCE

	.7*Otseismic (from seismic analysis with snow)	106.892 kip-ft		
Shear	.7*Otseismic (from seismic analysis without snow)	88.834 kip-ft		
	Otwind = $(WLlat*Lb*H^2/2) + (Fupmw*Lb*Wb^2/2)$	107.618 kip-ft		

^{*} Load adjustment per IBC 1605.3 load combinations.

Overturning Resistance with Snow	Otrsnow = (.6*We+.75*PSFr*Ar)*(Wb/2)	Otrsnow =	221.560 kip-ft	Ĺ			
Factor of Safety	FSwind = Otrsnow / Otwind	FSwind =	2.06	≥	1.0	O.K.	
	FSseismic = Otrsnow / Vseismic	Fseismic =	2.07	≥	1.0	O.K.	
Overturning Resistance with No Snow	Otr = .6*We*Wb/2	Otr	213.548 kip-ft	213.548 kip-ft			
	· · · · · · · · · · · · · · · · · · ·						
England of Cafeta	FSwind = Otr / Vwind	Fswind =	1.98	≥	1.0	O.K.	
Factor of Safety	FSseismic = Otr / Vseismic	Fseismic =	2.40	≥	1.0	O.K.	

CHECK BEARING PRESSURE CONDITION

Net Pressure	Pnet = (Wev + PSFr	941.27 psf			
470 1.1	D . D .	1500 6 5	0.41.00		0.17

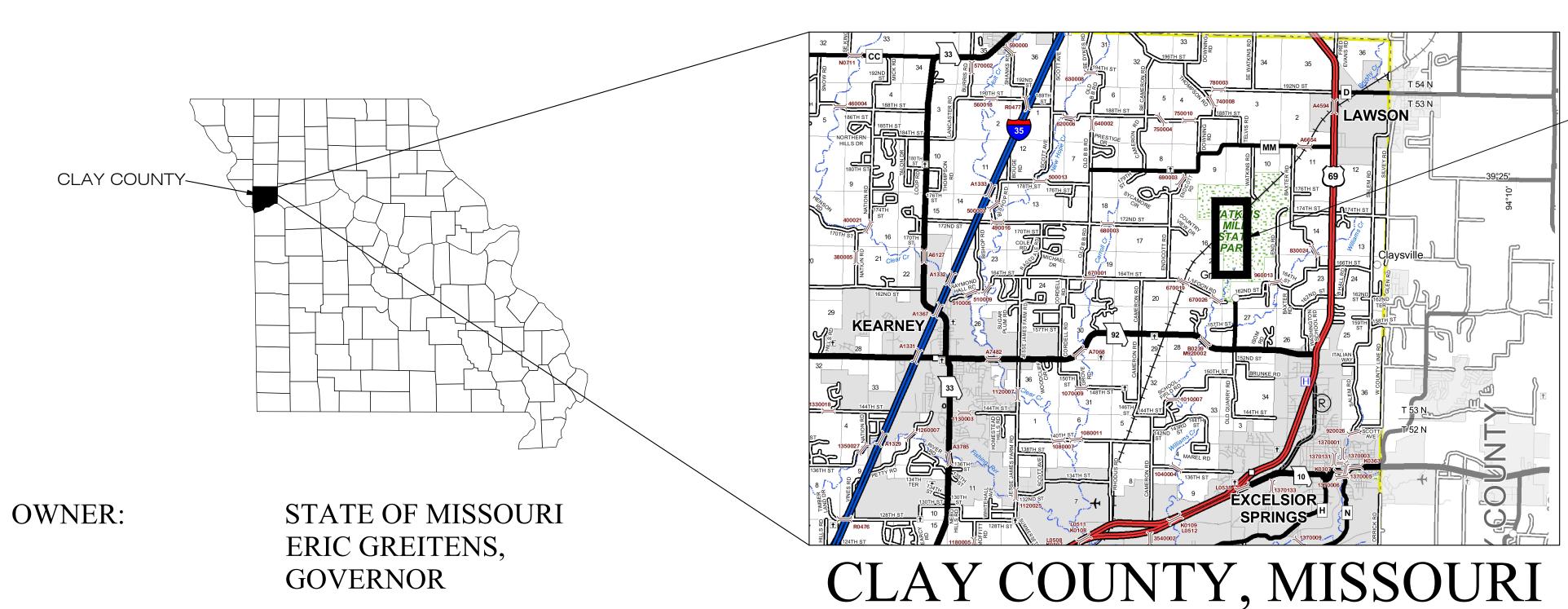
 Allowable
 Pmax
 ≥ Pnet
 1500 psf
 ≥ 941.27 psf
 O.K.

 By observation, if the building is placed on a properly prepared well drained granular sub-base, the design is sufficient for lateral and vertical loads.

CHECK BUOYANCY FORCE CONDITION

Buoyant Force	$Fb = \gamma w^* A v^* H w + \gamma w^* C a$	Fb =	14802.67 lb			
Factor of Safety	FSb = We / Fb	FSb =	4.58	≥	1.00	O.K.

The weight of the building exceeds the buoyant force due to hydrostatic pressure acting on the horizontal surface of the vault, therefore, the design is sufficient against buoyancy.


Floor Design Information:

- 1) The referenced building is made of flood damage resistant 5000 psi reinforced concrete.
- 2) The vault system, if existing, is designed to minimize infiltration into system and can be considered water tight to a height of 17"
 3) Flood Ventilation is available at threshold level and flood ventilation exceeding 1" per sq. ft. of floor area is provided
- 3) Flood Ventilation is available at threshold level and flood ventilation exceeding 1" per sq. ft. of floor area is provided no more than 12" A.F.F.

MISSOURI
PUBLIC SERVICE
COMMISSION
APPROVED
11/19/2024
MANUFACTURED
HOUSING

Watkins Mill State Park & Historic Site Upgrade Wastewater Treatment System Lawson, Missouri

PROJECT LOCATION

DEPARTMENT OF NATURAL RESOURCES

OFFICE OF ADMINISTRATION

DESIGN AND CONSTRUCTION

DIVISION OF FACILITIES MANAGEMENT,

PROJECT

MANAGEMENT:

DESIGNER:

SHAFER, KLINE & WARREN, INC. 3200 PENN TERRACE, SUITE 100

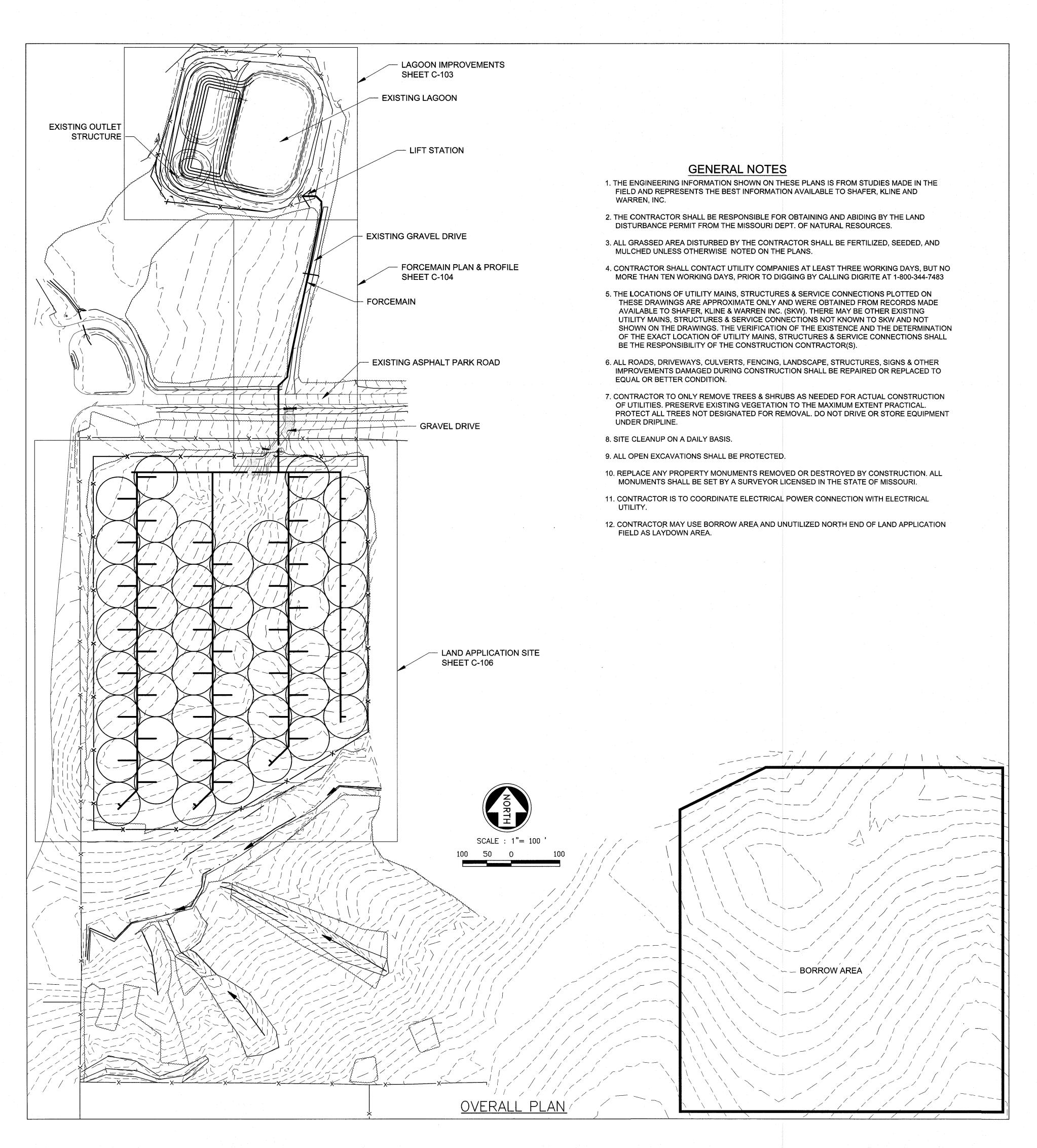
COLUMBIA, MO 65202

(573) 442-4537

PROJECT NUMBER:

X 1410-01

SITE NUMBER: FACILITY NUMBER:


4118 51577

ISSUE DATE:

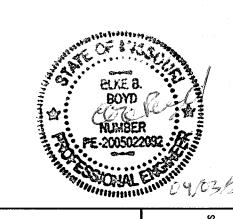
4-3-2017

SHEET NUMBER:

G-001

SHEET INDEX

DESCRIPTION		SHEE	TNUMBER
COVER SHEET			G-001
OVERALL PLAN			C-101
GRADING PLAN			C-102
LAGOON SITE PLAN			C-103
FORCEMAIN A PLAN ANI	D PROFILE		C-104
FORCEMAIN B PLAN ANI	D PROFILE		C-105
LAND APPLICATION SITE	E PLAN		C-106
SEPTIC SYSTEM			C-107
EFFLUENT STRUCTURE	DETAILS		C-108
PIPING DETAILS			C-109
LAND APPLICATION DET	AILS		C-110
PUMP STATION DETAILS	: 3		C-111
FENCE DETAILS			C-112
ELECTRICAL			E100-E102


In	ITEMS	

	Description	<u>Units</u>	Est. Q
<u>LAG</u>	OON CONSTRUCTION		
1	Sludge Removal - 3-cell lagoon	LS	1
2	Lagoon Earthwork, complete including compaction	LS	1
3	Lagoon Liner, installed complete including compaction	CY	1,750
4	Lagoon Fencing, installed complete, including relocated and additional lengths	LF	417
5	Effluent Structure Modifications, installed complete with internal and lagoon piping	LS	1
6	6" SDR 26 PVC Gravity Outfall Line, installed complete	LF	84
7	8" SDR 26 PVC Gravity Sewer Line, installed complete	LF	260
8	4-ft Diameter Standard Manhole, installed complete	EA	1
9	Silt Fence, installed complete	LF	592
10	Clearing and Grubbing, including removal of obsolete materials	LS	1
11	Rip Rap at Lagoon	SY	280
	D APPLICATION SYSTEM		
12		LS	1
13	Pump Station, installed complete, incl. DIP, fittings, valves, meter, gauge, drain li	LS	1
14	6" SDR 26 PVC Forcemain, complete installed with tracer wire & fittings	LF	557
15	6" Yellowmine PVC Directional Bore	LF	40
16	4" SDR 21 PVC Pipe, complete installed with tracer wire and fittings	LF	156
17	3" SDR 21 PVC Pipe, complete installed with tracer wire and fittings	LF	914
18	2" SDR 21 PVC Pipe, complete installed with tracer wire and fittings	LF	927
19	1.5" SDR 21 PVC Pipe, complete installed with tracer wire and fittings	LF	450
20	1" SDR 21 PVC Pipe, complete installed with tracer wire on lateral and fittings	LF	2,120
21	Sprinkler Assembly, complete installed	EA	48
22	1" Line Termination System, complete installed	EA	4
23	4" Line Termination System, complete installed	EA	1
24	Land Application Field Fencing, installed complete	LF	2,519
25	12 ft Gate, installed complete	EA	1
26	24" CMP Culvert, complete installed with two Flared End Sections	LF	18
27	18" CMP Culvert, complete installed with one Flared End Section	LF	30
28	Gravel Drive and Turnaround, complete installed, including clearing	SY	500
******	TIC SYSTEM	On the lateral wife a construction of the state and the st	
29	Sludge Removal - Residence	LS	1
30	Lagoon Earthwork, complete including compaction	LS	1
31	4" SDR 35 PVC Service Line, installed complete including connections	LF	190
32	Septic Tank, installed complete including connections	LS	1
33	Electric Service Line Extension for Dosing Tank, installed complete	LS	1
34	Dosing Tank, installed complete including connections, pump and controls	LS	1
35	Distribution Field and Header, installed complete	LS	1
36	Curtain Drain, installed complete	LF	160
37	Clearing and Grubbing, including removal & abandonment of obsolete materials	LS	1
	CELLANEOUS CONSTRUCTION		
38	Mobilization/Demobilization	LS	1
39	Maintenance and Compliance with SWPPP	LS	1
40	Site Restoration, Fertilize, Seed and Mulch	LS	1
41	Construction Staking	LS	1

NOTE:

QUANTITIES ARE NOT GUARANTEED AND ARE PROVIDED FOR ESTIMATING PURPOSES ONLY. BIDDER TO VERIFY QUANTITIES IN PREPARATION OF BID.

1-800-344-7233 DIG-SAFE 1-800-344-7483 DIG-RITE STATE OF MISSOURI ERIC GREITENS, GOVERNOR

DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION

OFFICE OF ADMINISTRATION

DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

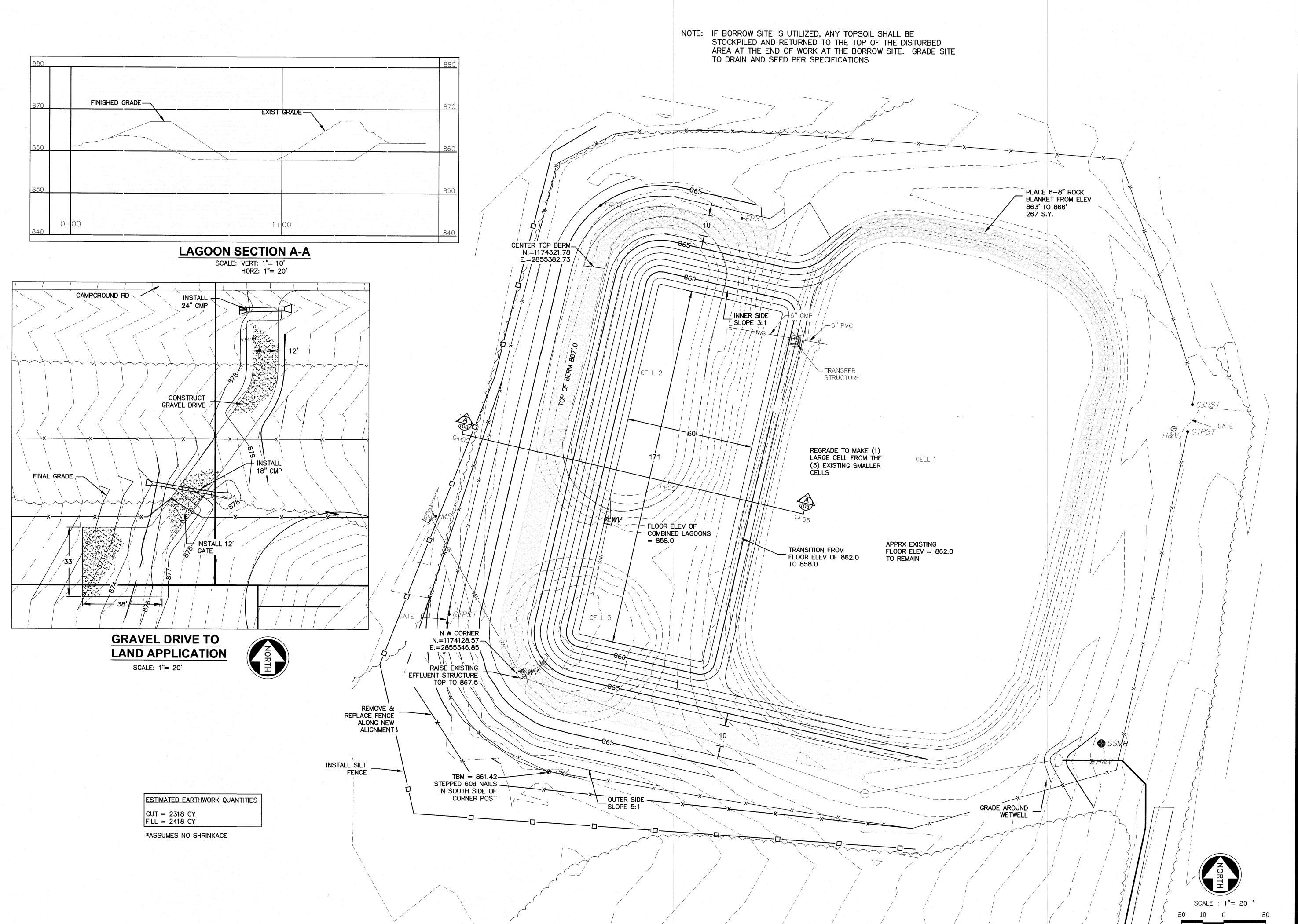
WATKINS MILL STATE PARK & HISTORIC SITE

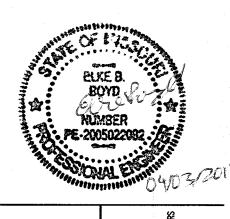
PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

REVISION:
DATE:
REVISION:
DATE:
REVISION:
DATE:

CAD DWG FILE:C-101.dwg
DRAWN BY: JWR
CHECKED BY: DES
DESIGNED BY: EBB

ISSUE DATE: 4/3/2017


SHEET TITLE:


OVERALL PLAN

SHEET NUMBER:

C-101

2 OF 16 SHEETS

SHAFER, KLINE & WARREN, INC.

107 Butler Street, Macon, MO 63552-1628
660/385-6441 FAX: 660/385-6614

OFFICE LOCATIONS:
Macon, MO
Tulsa, OK
Houston, TX
North Kansas City, MO
Houston, TX
North Kansas City, MO
Houston, TX
North Kansas Library LAD SURPEORS LAND SURPEORS LAND PR

OFFICE OF ADMINISTRATION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION

DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

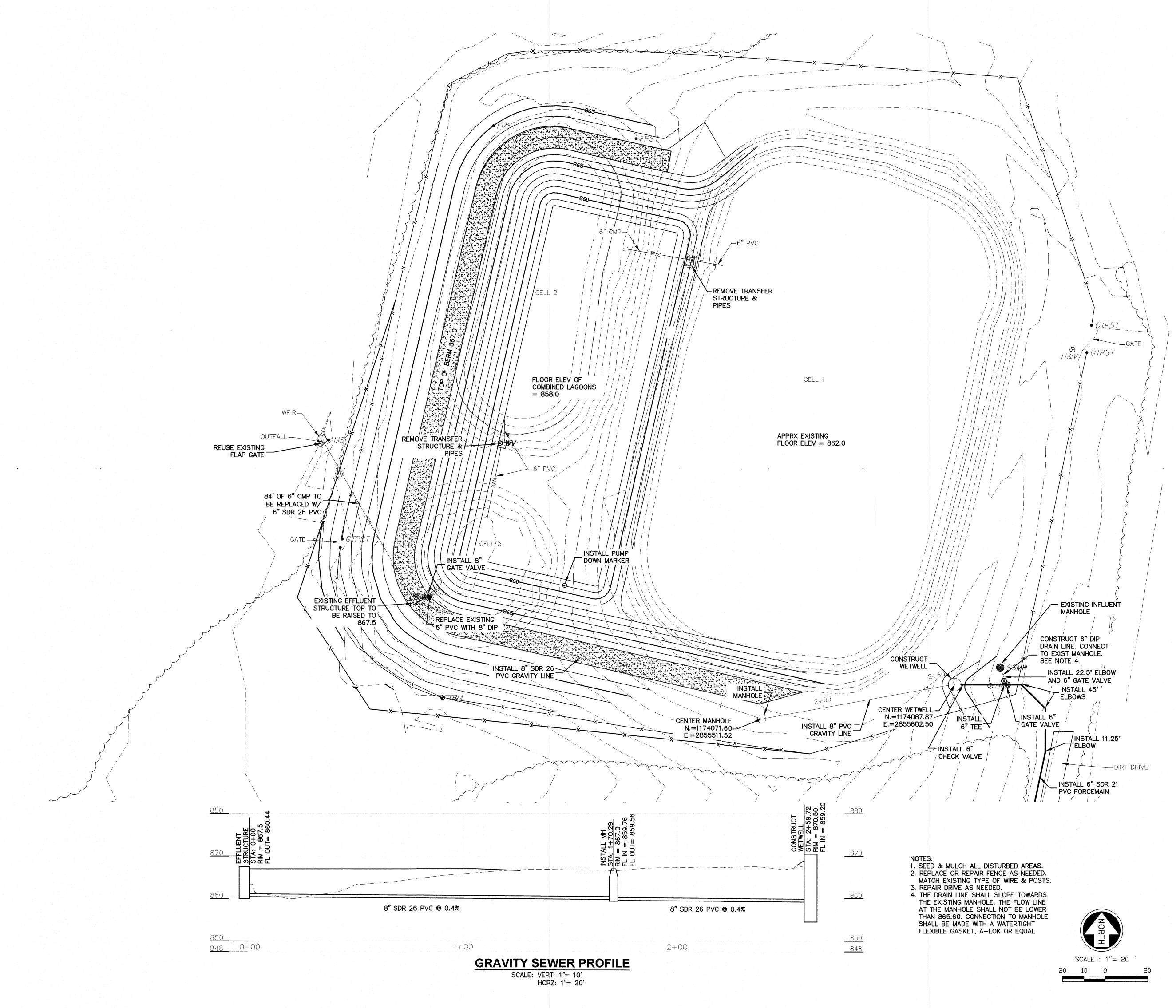
WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

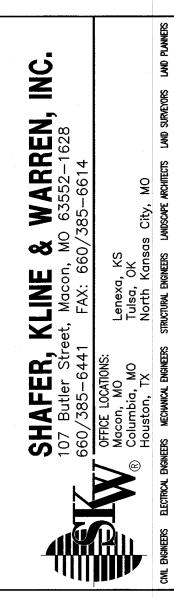
REVISION:
DATE:
REVISION:
DATE:

REVISION:____ DATE:____

ISSUE DATE: 4/3/2017


CAD DWG FILE:C-102.dwg
DRAWN BY: JWR
CHECKED BY: DES
DESIGNED BY: EBB

SHEET TITLE:


GRADING PLAN

SHEET NUMBER:

C-102

OFFICE OF ADMINISTRATIC DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION

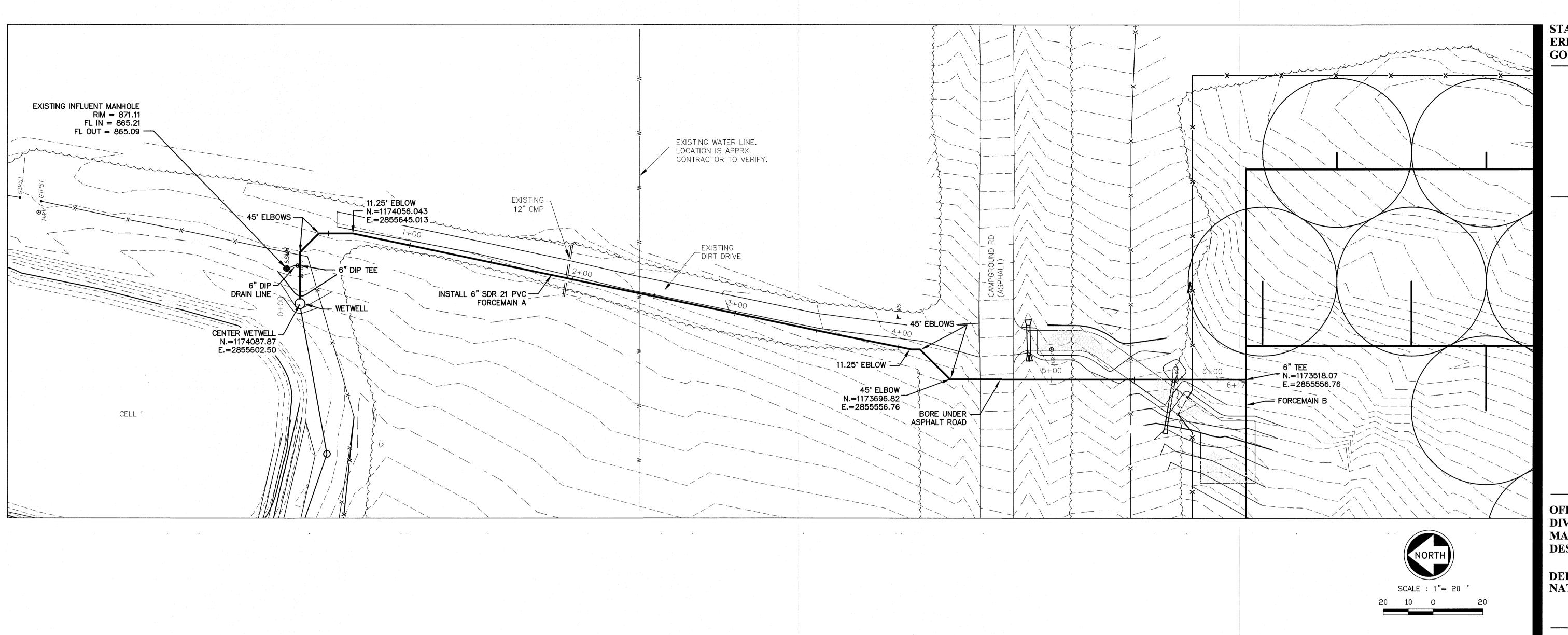
DEPARTMENT OF NATURAL RESOURCES

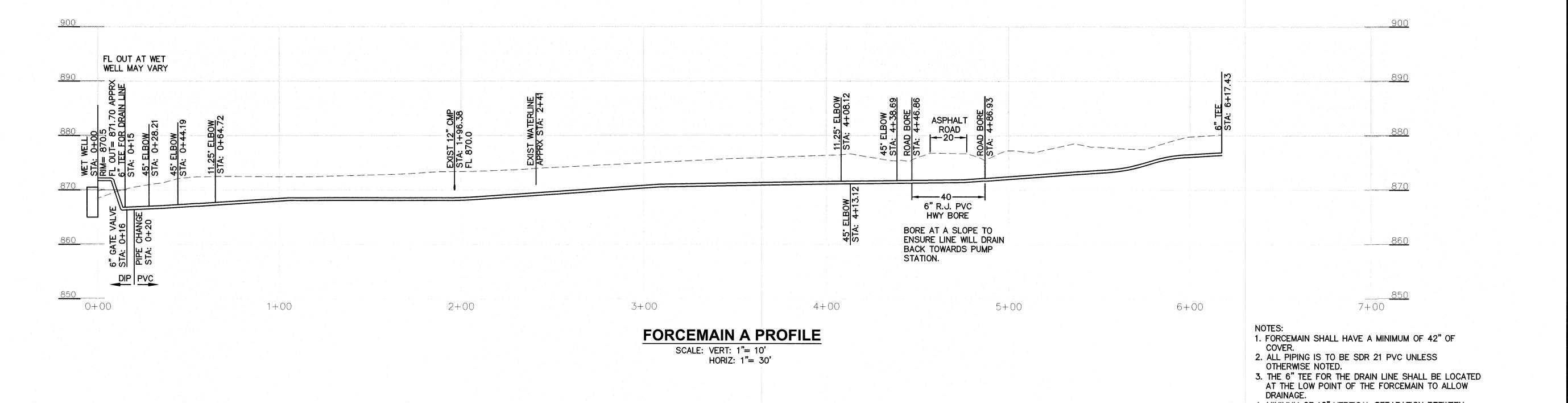
PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

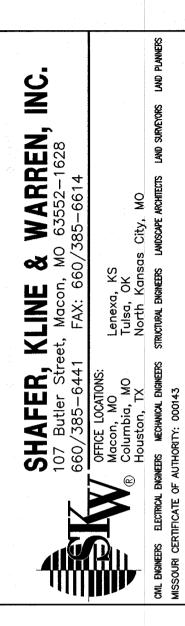
PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

REVISION:
DATE:
REVISION:
DATE:
REVISION:
DATE:
ISSUE DATE: 4/3/2017

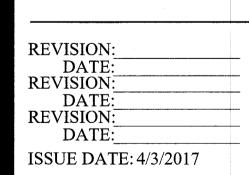

CAD DWG FILE:C-103.dwg
DRAWN BY: JWR
CHECKED BY: DES
DESIGNED BY: EBB


SHEET TITLE:

LAGOON SITE PLAN


SHEET NUMBER:

C-103


OFFICE OF ADMINISTRATION OF FACILITIES MANAGEMENT,
DESIGN AND CONSTRUCTION

DEPARTMENT OF NATURAL RESOURCES

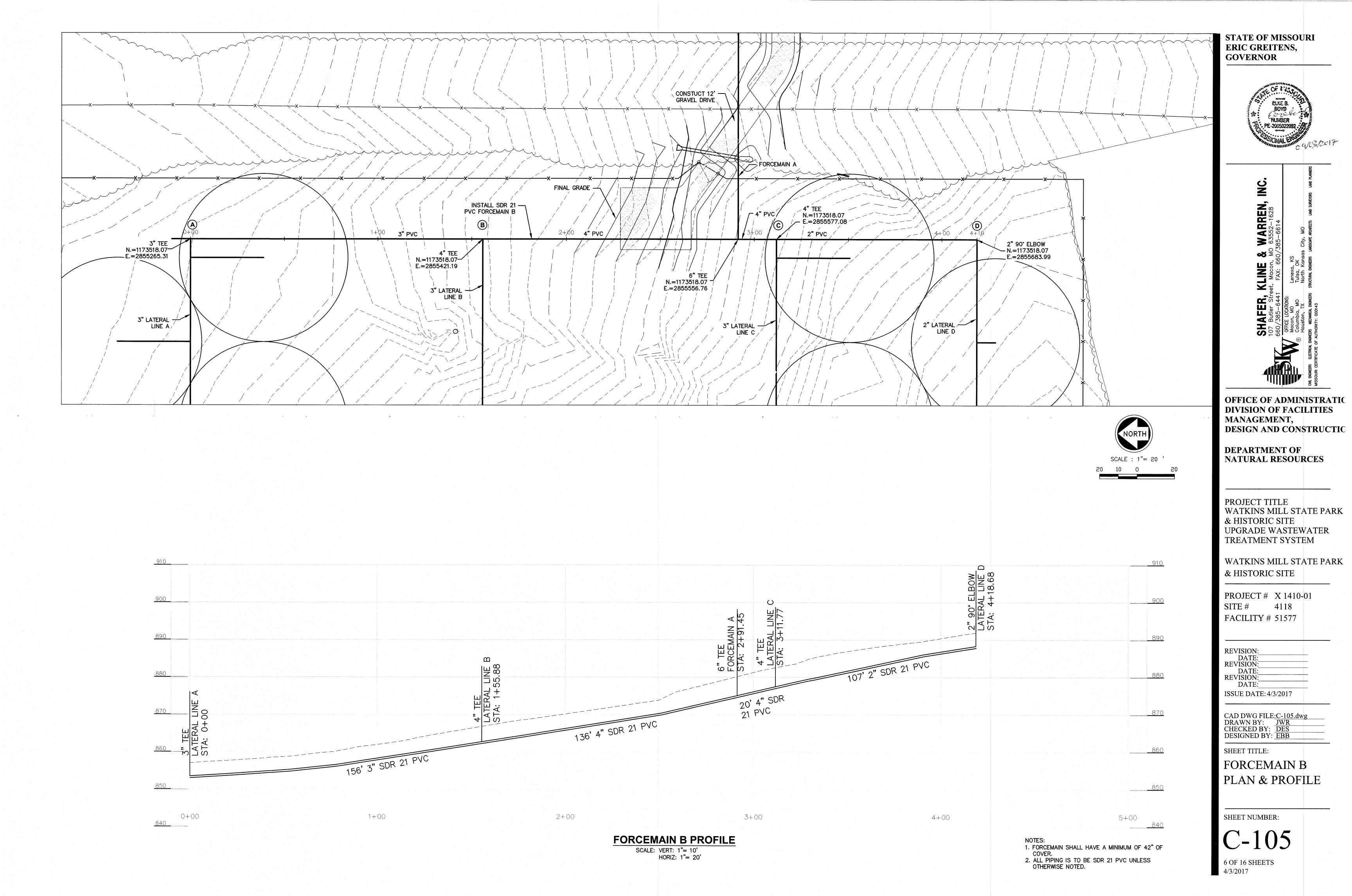
PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

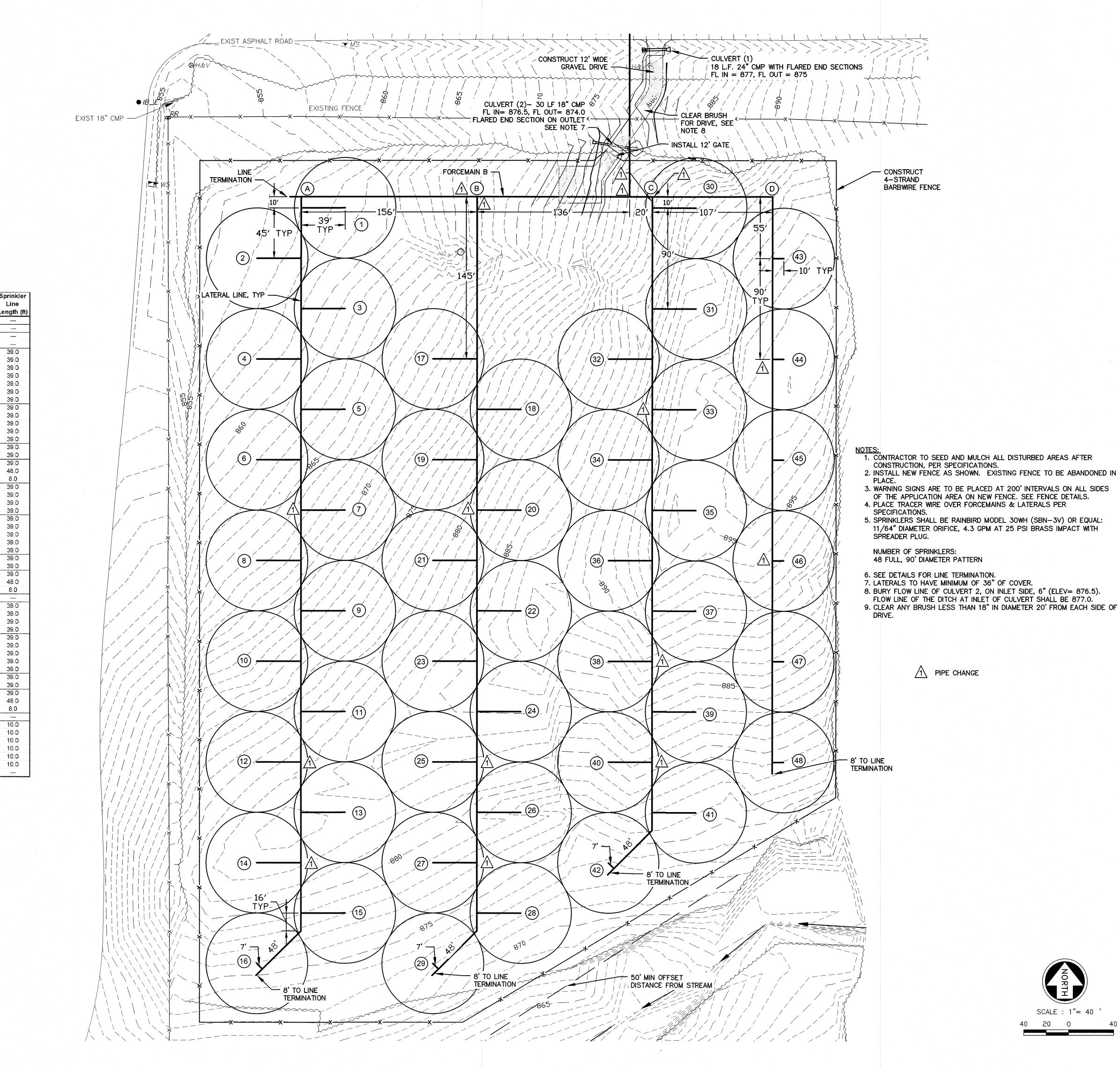
WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

CAD DWG FILE:C-104.dwg
DRAWN BY: JWR
CHECKED BY: DES
DESIGNED BY: EBB

SHEET TITLE:


FORCEMAIN A
PLAN & PROFILE


SHEET NUMBER:

C-104

5 OF 16 SHEETS 4/3/2017

4. MINIMUM OF 18" VERTICAL SEPARATION BETWEEN FORCEMAIN AND WATERLINE.

FM A: PS to FM B

FM B: Lat B to Lat A

Lat A to Termination

A1 to A2

A2 to A3

A3 to A4

A4 to A5

A5 to A6

A6 to A7

A7 to A8

A8 to A9

A9 to A10

A10 to A11

A11 to A12

A12 to A13

A13 to A14

A14 to A15

A15 to A16

B17 to B18

B18 to B19

B19 to B20

B20 to B21

B21 to B22

B22 to B23

B23 to B24

B24 to B25

B26 to B27

B27 to B28

B28 to B29

C30 to C31

C31 to C32

C32 to C33 C33 to C34

C34 to C35

C35 to C36

C36 to C37

C37 to C38

C38 to C39

C39 to C40

C40 to C41

C41 to C42

D43 to D44

D44 to D45

D45 to D46

D46 to D47

D47 to D48

C42 to Termination

Lat D: FM B to D43

D48 to Termination

FM B: Lat C to Lat D 2.0

B29 to Termination

Lat C: FM B to C30

FM B: FM A to Lat C 4.0

A16 to Termination

Lat B: FM B to B17

156.0

8.0

10.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

16.0

145.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

16.0

10.0

90.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

45.0

16.0

107.0

55.0

90.0

90.0

90.0

90.0

90.0

8.0

2.0

3.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

STATE OF MISSOURI ERIC GREITENS, GOVERNOR

OFFICE OF ADMINISTRATIC DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION

DEPARTMENT OF NATURAL RESOURCES

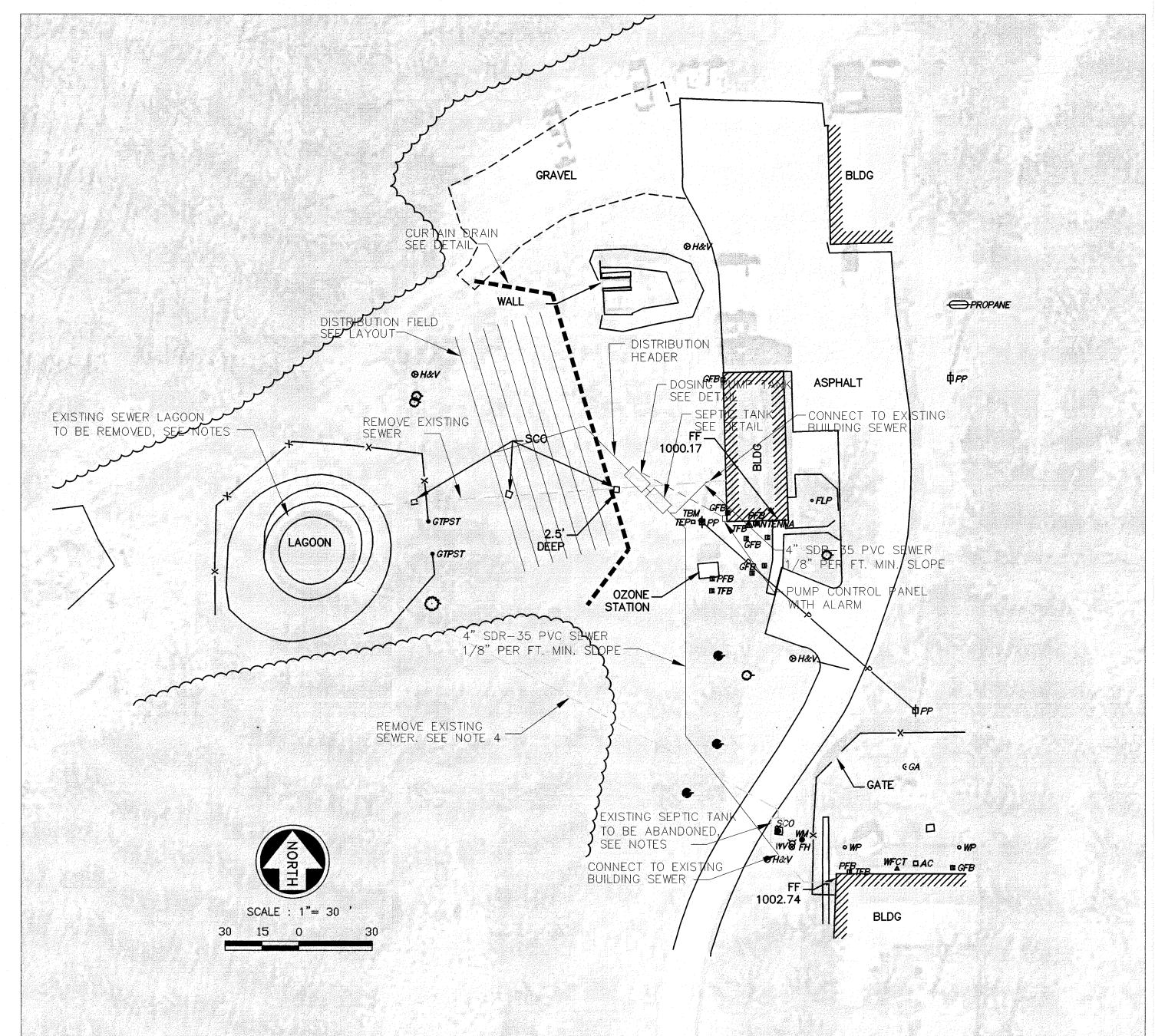
PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

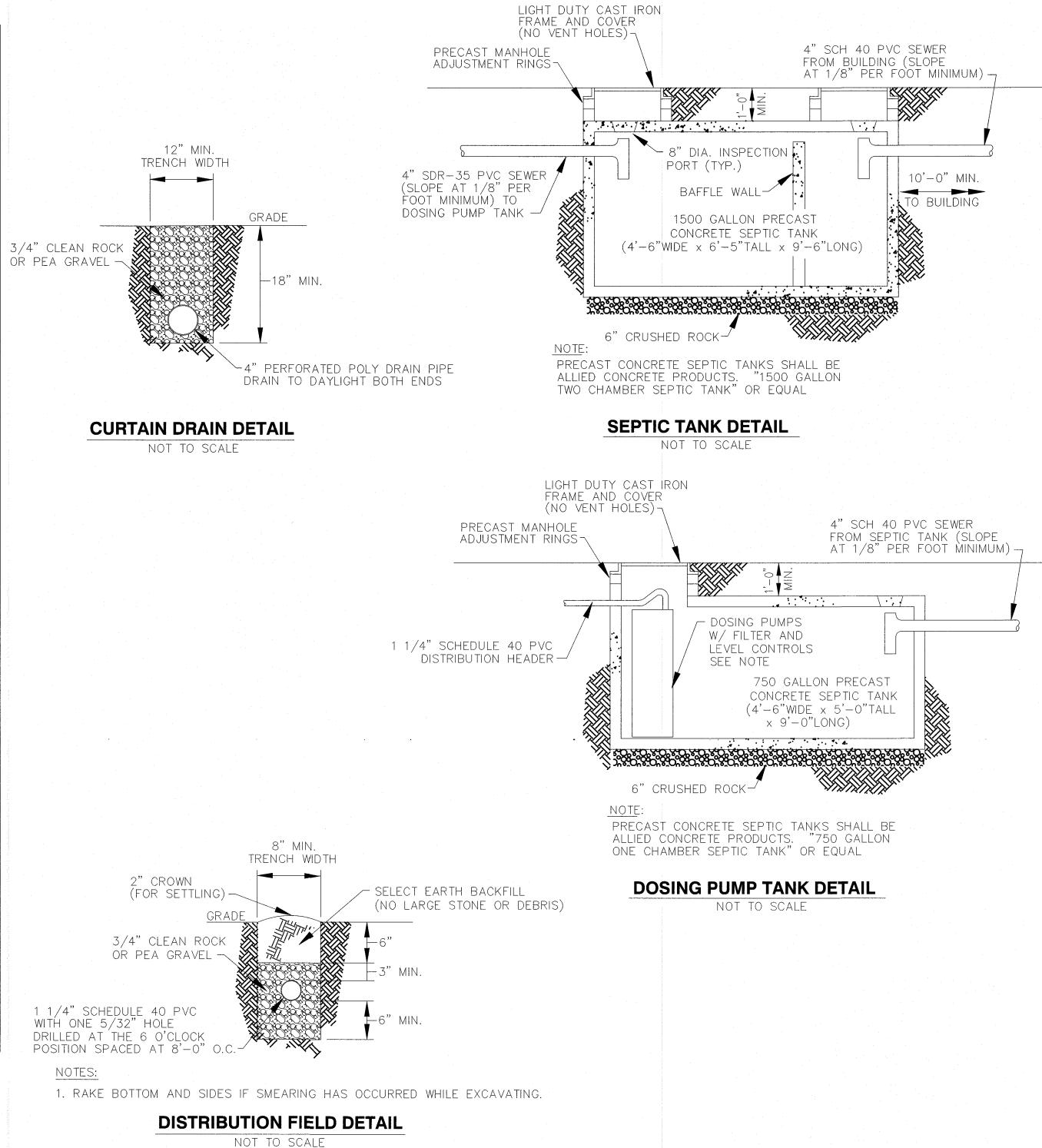
PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

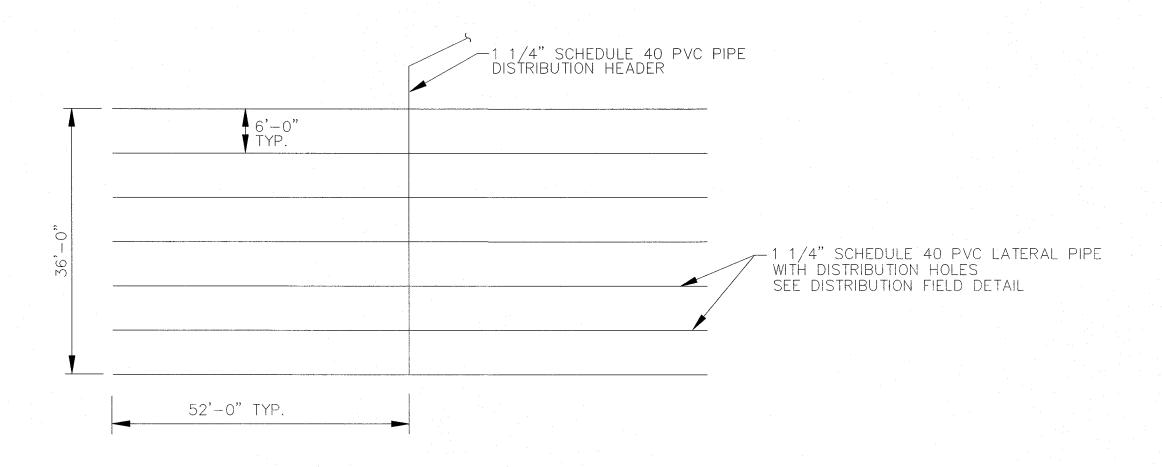
REVISION:
DATE:
REVISION:
DATE:
REVISION:
DATE:
REVISION:

ISSUE DATE: 4/3/2017


CAD DWG FILE:C-106.dwg
DRAWN BY: JWR
CHECKED BY: DES
DESIGNED BY: EBB

SHEET TITLE:


LAND APPLICATION
SITE PLAN


SHEET NUMBER:

C-106

SEPTIC SYSTEM SITE PLAN

DISTRIBUTION FIELD LAYOUT NOT TO SCALE

NOTES:

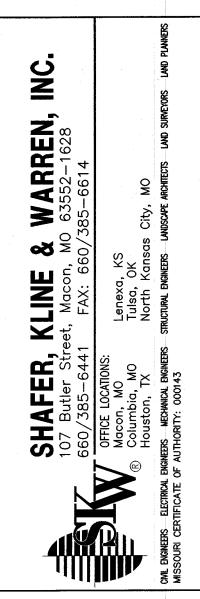
- 1. THE EXISTING SEWER LAGOON SHALL BE DECOMMISSIONED AND REMOVED AFTER THE PROPOSED SEPTIC SYSTEM IS APPROVED AND IN SERVICE. LAGOON LIQUID AND SLUDGE SHALL BE REMOVED AND HAULED BY A LICENSED SEPTIC HAULING CONTRACTOR. EXISTING FENCING SHALL BE REMOVED AND PIPING SHALL BE REMOVED TO BELOW GRADE AND THE REMAINDER ABANDONED IN PLACE. THE LAGOON SHALL BE FILLED IN AND GRADED TO MATCH THE SURROUNDING AREA. ALL DISTURBED AREAS SHALL BE SEEDED AND MULCHED.
- 2. THE EXISTING SEPTIC TANK LOCATED AT THE HOME SHALL BE DECOMMISSIONED AFTER THE PROPOSED SEPTIC SYSTEM IS APPROVED AND IN SERVICE. LIQUID AND SLUDGE SHALL BE REMOVED AND HAULED BY A LICENSED SEPTIC HAULING CONTRACTOR. THE TOP SHALL BE REMOVED, A DRAINAGE HOLE PLACED IN THE BOTTOM OF THE TANK, AND THE TANK FILLED WITH COMPACTED SOIL TO MATCH THE SURROUNDING AREA. ALL DISTURBED AREAS SHALL BE SEEDED AND MULCHED.
- 3. SEWER DOSING PUMP SHALL BE AN ENGINEERED DEMAND DOSED PUMP PACKAGE AND SHALL INCLUDE PUMPS, FILTER, FLOAT SWITCHES ASSEMBLY, DISCHARGE ASSEMBLY, AND PUMP CONTROL PANEL WITH HIGH WATER ALARM. PUMP PACKAGE SHALL BE "BIOTUBE VAULT PVU57-1819" WITH TWO "PF5005" 50 GPM PUMPS AND "DAX2 ROSA" PANEL MANUFACTURED BY ORENCO SYSTEMS, INC. OR APPROVED EQUAL.
- 4. EXISTING SEWER IN WOODED AREA MAY BE ABANDONED BY PLUGGING EACH END OF PIPE AT THE EDGE OF TIMBER.

DESIGN NOTES:

3 BEDROOM HOME 150 GALLONS PER BEDROOM PER DAY MAXIMUM TOTAL FLOW PER DAY= 450 GALLONS

SHOP BUILDING
30 GALLONS PER USER, 5 USERS
MAXIMUM TOTAL FLOW PER DAY= 150 GALLONS

COMBINED HOUSE AND SHOP TOTAL FLOW PER DAY= 600 GALLONS


ONE 1500 GALLON SEPTIC TANK = 1500 GALLONS 600 GALLONS PER DAY = 2.5 DAYS = 60 HOURS MINIMUM DETENTION TIME

INDICATION OF HIGH WATER TABLE AT 16" DEPTH CONVENTIONAL LEACHFIELD NOT APPROPRIATE, USE SHALLOW PRESSURE DOSED SYSTEM

SOIL LOADING RATE= .15 GALLONS PER DAY/ PER SQ. FT. AT 23 INCHES 600 GALLONS/.15 GALLONS= 4000 SQ. FT. OF DISTRIBUTION FIELD DISTRIBUTION FIELD =100' LONG x 40' WIDE

STATE OF MISSOURI ERIC GREITENS, GOVERNOR

OFFICE OF ADMINISTRATION DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION

DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

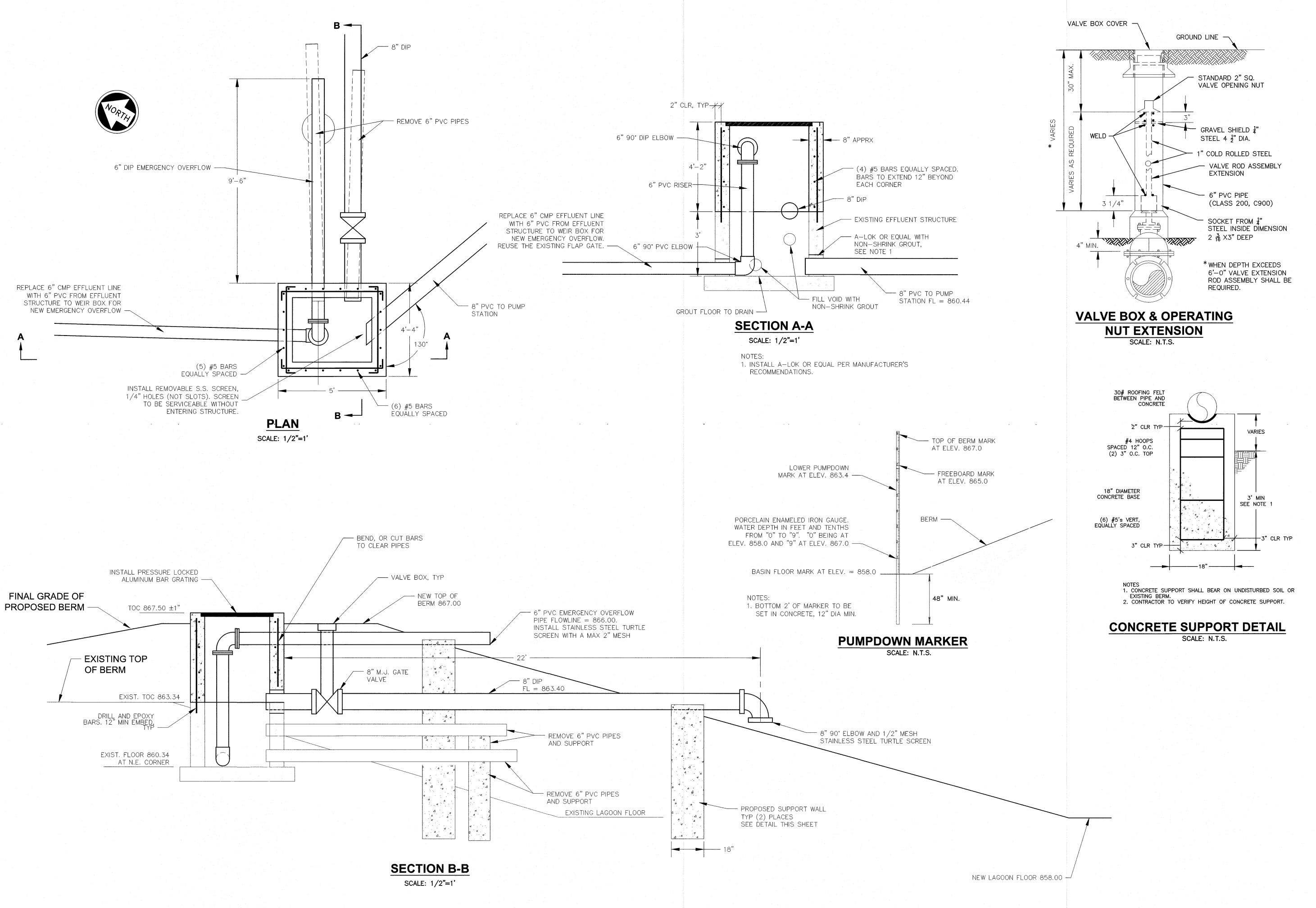
WATKINS MILL STATE PARK & HISTORIC SITE

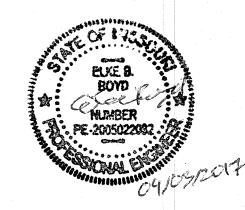
PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

REVISION:	
DATE:	
REVISION:	
DATE:	
REVISION:	
DATE:	

ISSUE DATE: 4/3/2017

CAD DWG FILE:SEPTIC DRAWING.dwg
DRAWN BY: DAB
CHECKED BY: DES


SHEET TITLE:


DESIGNED BY: EBB


SEPTIC SYSTEM

SHEET NUMBER:

C-107

OFFICE OF ADMINISTRATION OF FACILITIES MANAGEMENT,
DESIGN AND CONSTRUCTION

DEPARTMENT OF NATURAL RESOURCES

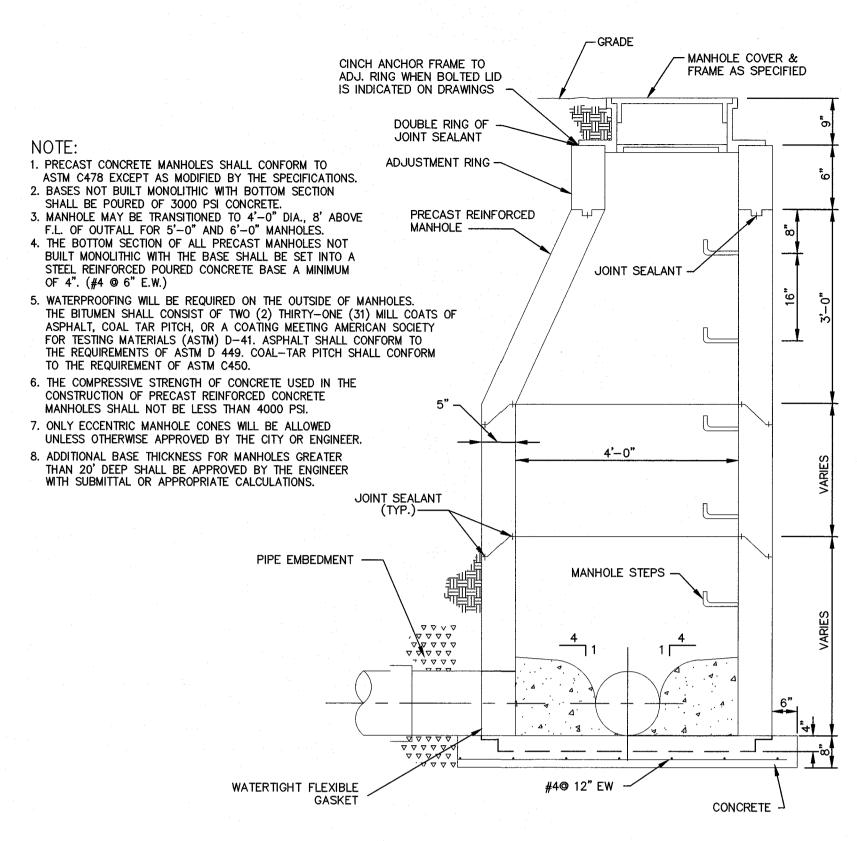
PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

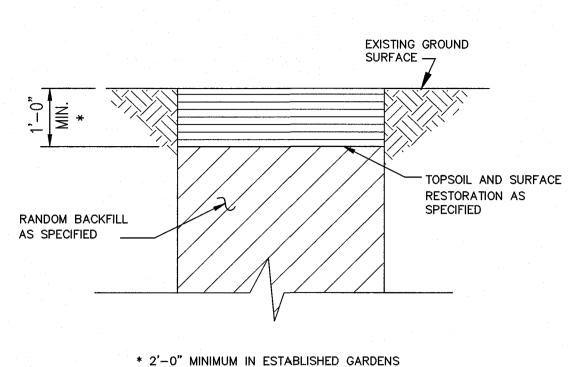
PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

REVISION: 1 REMOVED PIPE 1
DATE: 09-30-15
REVISION: 2 REVISED MARKER
DATE: 9-30-15
REVISION:

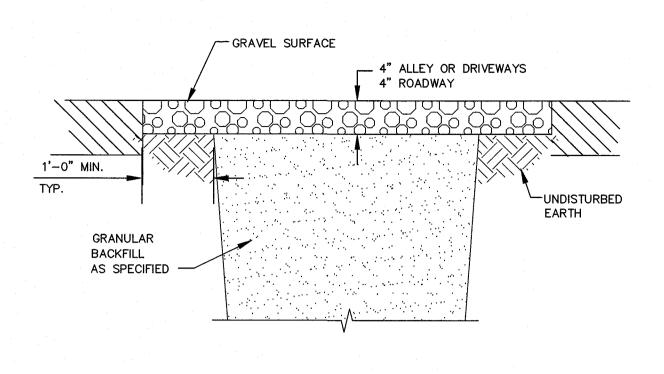
DATE: _____ ISSUE DATE: 4/3/2017


CAD DWG FILE:130512 EFFL STRUC.d DRAWN BY: JWR CHECKED BY: DES DESIGNED BY: EBB

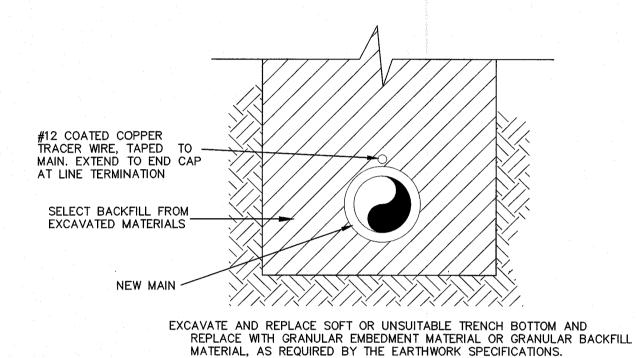
SHEET TITLE:


EFFLUENT
STRUCTURE DETAILS

SHEET NUMBER:


C-108

4'-0" I.D. STANDARD PRECAST MANHOLE SCALE: N.T.S.


NON-PAVED AND NON-GRAVELED SURFACE AREA N.T.S.

GRAVEL SURFACED AREA

SAW CUT EXISTING ASPHALT 4" ASPHALT SURFACE SURFACE COURSE-TYP. GRANULAR BACKFILL AS SPECIFIED -1) ASPHALT TO BE INSTALLED IN 2" LIFTS. ASPHALT DRIVEWAYS N.T.S.

TYPICAL TRENCH BACKFILL & SURFACE RESTORATION DETAILS SCALE: N.T.S.

NON-PAVED AND NON-GRAVELED SURFACE AREA (FORCEMAIN)

NOTES: PIPE INSTALLATION/BEDDING (FORCEMAIN)

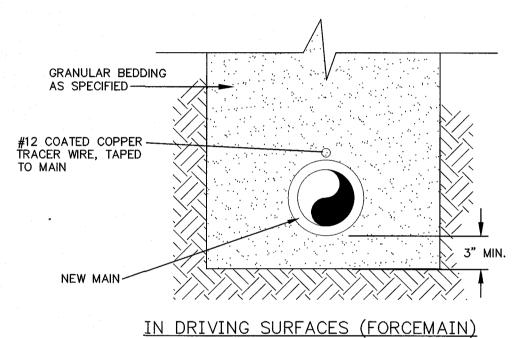
AND LATERALS 36" TO THE TOP OF THE LINE

LENGTH UNLESS PREAPPROVED BY THE ENGINEER

AND LATERAL LINES

1. FORCEMAIN SHALL BE BURIED TO A MINIMUM DEPTH OF 42"

2. PVC PIPE SHALL BE SLIP JOINT SDR21 AND SHALL MEET


REQUIREMENTS OF ASTM 2241. JOINTS SHALL BE 20' IN

3. ALL CHANGES IN THE MAIN LINE DIRECTION GREATER THAN

5. TRACER WIRE SHALL BE TYPE UF #12 SOLID CONDUCTOR

6. TRACER WIRE SHALL BE INSTALLED WITH THE FORCEMAINS

11.25° SHALL BE ACCOMPLISHED USING STANDARD FITTINGS

TYPICAL PIPE INSTALLATION/BEDDING DETAILS

MIN. TRENCH MAX. TRENCH MIN. TRENCH

WIDTH IN WIDTH IN WIDTH IN

30

32

34

36

24

SCALE: N.T.S.

TRENCH WIDTH

24

26

30


< 4

4 - 6

10

12 32

(INCHES) EARTH (INCHES) EARTH (INCHES) ROCK (INCHES)

GRAVITY SEWER (ALL SURFACES)

BACKFILL -TRENCH BACKFILL ONE TRENCH CHECK REQUIRED EACH RUN OF PIPE BETWEEN MANHOLES. MAXIMUM DISTANCE BETWEEN TRENCH CHECKS TO BE 250' COMPACTED CLAY AS SPECIFIED COMPACTED -CLAY AS

TRENCH CHECK SCALE: N.T.S.

NOTE:

FORCEMAIN

2'-0" MIN.

SPECIFIED

- 1. FOR ALL PIPELINES GREATER THAN 2", MINIMUM CASING LENGTH SHALL BE FROM RIGHT-OF-WAY TO RIGHT-OF-WAY OR AS SHOWN ON DRAWINGS.
- 2. ALL ROAD CROSSINGS SHALL BE BORED OR OPEN CUT, AS INDICATED ON THE PLANS.
- 3. USE STANDARD FITTINGS TO MAINTAIN MINIMUM COVER.

- RIGHT OF WAY

6" MIN. COVER

PVC OR STEEL CASING -

CUT SECTION

- CASING END SEALS

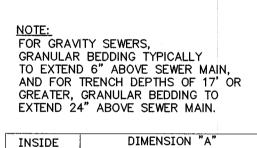
TOE OF BACKSLOPE

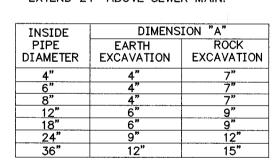
4. CARRIER PIPE TO BE "YELOMINE" RESTRAINED

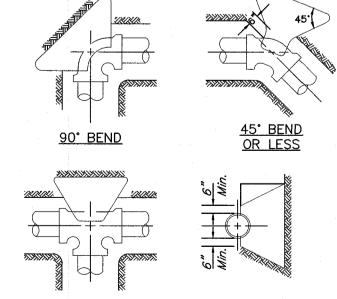
JOINT, OR APPROVED EQUAL.

- ROAD SURFACE RIGHT OF WAY -

TOE OF FILL SLOPE -


∠ PVC OR STEEL CASING


FILL SECTION


Min. Typ.

5. ROAD BEDS TO BE COMPACTED TO 95% STANDARD PROCTOR DENSITY IF APPLICABLE.

WHEN ANY TRENCH IS AT EDGE OF PAVEMENT, BACKFILL TRENCH WITH COMPACTED ROLL STONE BASE ROCK, AFTER BEDDING.

TYPICAL SECTION

[PIPE SIZE	24"	20"	18"	16"	14"	12"	10"	8"	6"	4" & UNDER
	90' BEND	40	30	25	20		12	8	5	3	1
	45° BEND	24	16	14	12		7	5	3	1 1/2	1
	22 1/2° BEND	12	8	7	5 1/2		3 1/2	2 1/2	1 1/2	1	1
	11 1/4' BEND	6	4	3 1/2	3		2	1 1/2	1	1	1
	TEE	30	22	18	14		8	6	3 1/2	2	1

1. THRUST BLOCKS SHALL BE POURED CONCRETE.
2. THRUST BLOCKS SHALL BE PLACED AT EVERY FITTING.

TYPICAL CONCRETE THRUST BLOCKS

SCALE: N.T.S.

OFFICE OF ADMINISTRATION **DIVISION OF FACILITIES** MANAGEMENT, **DESIGN AND CONSTRUCTIO DEPARTMENT OF** NATURAL RESOURCES

STATE OF MISSOURI

CHUHBER

ERIC GREITENS,

GOVERNOR

PROJECT TITLE WATKINS MILL STATE PARK & HISTORIC SITE UPGRADE WASTEWATER TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 4118 FACILITY # 51577

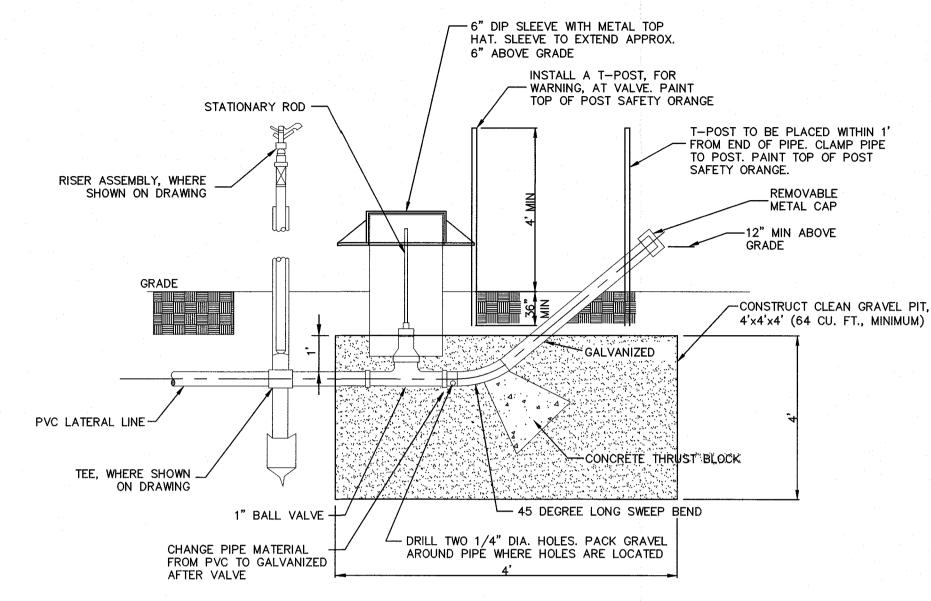
	1	-	
REVISION: 1 TE	XT CC	ORREC	CTIO
DATE: 09-3	0-15		
REVISION:			
DATE:			
REVISION:			

CAD DWG FILE: 130512 DETAILS.dwg DRAWN BY: CHECKED BY: DES DESIGNED BY: EBB

SHEET TITLE:

DATE:

ISSUE DATE: 4/3/2017

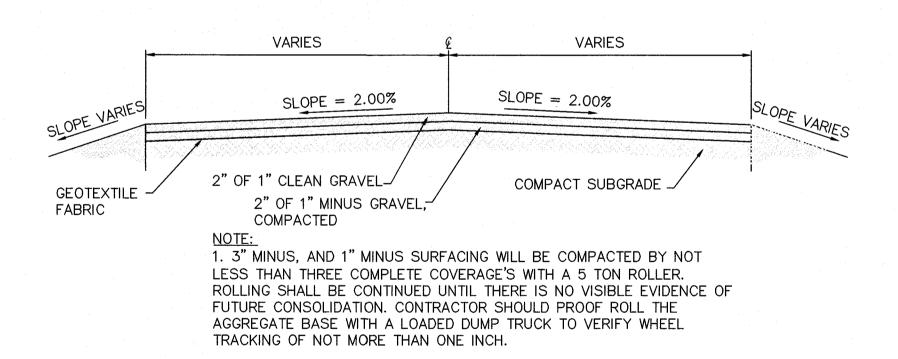

PIPING DETAILS

SHEET NUMBER:

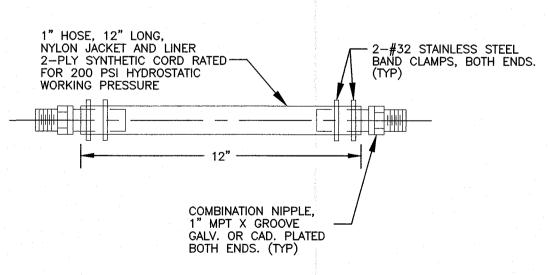
10 OF 16 SHEETS

4/3/2017

NOTES:

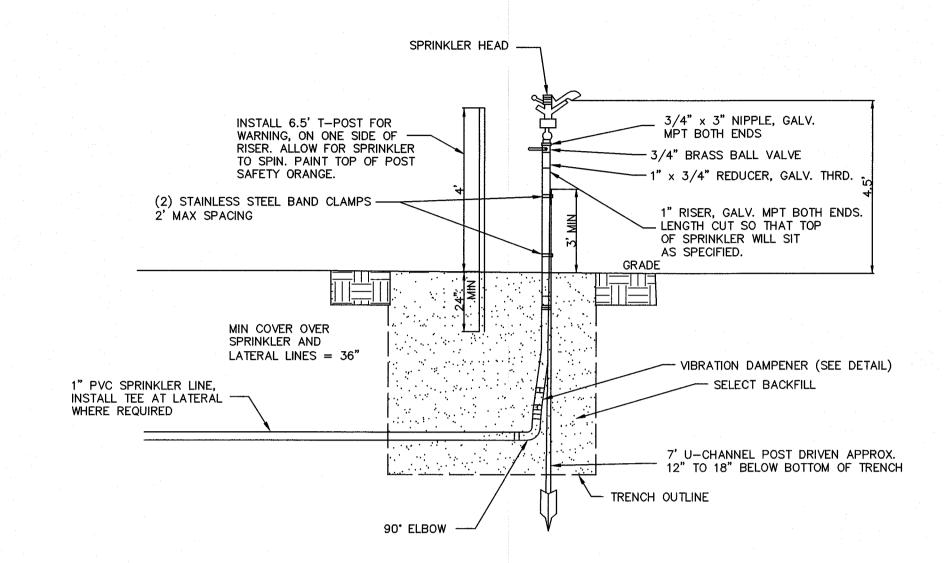

1. INSTALL WHERE SHOWN ON DRAWING.

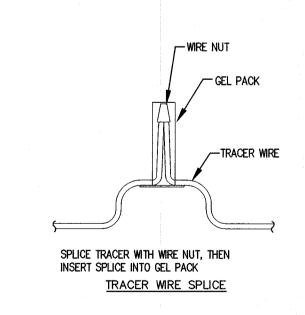
2. PIT WIDTH = 4'.


3. MATCH PIPE DIAMETER, VALVES & FITTINGS TO CONNECTING LINE.

LINE TERMINATION-SPRINKLER

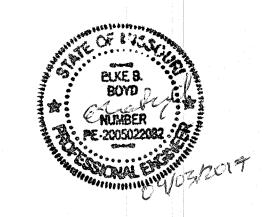
SYSTEM SCALE: N.T.S.

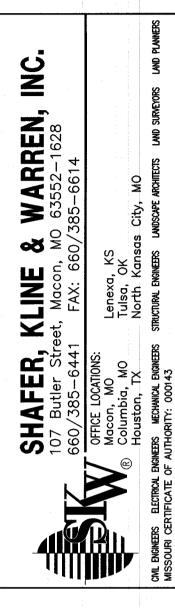

GRAVEL DRIVE SECTION
SCALE: N.T.S.


VIBRATION DAMPENER-SPRINKLER

SYSTEM

SCALE: N.T.S.


SPRINKLER ASSEMBLY DETAIL
SCALE: N.T.S.



TRACER WIRE DETAILS

SCALE: N.T.S.

STATE OF MISSOURI ERIC GREITENS, GOVERNOR

OFFICE OF ADMINISTRATION OF FACILITIES MANAGEMENT,
DESIGN AND CONSTRUCTION

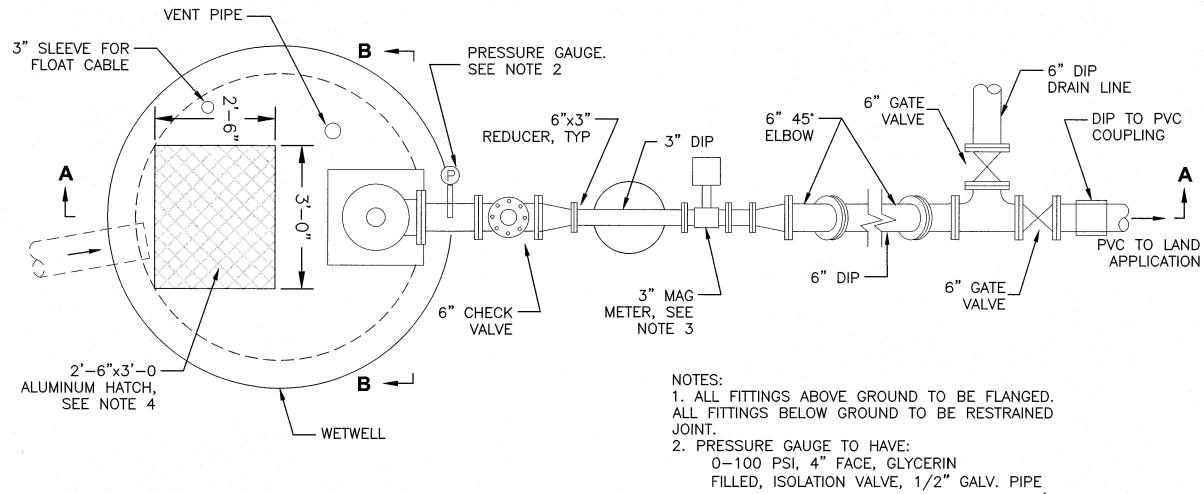
DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

	1	
REVISION:		
DATE:		
REVISION:)	
DATE:		
REVISION:		
DATE:	:	·
ISSUE DATE: 4/:	3/2017	7


CAD DWG FILE:130512 DETAILS.dwg
DRAWN BY: JWR
CHECKED BY: DES
DESIGNED BY: EBB

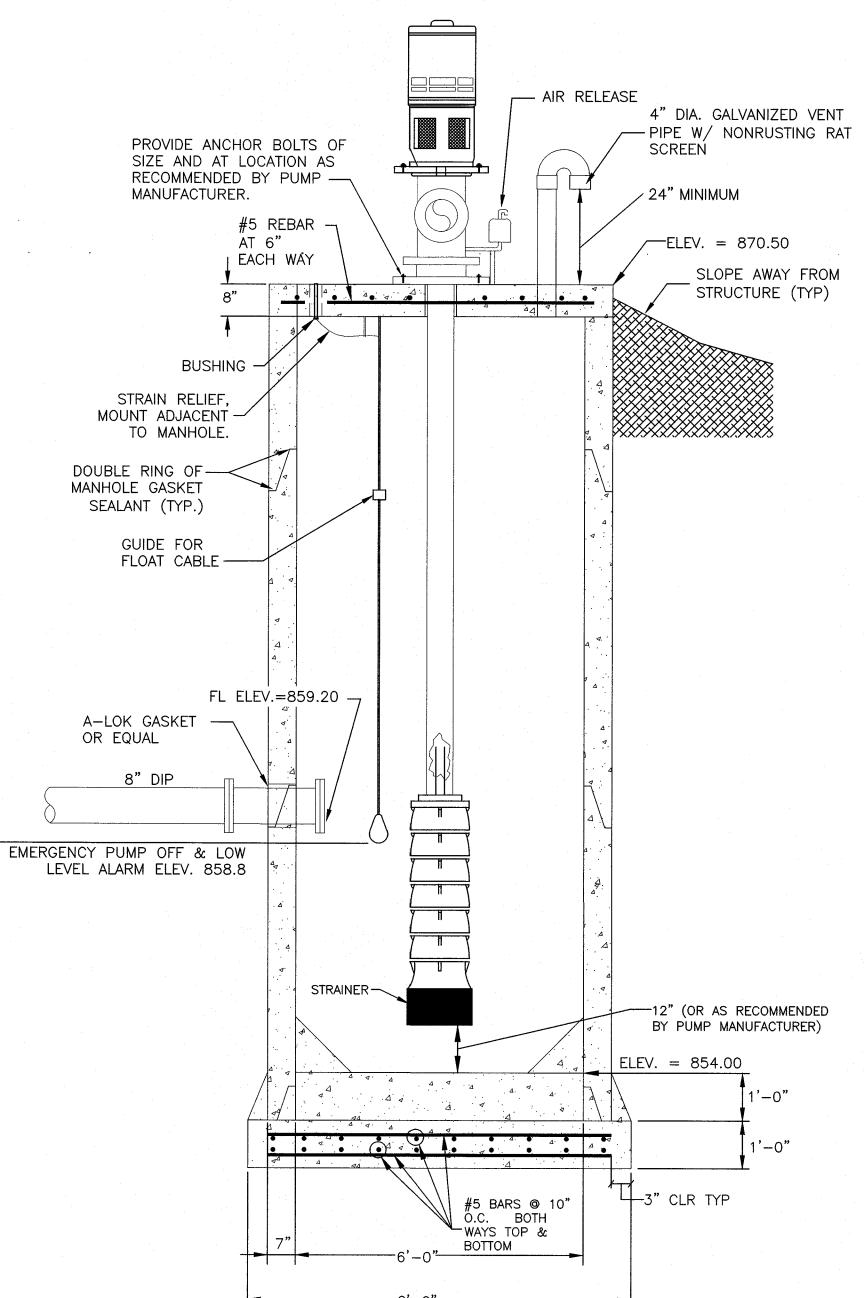
SHEET TITLE:

LAND APPLICATION DETAILS

SHEET NUMBER:

C-110

WET WELL PLAN


SCALE: 1/2"=1'

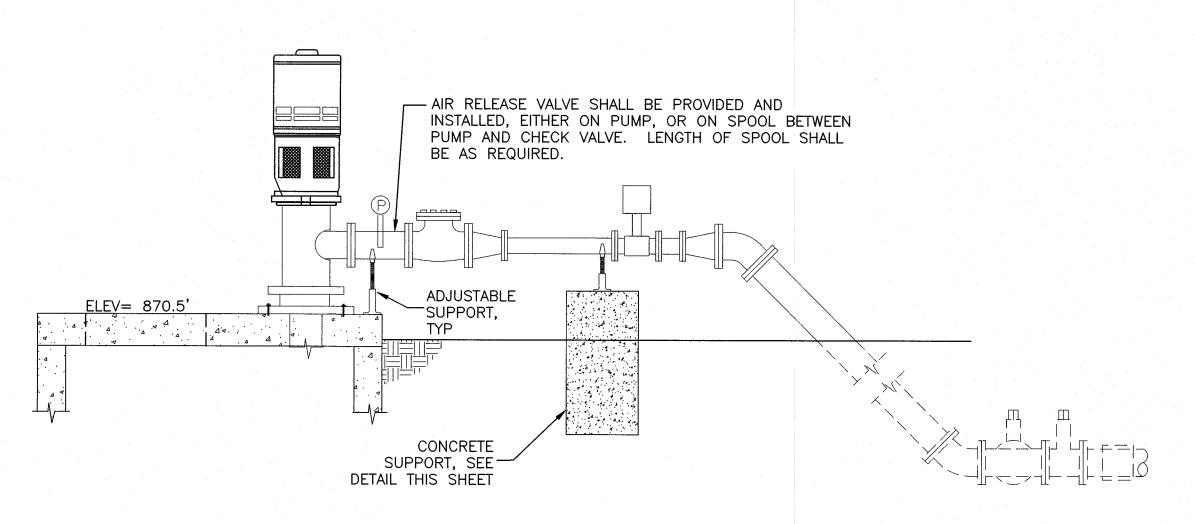
FILLED, ISOLATION VALVE, 1/2" GALV. PIPE

3. INSTALLATION OF METER PER MANUFACTURER'S RECOMMENDATIONS. LENGTH OF RUNS OF PIPE BEFORE AND AFTER METER SHALL BE PER METER MANUFACTURER'S RECOMMENDATIONS.

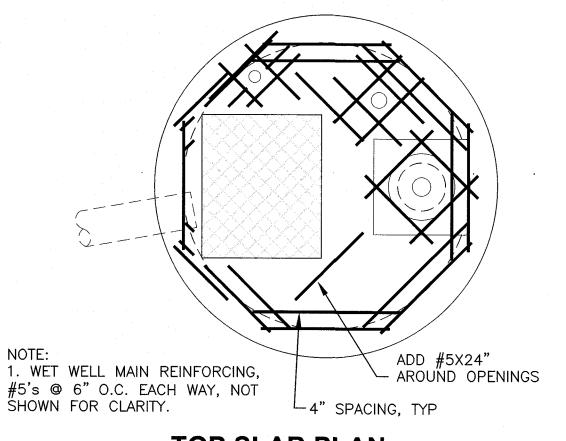
4. ACCESS HATCH TO BE ALUMINUM CHECKER PLATE, 3/16" THICK. ALUMINUM ANGLE FRAME TO BE 1 1/2"x1 1/2"x1/4" CONTINUOUS WITH 1/2"x4" ANCHORS AT 24" O.C. IT SHALL BE A POSITIVE LOCK OPEN COVER.

5. INSTALL VALVE BOXES AND OPERATING NUT EXTENSION PER DETAIL, SHEET C-108

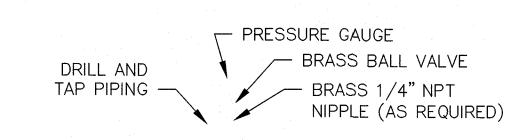
WET	WELL	NOTES:


- 1. THE CONTRACTOR SHALL ADJUST THE ELEVATION OF THE SUMP TO SATISFY THE REQUIREMENTS OF THE PUMP MANUFACTURER.
- 2. THE CONTRACTOR MAY ADJUST THE SUMP ONLY AFTER RECEIVING APPROVAL FROM THE ENGINEER.
- 3. THE NUMBER OF PUMP BOWLS MAY VARY BY MANUFACTURER.
- 4. CONTRACTOR SHALL PROVIDE SUPPORT FOR THE PUMP AND SHAFT AS RECOMMENDED BY THE MANUFACTURER.
- 5. ALL EXPOSED STEEL AND CONDUIT TO BE HOT DIPPED GALVANIZED.
- 6. MAINTAIN REQUIRED DISTANCE FROM METER TO FITTINGS BY MANUFACTURER.
- 7. CONTROL FLOAT SHALL BE ADJUSTABLE OR REPLACEABLE WITHOUT ENTERING THE WET WELL.
- 8. PROVIDE SUFFICIENT CABLE TO ALLOW DISCONNECTION WITHOUT ENTERING INTERIOR OF LIFT STATION.
- NOTE:

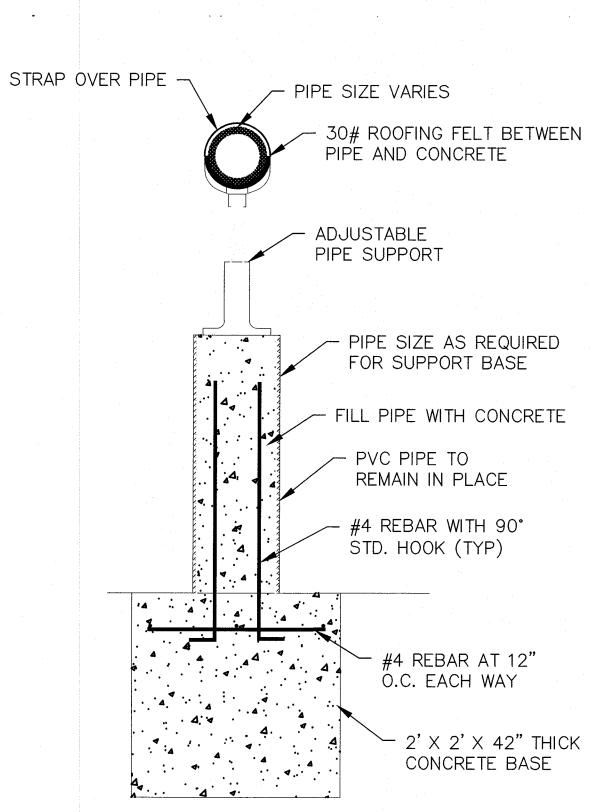
 1. ALL INTERIOR FITTINGS TO BE FLANGED. ALL EXTERIOR FITTINGS TO BE RESTRAINED JOINT.


VERTICAL TURBI PUMP STATIO	
DESCRIPTION	PUMP STATION
PUMP CAPACITY	206 GPM
TOTAL DYNAMIC HEAD	115 FT
MIN. FLOW LINE IN AT P.S.	859.2 FT
APPROX. CONTROL SETTING	6 HRS
RISING PUMP NO. 1 "ON"	MANUAL W/ TIMER
TOP ELEV. OF PUMP STATION	870.5 FT
INSIDE DIAMETER OF PUMP STATION	6 FT

WET WELL SECTION B-B


SCALE: 1/2"=1'

SCALE: 1/2"=1'



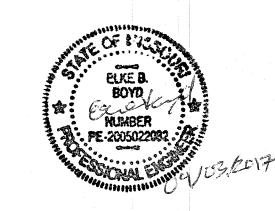
TOP SLAB PLAN
SCALE: 1/2"=1'

PRESSURE GAUGE INSTALLATION

NOT TO SCALE

1. BASE NOT NEEDED IF CONSTRUCTED IN A BUILDING OR A VAULT WITH A CONCRETE FLOOR.

2. CONCRETE SUPPORT SHALL BEAR ON UNDISTURBED SOIL IF POSSIBLE. OTHERWISE IT SHALL BEAR ON THOROUGHLY COMPACTED SOIL.


3. CONTRACTOR TO VERIFY HEIGHT OF SUPPORT.

NOTES:

CONCRETE SUPPORT DETAIL

NOT TO SCALE

STATE OF MISSOURI ERIC GREITENS, GOVERNOR

SHAFER, KLINE & WARREN, INC.

107 Butler Street, Macon, MO 63552-1628
660/385-6441 FAX: 660/385-6614

OFFICE LOCATIONS:
Macon, MO
Tulsa, OK
Houston, TX
North Kansas City, MO
Houston, TX
North Kansas Lity, MO
Houston, TX
North MO
Houston, MO

OFFICE OF ADMINISTRATIC DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTIC

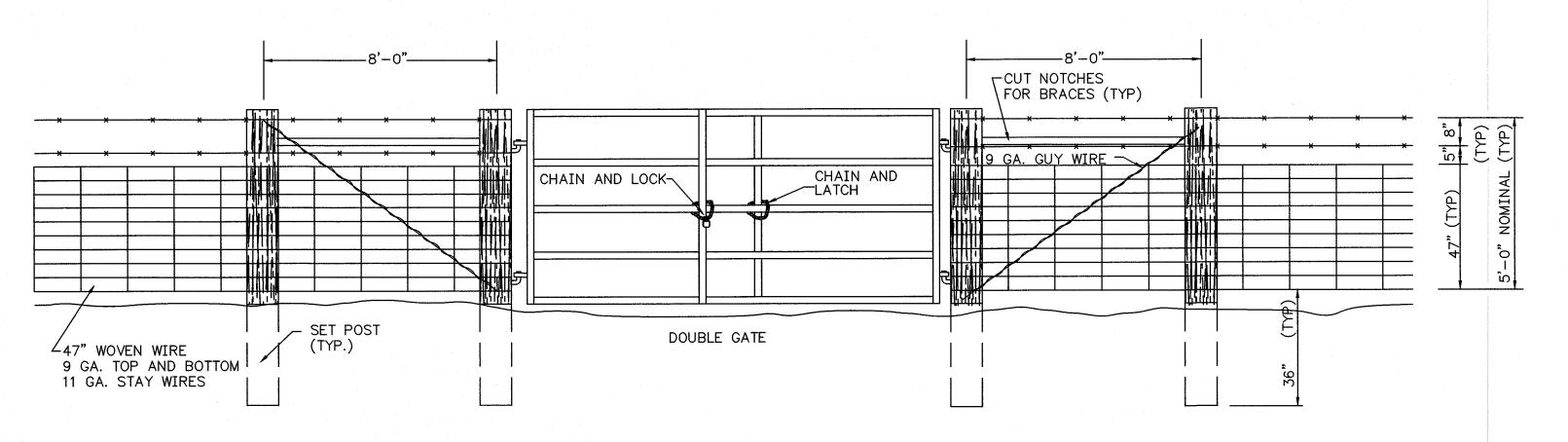
DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

REVISION:
DATE:
REVISION:
DATE:
REVISION:
DATE:
REVISION:
DATE:
ISSUE DATE: 4/3/2017


CAD DWG FILE:130512 DETAILS.dwg
DRAWN BY: JWR
CHECKED BY: DES
DESIGNED BY: EBB

SHEET TITLE:

PUMP STATION DETAILS

SHEET NUMBER:

C-111

1.) ALL FENCING MATERIALS SHALL BE WITHIN THE REQUIREMENTS OF THIS PLAN SHEET.

2.) FENCING IS TO BE WOVEN WIRE AROUND LAGOON. FENCING IS TO BE 5 STRAND GALVANIZED, 4 POINT BARBED WIRE AROUND

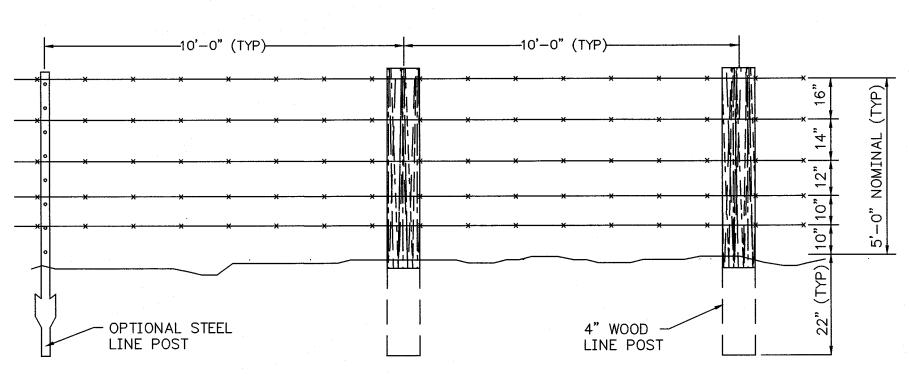
3.) ALL SET POSTS SHALL BE 8" MINIMUM DIAMETER WOOD POSTS SET IN A 18" MINIMUM DIAMETER HOLE, BACKFILLED WITH SUITABLE MATERIAL THOROUGHLY TAMPED. POST MATERIAL SHOULD BE THAT WHICH IS READILY AVAILABLE AND TREATED TO RESIST ROT AND

4.) SINGLE GATES SHALL BE REQUIRED FOR ENTRANCES UP TO 12' WIDE. DOUBLE GATES SHALL BE REQUIRED FOR ENTRANCES OVER 12'

WIDE. GATES SHALL BE HEAVY TUBULAR STEEL, WELDED CONSTRUCTION AND PAINTED. 5.) STEEL LINE POSTS SHALL BE OF AN APPROVED "T" SECTION, STUDDED, AND WITH AN ANCHOR PLATE. MINIMUM LENGTH SHALL BE 7'

6.) STAPLES SHALL BE SCREW SHANK TYPE OR EQUIVALENT, 1 1/4" MINIMUM LENGTH, GALVANIZED. 7.) STRETCH WIRE ON OUTSIDE OF POST ON CORNERS AND CURVES.

8.) FOR BRACE WIRES, USE 2 LOOPS OF GALVANIZED WIRE TWISTED TIGHT WITH A SHORT STICK OR BOARD. LEAVE IN PLACE FOR FUTURE TIGHTENING.

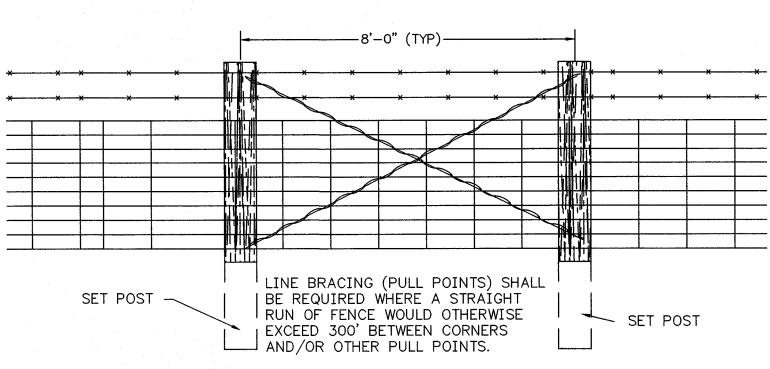

9.) AT ALL END POSTS, EACH WIRE IS TO WRAPPED AROUND THE POST, TIED TO ITSELF AND STAPLED. 10.) ALL WOOD CORNER, END, PULL AND APPROACH POSTS SHALL BE NOTCHED TO SUPPORT ENDS OF WOOD BRACES. BRACES SHALL BE

TOENAILED TO THE POSTS WITH 2-10D NAILS IN EACH END OF THE BRACE. BRACES SHALL BE 4" DIAMETER MINIMUM. 11.) THE ALIGNMENT LAYOUTS SHOWN ARE TYPICAL, BUT ARE NOT REPRESENTATIVE OF ALL SITUATIONS THAT MAY OCCUR. CONSTRUCTION

MAY BE VARIED AS REQUIRED TO MEET FIELD CONDITIONS AND/OR AS DIRECTED BY THE ENGINEER.

GATE & BRACING DETAIL SCALE: N.T.S.

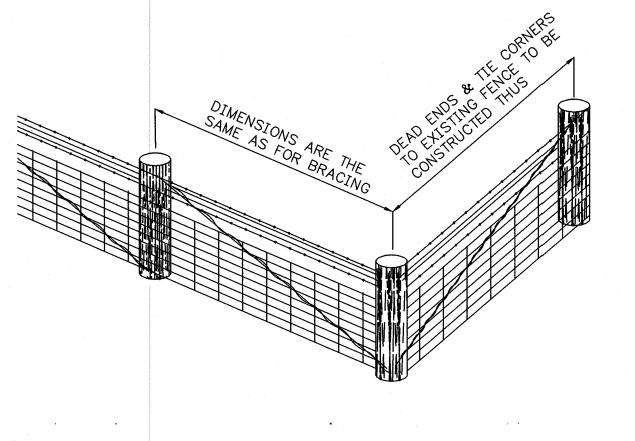
WOVEN WIRE FENCE SHOWN (BARB WIRE FENCE SIMILAR)



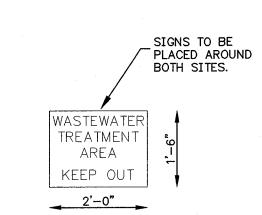
LINE POST & FENCE DETAIL (5 STRAND BARB WIRE)

SCALE: N.T.S. OTHER DETAILS SHOWN ARE FOR WOVEN WIRE FENCE (4 STRAND BARB WIRE FENCE SIMILAR)

WIRE SPLICING DETAIL (BARBED AND SMOOTH)


WIRE SPLICING DETAIL SCALE: N.T.S.

NOTE: DIMENSIONS ARE SAME AS BRACING DETAIL.


LINE BRACING DETAIL SCALE: N.T.S.

WOVEN WIRE FENCE SHOWN (BARB WIRE FENCE SIMILAR)

TYPICAL CORNER SCALE: N.T.S.

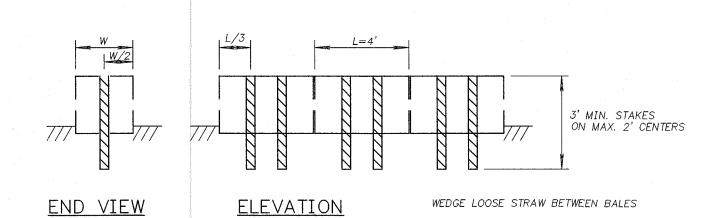
WOVEN WIRE FENCE SHOWN (BARB WIRE FENCE SIMILAR)

WARNING SIGN DETAIL

SCALE: N.T.S.

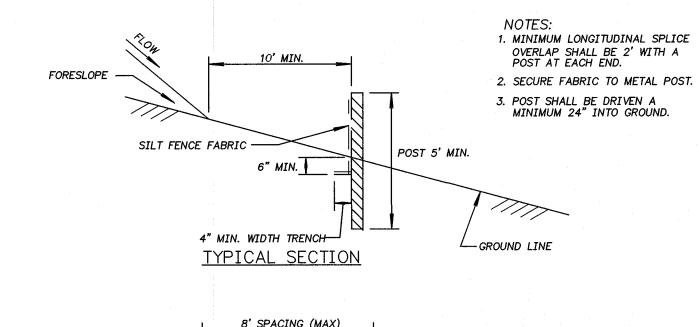
 WARNING SIGN TO BE PLACED ON EACH GATE AND AT 200' INTERVALS ALONG THE FENCES. SIGNS SHALL FACE OUTWARD.

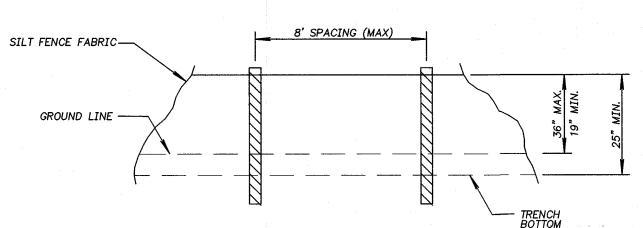
2. WHITE BACKGROUND.


3. RED BLOCK LETTERS - 2 1/2" HIGH. 4. SIGNS TO BE 1/16" THICK STEEL.
5. FASTEN SIGN TO GATES USING GALVANIZED

1/4" U-BOLTS.

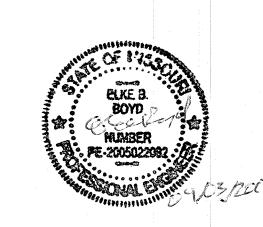
6. FASTEN TO FENCE AT POSTS USING 1/4" GALVANIZED LAG BOLTS AND WASHERS.

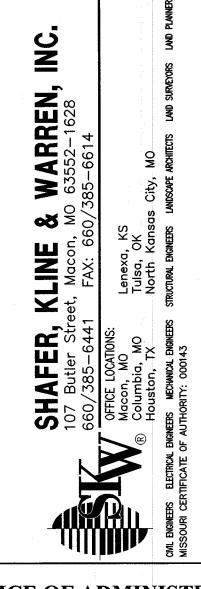

7. FASTEN TO STEEL POSTS USING 1/4" GALVANIZED U-BOLTS.


STRAW BALE -BARRIER MASH STRAW BALES TOGETHER
TO MINIMIZE OPEN SPACE TOP VIEW NOTE.
POINTS "A" SHOULD BE HIGHER THAN
POINTS "B" TO INSURE FLOW THROUGH
OR OVER BARRIER, NOT AROUND IT.

TEMPORARY STRAW BALE DITCH CHECK

SCALE: N.T.S.





SILT FENCE DETAIL

SCALE: N.T.S.

STATE OF MISSOURI ERIC GREITENS, **GOVERNOR**

OFFICE OF ADMINISTRATION **DIVISION OF FACILITIES** MANAGEMENT, **DESIGN AND CONSTRUCTIO**

DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE WATKINS MILL STATE PARK & HISTORIC SITE UPGRADE WASTEWATER TREATMENT SYSTEM

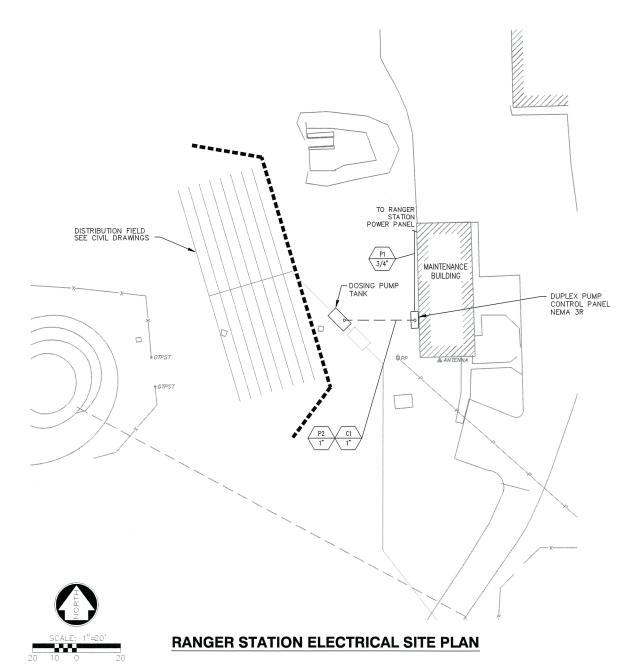
WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 FACILITY # 51577

	1	
REVISION:		
DATE:		
REVISION:		
DATE:	:	
REVISION:		
DATE:		

ISSUE DATE: 4/3/2017

CAD DWG FILE: 130512 DETAILS.dwg DRAWN BY: CHECKED BY: DES DESIGNED BY: EBB


SHEET TITLE:

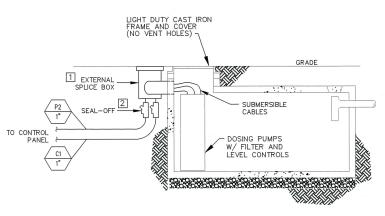
FENCE DETAILS

SHEET NUMBER:

13 OF 16 SHEETS

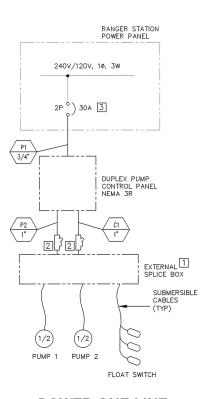
4/3/2017

CONDUIT NUMBER	FROM	то	VOLTAGE (V)	# PHASES	WIRE SIZE, CONDUIT	WIRE INSULATION TYPE	CONDUIT TYPE
P1	BREAKER IN STATION POWER PANEL	CONTROL PANEL	240	1	3-#10, #10 GND, 3/4"	THHW/THWN	RGS
P2	CONTROL PANEL	EXTERNAL SPLICE BOX	240	1	(2) 3-#10, #10 GND, 1"	THHW/THWN	PVC & RGS
N/A	EXTERNAL SPLICE BOX	PUMP 1	240	1	SUBMERSIBLE CABLE FURNISHED WITH PUMP	SOW	N/A
N/A	EXTERNAL SPLICE BOX	PUMP 2	240	1	SUBMERSIBLE CABLE FURNISHED WITH PUMP	SOW	N/A
C1	CONTROL PANEL	EXTERNAL SPLICE BOX	DC	N/A	1"	THHW/THWN	PVC & RGS
N/A	EXTERNAL SPLICE BOX	FLOAT SWITCH	DC	N/A	SUBMERSIBLE CABLE FURNISHED WITH PUMP	SOW	N/A


CONDUIT SCHEDULE

GENERAL NOTES:

- BURIED POWER CONDUITS SHALL BE SCHEDULE 40 PVC INSTALLED AT 36" MINIMUM BELOW GRADE OR AS INDICATED ON PLAN. TRANSITION TO RIGID GALVANIZED STEEL (RGS) AT 90' ELBOW BELOW GRADE. RGS CONDUIT TO BE COATED WITH BITUMASTIC COAL TAR EPOXY.
- 2. CONDUIT ROUTING AREA IS APPROXIMATE. FINAL ROUTING DECISIONS ARE BY CONTRACTOR AND OWNER'S REPRESENTATIVE.


SYMBOL NOTES:

- PROVIDE EXTERNAL SPLICE BOX FOR TRANSITION INTO DOSING PUMP TANK. ORENCO SBEX1-4-P, OR EQUALIVENT.
- PROVIDE SEAL-OFF AS REQUIRED BY NEC. ORENCO SBCS100, OR EQUALIVENT.
- 3 ADD BREAKER TO EXISTING PANEL.

DOSING PUMP TANK DETAIL

NOT TO SCAL

POWER ONE-LINE

STATE OF MISSOURI ERIC GREITENS, GOVERNOR

OFFICE OF ADMINISTRATION DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION

DEPARTMENT OF NATURAL RESOURCES

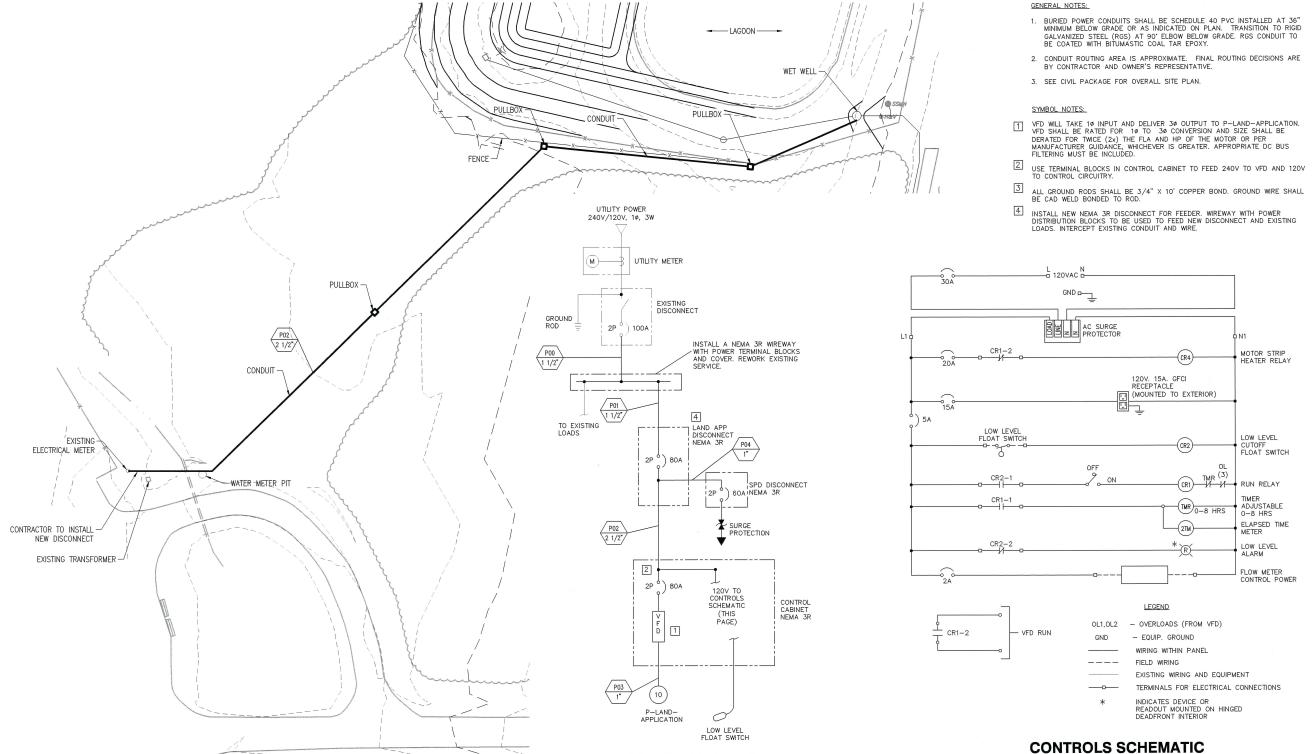
PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

REVISION:
DATE:
REVISION:
DATE:
REVISION:
DATE:
REVISION:0
DATE: 4/3/2017

CAD DWG FILE: 130512-010-E-100.dwg
DRAWN BY:
CHECKED BY:
DESIGNED BY:
HJS

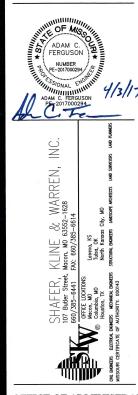

SHEET TITLE:

RANGER STATION

SHEET NUMBER:

E-100

ELECTRICAL SITE PLAN



POWER ONE-LINE

WIRE INSULATION TYPE CONDUIT NUMBER VOLTAGE (V) CONDUIT TYPE WIRE SIZE, CONDUIT # PHASES P00 EXISTING MAIN DISCONNECT WIREWAY 3-#3, #8 GND, 1 1/2" THHW/THWN RGS 3-#3, #8 GND, 1 1/2" THHW/THWN PVC & RGS P01 LAND APP DISCONNECT 240 WIREWAY 3-#4/0, #1 GND, 2 1/2" THHW/THWN P02 LAND APP DISCONNECT CONTROL CABINET 240 P03 CONTROL CABINET P-LAND-APPLICATION 3-#10, #10 GND, 1" THHW/THWN RGS SURGE PROTECTION DEVICE P04 LAND APP DISCONNECT 240 #4 THHW/THWN RGS P05 CONTROL CABINET MAG METER PANEL 2-#14AWG, #14GND, 3/4' C01 MAG METER SENSOR DC PROVIDE BY METER MFG RGS & FLEX MAG METER PANEL

CONDUIT SCHEDULE

OFFICE OF ADMINISTRATION DIVISION OF FACILITIES MANAGEMENT, DESIGN AND CONSTRUCTION

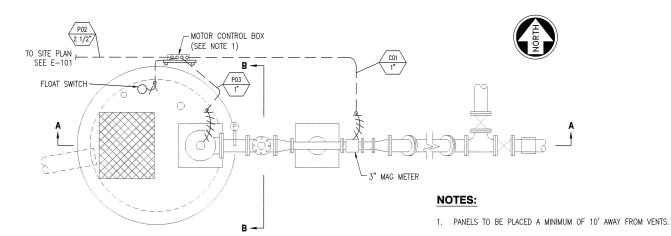
DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE
WATKINS MILL STATE PARK
& HISTORIC SITE
UPGRADE WASTEWATER
TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

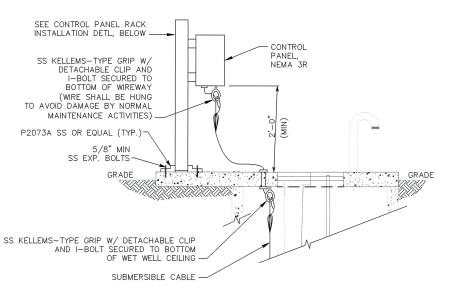
PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

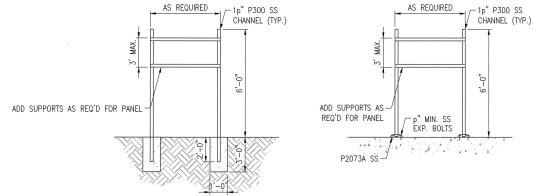
REVISION:
DATE:
REVISION:
DATE:
REVISION:0
DATE:
REVISION:0
DATE:4/3/2017


CAD DWG FILE: 1305124104-101.dwg
DRAWN BY: DM
CHECKED BY: ACF
DESIGNED BY: HJS

SHEET TITLE:

ELECTRICAL PLAN, ONE-LINE, SCHEMATIC

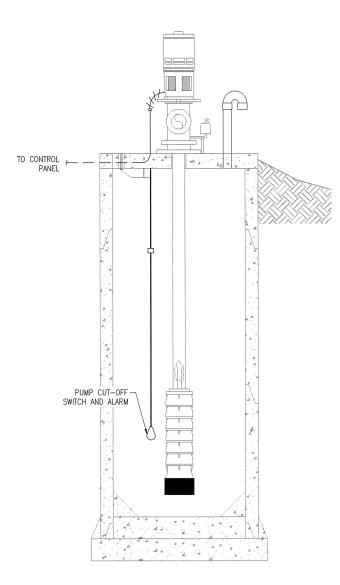

SHEET NUMBER:


E-101

WET WELL PLAN

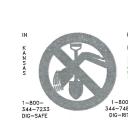
SCALE: ½"=1'-0"

NOTES:

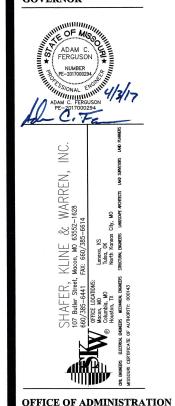

- STRUT PRODUCT NUMBERS SHOWN ARE BY UNISTRUT CORP. HARDWARE SHALL BE STAINLESS STEEL
- MIN. EMBEDMENT OF EXP. BOLTS SHALL BE 3 1/2"
- FOR SMALL ENCLOSURES, LESS THAN 6"x8"-A SINGLE POST IS ADEQUATE, 42" HEIGHT.
- 5. ALL CONDUIT CONNECTIONS TO BOX SHALL BE MADE IN BOTTOM WITH MEYERS HUBS OR EQUAL.

EMBEDDED

PANEL MOUNTING DETAILS


SURFACE MOUNT

NOT TO SCALE



WET WELL SECTION B-B

SCALE: ½"=1'-0"

STATE OF MISSOURI ERIC GREITENS, GOVERNOR

DIVISION OF FACILITIES MANAGEMENT, **DESIGN AND CONSTRUCTION**

DEPARTMENT OF NATURAL RESOURCES

PROJECT TITLE WATKINS MILL STATE PARK & HISTORIC SITE UPGRADE WASTEWATER TREATMENT SYSTEM

WATKINS MILL STATE PARK & HISTORIC SITE

PROJECT # X 1410-01 SITE # 4118 FACILITY # 51577

REVISION DATE: REVISION: DATE: REVISION: DATE: 4/3/2017 ISSUE DATE: 4/3/2017

SHEET TITLE:

WETWELL PLAN

SHEET NUMBER:

16 OF 16 SHEETS

NEW PREMIUM CAMPSITES WATKINS WOOLEN MILL STATE HISTORIC SITE

MISSOURI STATE PARKS NORTH REGION

BID DOCUMENTS

OWNER:

STATE OF MISSOURI

MICHAEL L. PARSON,

GOVERNOR

DEPARTMENT OF

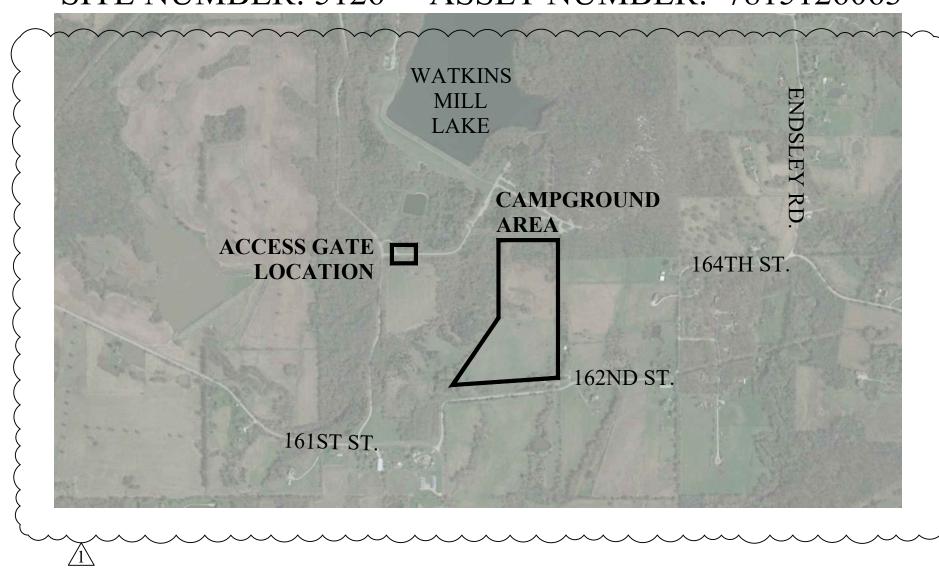
NATURAL RESOURCES, MISSOURI STATE PARKS

PROJECT

OFFICE OF ADMINISTRATION

DIVISION OF FACILITIES MANAGEMENT:

MANAGEMENT,


DESIGN AND CONSTRUCTION

PROJECT NUMBER: X2220-01

WATKINS WOOLEN MILL STATE HISTORIC SITE

26600 Park Road N. Lawson, MO 64062

SITE NUMBER: 5126 ASSET NUMBER: 7815126063

GEOTECHNICAL ENGINEER:

1211 W. Cambridge Circle Drive

Kansas City, MO 64103

ELECTRICAL ENGINEER:

ANTELLA CONSULTING

1600 Genessee, Suite 260

Kansas City, MO 64102

Phone: (816) 421-0950

Phone: (913) 310-1600

ENGINEERS, INC.

INTERTEK-PSI

SHEET INDEX:

G-000 - COVER SHEET

G-001 - SYMBOLS AND ANNOTATION

L-100 - SITE PLAN

L-400 - SITE PLAN ENLARGEMENT

L-401 - SITE PLAN ENLARGEMENT

L-402 - SITE PLAN ENLARGMENT

L-403 - SITE PLAN ENLARGMENT

L-404 - SHOWERHOUSE PLAN ENLARGEMENT & DETAILS

L-405 - ACCESS GATE PLAN ENLARGEMENT & DETAILS

C-001 - GENERAL NOTES

C-002 - EXISTING CONDITIONS

C-101 - DEMOLITION PLAN

C-103 - PAVEMENT PLAN

C-104 - TYPICAL SECTIONS

C-201 - ROAD PROFILE I

C-202 - ROAD PROFILE II

C-203 - ROAD PROFILE III

C-204 - ROAD ALIGNMENT

C-501 - SANITARY P LAN & PROFILE A

C-505 - SANITARY PLAN & PROFILE C

C-506 - GRINDER PUMP WET WELL DETAIL

C-507 - SANITARY PLAN & PROFILE D

C-508 - SANITARY PLAN & PROFILE E

C-512 - SANITARY STUB CALCULATIONS

C-513 - WATERLINE PLAN & PROFILE

C-514 - WATERLINE PLAN & PROFILE

C-515 - WATERLINE PLAN & PROFILE

C-517 - STORM PLAN & PROFILE

L-500 - SITE DETAILS

L-501 - SITE DETAILS

C-102 - GENERAL LAYOUT

C-205 - ROAD ALIGNMENT

C-206 - ROAD ALIGNMENT

C-502 - GRINDER PUMP WET WELL DETAIL

C-503 - SANITARY PLAN & PROFILE A

C-504 - SANITARY PLAN & PROFILE B

C-509 - SANITARY PLAN & PROFILE F

C-510 - FORCE MAIN SANITARY CALCULATIONS

C-511 - SANITARY CALCULATIONS

C-516 - STORM PLAN & PROFILE

SHEET NUMBER:

C-518 - STORM PLAN & PROFILE

C-522 - EROSION CONTROL DETAILS

C-601 - EROSION CONTROL PHASE I

C-602 - EROSION CONTROL PHASE II

C-603 - EROSION CONTROL PHASE III

E-001 - ELECTRICAL SYMBOLS AND

E-201 - ELECTRICAL PARTIAL SITE PLAN

E-202 - ELECTRICAL PARTIAL SITE PLAN

E-203 - ELECTRICAL PARTIAL SITE PLAN

E-801 - ELECTRICAL RISER AND SCHEDULES

GENERAL NOTES

E-501 - ELECTRICAL DETAILS

E-502 - ELECTRICAL DETAILS

C-519 - SANITARY DETAILS

C-520 - SANITARY DETAILS

C-523 - STANDARD DETAILS

C-521 - WATER DETAILS

G-0001 OF 56 SHEETS March 19, 2025

VIREO

RENAISSANCE INFRASTRUCTURE

CONSULTING 9653 Penrose Lane Lenexa, KS 66219 Phone: (913) 317-9500

Kansas City, MO 64106

Phone: (816) 756-5690

CIVIL ENGINEER:

